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ABSTRACT 
 
In this work, a similarity solution of the flow, heat and mass transfer of a nanofluid over a porous 
plate in a Darcy-Forchheimer flow is explored. The nanofluid model includes Brownian motion and 
Thermophoresis diffusion effects. The governing transport equations are made dimensionless using 
similarity transformation technique which reduce them into ordinary differential equations with the 
associated boundary conditions. The equations are then solved numerically using the classical 
fourth order Runge-Kutta method and the results are benched marked with available results in 
literature and are found to be in good agreement. The results for the flow velocity, the shear stress, 
the temperature distribution, the nanoparticle volume concentration, the skin friction 
coefficient,	���(0), the reduced Nusselt number, −��(0)			and the reduced Sherwood number,	−��(0) 
are presented graphically illustrating the effects of permeability, inertia, thermophoresis, Brownian 
motion, Lewis number and Prandtl number on the flow. Our analysis shows, among others, that the 
Nusselt number is a decreasing function, while the Sherwood number is an increasing function of 
the thermophoretic number ��. 
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1. INTRODUCTION 
 
Nanofluids have enormous potentials in 
enhancing heat transfer performances because 
of their thermo-physical properties when 
compared to their base fluids or conventional 
particle fluid suspensions. They are used as 
coolants in microchip computers, advanced 
nuclear systems, microfluidic electronics, fuel 
cells, biological sensors, hybrid power engines 
etc. Carbon nanotubes and diamond 
nanoparticles have also found important 
applications in nanotechnology. Choi [1] first 
introduce a nanotechnology concept which uses 
a mixture of nanoparticles and the base fluid in 
order to develop advanced heat transfer fluids 
with substantially higher conductivities. 
Nanoparticles are made of oxides such as 
carbides, silica, alumina, copper oxides etc. 
Buongiorno [2] made a comprehensive survey of 
convective transport in nanofluids. He explained 
the enhanced heat transfer characteristics of 
nanofluids and their abnormal increase in 
thermal conductivities as a result of two main 
effects, namely, the Brownian diffusion and the 
thermophoretic diffusion of the nanoparticles. 
Ellahi et al. [3] studied Shape effects of nanosize 
particles in Cu-H₂0 nanofluid on entropy 
generation. Khan and Pop [4] used the model of 
Kuznetsov and Nield [5] to study the fundamental 
work on the boundary layer flow of nanofluid over 
a stretching sheet. 
 
Very recently, Rahmat et al. [6] investigated the 
Simultaneous effects of nanoparticles and slip on 
Jeffrey fluid through tapered artery with mild 
stenosis. Moreover, Zeeshan et al. [7] studied 
the Effect of magnetic dipole on viscous Ferro-
fluid past a stretching surface with thermal 
radiation. Mohsen and Rahmat [8] studied 
Electro hydrodynamic nanofluid hydrothermal 
treatment in an enclosure with sinusoidal upper 
wall. Sheikholeslami et al. [9] discussed the 
effect of thermal radiation on nanofluid flow and 
heat transfer using two phase model. Ellahi et al. 
[10] studied problems on Natural convection 
MHD nanofluid by means of single and multi-
walled carbon nanotubes suspended in a salt 
water solution. Kandelousi et al. [11] also studied 
the Simulation of Ferro fluid flow for magnetic 
drug targeting using Lattice Boltzmann method. 
Saman et al. [12] Study stream wise transverse 
magnetic fluid flow with heat transfer around a 
porous obstacle. Sher Akbar et al. [13] have 
studied the Influence of induced magnetic field 

and heat flux with the suspension of carbon 
nanotubes for the peristaltic flow in a permeable 
channel. Sheikholeslami and Ellahi [14] work on 
three dimensional mesoscopic simulation of 
magnetic field effect on natural convection of 
nanofluid. 
 
It is important to note that Darcy’s classical flow 
model is a fundamental law relating the pressure 
gradient, viscosity and fluid velocity linearly 
through porous medium. Any deviation from 
Darcy’s law and assumptions is termed as non-
Darcy flow. Darcy’s law works for creeping fluids 
of Reynolds number (Re) within a range of 1 to 
10 Ishak et al. [15]. Most often, it is assumed that 
the upper limit of the applicability of Darcy’s law 
is between �� of (1 and 2) Bear [16]. Chen et al. 
[17] argued that the momentum equation most 
reduce to the viscous flow limit and advocate that 
frictional terms be added in Darcy’s flow model 
for flow through a porous medium. The aim of 
this paper is to analyze flow, heat and mass 
transfer of a nanofluid over a porous plate using 
the Darcy-Forchheimer model. 
 
However, to the best of author’s knowledge, no 
attempt has been made to analyze flow, heat and 
mass transfer of a nanofluid over a porous plate 
in a Darcy-Forchheimer flow. Hence, the problem 
is investigated. The governing partial differential 
equations are transformed to a system of 
ordinary differential equations using similarity 
approach and the resulting equations are then 
solved numerically using the classical fourth 
order Runge-Kutta method. An investigation is 
carried out to illustrate the effect of various 
governing parameters viz., the velocity, shear 
stress, temperature, concentration, skin friction 
coefficient, Nusselt and Sherwood number are 
discussed in details. 
 

2. FORMULATION OF THE PROBLEM 
 
Consider a steady, two-dimensional, 
incompressible boundary layer flow of a 
nanofluid over a porous plate embedded in a 
porous medium. The x-axis is taking along the 
surface of the porous plate and the y-axis 
perpendicular to it. The temperature ��  and 
concentration �� on the surface of the plate are 
kept constant, and assumed to be greater than 
the ambient temperature and concentration, 
	�∞	and	�∞, respectively. A physical geometry of 
the model is given in Fig. 1. In this analysis, the 
partial differential equation governing the 
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Fig. 1. Geometry of the physical model 
 

Momentum fluid flow is based on Darcy-
Forchheimer model which consist of linear and 
non-linear, Drag and Inertia, respectively. The 
governing equations of the flow field can be 
written in dimensional form as: 
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Where u	and	v are the velocity components in the 
x	and	y  directions respectively, �∞  is the free 
stream velocity, �  is the viscosity, �  is the 
temperature of the nanofluid, �  is the 
concentration of the nanofluid, ��  is the 
temperature along the porous plate, ��  is the 
concentration along the porous plate, T∞	and	C∞ 
are the ambient temperature and concentration 

respectively, � =
�

�
 is the kinematic viscosity, 

� = ��� is the Darcy permeability of the porous 

medium, �� is the inertial permeability, � ′ =
��

′

√�
 is 

the Forchheimer resistance, ��
′  is the 

Forchheimer constant,D� is the Brownian motion 
coefficient, D� is the thermophoresis coefficient, 
�  is the thermal conductivity, (��)�  is the heat 

capacitance of the nanoparticles, (��)�  is the 

heat capacitance of the base fluid, � =
�

(��)�
 is 

the thermal diffusivity, � =
(��)�

(��)�
 is the ratio 

between the heat capacitance of the 

nanoparticles and the heat capacitance of the 
base fluid. 
 
With the associated boundary conditions 

 
� = 0, v = 0		� = ��, � = ��	��	� = 0									(5a)	 

 
� → �∞, � → �∞, � → �∞	��	� → ∞																	(5b)	 
                                                             

With � =
��	

��
	and	v = −

��

��
, the continuity equation 

in (1) is satisfied automatically, where �(�, �) is 
the stream function. 
 
The following dimensionless parameters are 
introduced in order to transform the governing 
equations into a set of ordinary differential 
equations: 
 

�(�, �) = ��∞���(�), 

� = �
�
�� �(���)

�

� = ��
�∞

��
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θ(η) = �
T − T∞
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�, 
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�.																																													(6) 

 
In view of the above similarity variables, the 
equations (2)-(4) reduce to 
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The transformed boundary conditions are: 

 
� = 0	, � ′ = 0, � = 1, � = 1	at	� = 0											(10a) 
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� ′ → 1, � → 0, � → 0		as				� → ∞																		(10b) 
 

Where prime denotes first differential with 
respect to �  and double prime denotes second 
differential etc. The parameters in equations (7-
9) are defined as follows: 
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Where ��, ���	, ���	, ��	, ��	, ��	, ��	and	�� 
represents the permeability parameter of the 
porous medium, the local Darcy number, the 
local Reynolds number, the inertial parameter, 
the Prandtl number, the Brownian motion 
parameter, the thermophoresis parameter and 
the Lewis number respectively. Physical 
quantities of interest in this study are the local 
Nusselt number ���	,  local Sherwood number 
�ℎ� and the skin friction coefficient �� which are 

defined as: 
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Where k	, ��	, ��	, and	��  are the thermal 

conductivity, the wall skin friction, the surface 
heat flux and the wall mass flux respectively. 
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Using (6) in (12), we can obtain the 
dimensionless skin friction coefficient, Nusselt 
number and Sherwood number respectively as 
 

		�����

�

� = � ′′(0), 

������
�
�

� = −� ′(0), 

�ℎ����
�
�

� = −� ′(0).																																											(14) 
 

Kuznetsov and Nield [5] referred −� ′(0)	and	 −
� ′(0)  as the reduced Nusselt and Sherwood 
number, ���	and	�ℎ� respectively. 
 

3 NUMERICAL METHODS 
 

The coupled set of non-linear differential 
equations (7)-(9) along with the boundary 

conditions (10a) and (10b) form a three point 
BVP and does not form a closed form analytical 
solution. Therefore, it is solved numerically using 
fourth order classical ‘Runge-Kutta Method’. In 
this method, we first convert the governing 
equations together with the boundary conditions 
into first order system. 
 
� ′
�
= ��, �

′
�
= ��,	 

� ′
�
= −[0.5���� − ��(�� − 1) − ��(��

� − 1)], 

� ′
�
= ��, �

′
�
= −��[������ + ����

� + 0.5����], and 

�′
�
= ��, �′

�
= −�0.5������ + ����

′
�
�. 

 
Where �� = �, �� = � ′, �� = � ′′, �� = �, �� = � ′, 
	�� = �, �� = � ′. 
 
With the boundary conditions 
 
�(0) = 0, �′(0) = 0, �(0) = 1	and	ϕ(0) = 1. 
 
The method employed is the Adaptive Runge-
Kutta method (Dormand-prince method) which is 
implemented in MATLAB as an m-file in the form 
of ode. It automatically finds the appropriate step 
size Δ�  by comparing the results of a fourth-
order and fifth-order method. It requires size 
function evaluations per Δ�,  and construct a 
fourth-fifth order method from these function 
evaluations. 
 

4. RESULTS AND DISCUSSION 
 
A numerical computation as well as a parametric 
study is performed to illustrate the effect of 
several dimensionless parameters namely, the 
permeability parameter ��, the inertial parameter 
��, the Prandtl number ��, the Brownian motion 
parameter ��, the thermophoresis parameter ��, 
and the Lewis number �� . The effect of this 
parameters on the dimensionless flow properties 
such as velocity, shear stress, temperature, 
nanoparticle concentration, and the rate of heat 
and mass transfer are investigated numerically 
and presented graphically in Figs. (2-11). as a 
test of the accuracy of the method used, the 
values of �′′(0) for non-porous plate �� = �� = 0 
are compared with the values reported by 
Blasius [18], Howarth [19], Cortell [20], Ishak et 
al. [15] and Bhattacharyya et al. [21] for wall skin 
friction in Table 1. This table shows that the 
numerical results obtained by the present 
method of solution are in very good agreement 
with the previous results. Table 2: shows the 
numerical values of reduced Nusselt number �� 
and reduced Sherwood number ��	 for various 
values of 	��	and	�� . The results are compared 
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with those in literature reported by Khan and Pop 
[4], Makinde and Aziz [22], Md. Jashim Uddin et 
al. [23], Noghrehabadi et al. [24] and the 
comparison are found to be in good agreement 
for each value of ��	and	��  when 		�� = �� = 10, 
�� = �� = 0. The choice of the values of ��	and	�� 
depends on the porosity of the regime and the 
kinetic energy of the fluid. Prandtl number of 0.71 
is chosen for air while other values were chosen 
arbitrarily. Values of ��	and	�� were chosen base 
on the fact that these values were used by Khan 
and Pop [4] and Makinde and Aziz [22]. Fig. 1: 
(a)-(d) illustrates the velocity profiles for different 
values of the permeability of the medium and the 
inertial parameter effects respectively while the 
other parameters are kept constant. Fig. 1: (a) 
and (b) shows the effect of increasing values of 
porosity at low and high kinetic energy of the 
system. At low kinetic energy, it is observed that 
an increases in permeability of the medium 
causes the horizontal velocity of the flow to 

increase, therefore leading to a decrease in the 
thickness of the velocity boundary layer. The 
Darcian body force also decreases (i.e. flow 
retardation decreases) as it is inversely 
proportional to the permeability. As the inertia 
effect dominates the system of flow, the kinetic 
energy increases, the velocity also increases and 
the curves become steeper, and the effect of the 
permeability becomes less pronounce at this 
stage. From Fig. 1: (c) and (d) it is noted that an 
increase in the inertial parameter leads to an 
increase in the velocity profile with much wider 
distribution at low and higher permeability of the 
medium when compared with the first two cases. 
This actually shows the significant effect of the 
Forchheimer term on the velocity distribution. In 
all the velocity curves, the rate of transport 
increases with increasing boundary layer 
thickness	�, and varnishes or approaches 0.9999 
asymptotically at a distance of � = 4 for Fig. 1: 
(b) and 1(d) and � = 5 for Fig. 1: (a) and 1(c). 
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Table 1. Comparison of �′′(�) for non-porous plate 

 

Blasius [18] Howarth [19] Cortell [20] Ishak et al. 
[15] 

Swati et al. 
[25] 

Present study 

0.332 0.33206 0.33206 0.3321 0.33206 0.3321 

 
Fig. 2: (a)-(d) represents the shear stress profiles 
for different values of permeability and inertial 
parameter of the medium. Fig. 2: (a) and (b) 
depicts the effect of permeability parameter at 
low and high inertia of the system. In both cases, 
shear stress is found to have decrease, with the 
decreases been higher at much higher kinetic 
energy. Fig. 2: (c) and (d) exhibit the effect of    
the inertial parameter at low and high 
permeability. It is observed that the inertial 
parameter decreases the shear stress in both 
cases and the decrease has been more 
pronounce at higher permeability. 

Fig. 3: (a)-(d) shows the effect of permeability 
parameter on temperature at low and high inertial 
parameter and the effect of the inertial parameter 
on temperature at low and high permeability of 
the medium. We notice that, both permeability 
and inertial parameter decrease temperature 
when either of the two is low. This effect can be 
use as a method of cooling. When both 
parameters are high, the decrease in 
temperature is very small. Fig. 4: (a) and (b) 
illustrate the effect of Thermophoresis and 
Brownian motion parameter on the temperature 
respectively. Both parameters increase 

�′′(�) 

� 

�� = 0.2, �� = �� = 0.1, 

�� = 10, �� = 6 

(a) 

� 

�′′(�) 

�� = 1,�� = �� = 0.1, 

�� = 10, �� = 6 

(b) 

�′′(	�) 

� 

�� = 0.2, �� = �� = 0.1, 

�� = 10, �� = 6 

(c) 

� 

�′′(	�) 
�� = 1,�� = �� = 0.1, 

�� = 10, �� = 6 

 

(d) 
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temperature. The effect of Thermophoresis, 
Brownian motion, permeability and inertia on the 
Nanoparticle concentration is shown in Fig. 5: 
(a)-(f). It is shown that thermophoretic effect on 
concentration increases at lower Brownian 
diffusion with disturbance, while as both 
parameters increases simultaneously, the 
Brownian motion tends to reduce the effect of the 
thermophoresis parameter and hence the system 
is less disturbed. From Fig 5(c) and 5(d), it is 
observed that as Brownian motion increases 
while thermophoresis is low, concentration 
decreases. As both parameters increase 
simultaneously, concentration decreases and the 
system is disturbed. Fig. 5(e) and 5(f) illustrate 
the effect of permeability and inertia on the 
concentration profile. It is depicted that both 
parameters decreases concentration, with inertia 
decreasing the concentration at a wider 
distribution. 

Fig. 6: (a) and (b) shows the effect of ��	and	�� 
number on the temperature profile respectively. 
An increase in Prandtl number leads to a 
decrease in temperature. Lewis number also 
decreases temperature, but its effect is very 
small. The effect of these parameters on 
concentration is shown in Fig. 7: (a) and (b). It is 
observed that concentration increases as the 
Prandtl number increases, but decreases with 
increase in Lewis number. This is as a result of 
the decrease in nanoparticle boundary layer 
thickness when the Lewis number increases. Fig. 
8: (a)-(c) illustrate the effect of permeability on 
the skin friction, heat and mass transfer 
respectively. With increase in permeability, skin 
friction increases as well as heat and mass 
transfer with increasing inertial parameter. Fig. 9: 
(a)-(c) shows the effect of the inertial parameter 
on the skin friction, heat and mass transfer 
respectively. As the inertial parameter increases,
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the skin friction, heat and mass transfer 
increases. The influence of thermophoresis on 
heat and mass transfer with increasing Brownian 
motion is shown in Fig. 10: (a) and (b). It is 
shown that heat transfer decreases with 
increasing thermophoresis while mass transfer 
increases as the thermophoretic number 
increase. Fig: 11: (a) and (b) shows Brownian 
motion effect on the heat and mass transfer. It 

has been noticed that both heat and mass 
transfer decreases with increase in Brownian 
motion parameter. Table 3: shows the numerical 
values of −�′(0)	and − �′(0)	 for various values 
of		��	when	�� = 10	and	�� = 6.0. It can be seen that 
the reduced Nusselt number is a decreasing 
function, while the reduced sherwood number is 
an increasing function of the thermophoretic 
number ��. 
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Table 2. Comparison of results for reduced Nusselt number −�′(�) and reduced Sherwood number −�′(�) with �� = �� = ��, �� = �� = � 
 
�� �� Khan and Pop [4] Makinde and Aziz [22] Md. Jashim Uddin et al. 

[23] 
Noghrehabadi et al. 

[24] 
Present result 

−�′(�) −�′(�) −�′(�) −�′(�) −�′(�) −�′(�) −�′(�) −�′(�) −�′(�) −�′(�) 
0.1 0.1 0.9524 2.1294 0.9524 2.1294 0.95238 2.12939 0.95238 - 0.9524 2.1294 
0.2 0.1 0.5056 2.3819 0.5056 2.3819 0.50558 2.38187 0.50558 - 0.5056 2.3819 
0.3 0.1 0.2522 2.4100 0.2522 2.4100 0.25216 2.41002 0.25216 - 0.2522 2.4100 
0.4 0.1 0.1194 2.3997 0.1194 2.3997 0.11946 2.39965 - - 0.1194 2.3997 
0.5 0.1 0.0543 2.3836 0.0543 2.3836 0.05425 2.38357 - - 0.0543 2.3836 
0.1 0.2 0.6932 2.2740 0.6932 2.2740 0.69317 2.27401 0.69317 - 0.6932 2.2740 
0.1 0.3 0.5201 2.5286 0.5201 2.5286 0.52008 2.52863 0.52008 - 0.5201 2.5286 
0.1 0.4 0.4026 2.7952 0.4026 2.7952 0.40258 2.79515 - - 0.4026 2.7952 
0.1 0.5 0.3211 3.03512 0.3211 3.03512 0.32105 3.03512 - - 0.3211 3.03512 
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Table 3. Numerical values of −��(�)	��� −
��(�) for different values of ��	���� 	�� = �� =

�. �, �� = ��	���	�� = � 
 

�� �� −��(�) −��(�) 
0.1 0.1 0.41209 0.93995 
 0.2 0.32401 1.0815 
 0.3 0.25791 1.27214 
 0.4 0.20813 1.47679 
 0.5 0.17041 1.67587 
0.2 0.1 0.27801 0.96981 
 0.2 0.21750 1.06339 
 0.3 0.17255 1.16654 
 0.4 0.13895 1.2683 
 0.5 0.11361 1.3630 
0.3 0.1 0.18268 0.96829 
 0.2 0.14244 1.03931 
 0.3 0.11276 1.1101 
 0.4 0.09068 1.17644 
 0.5 0.07408 1.23643 

 

5. CONCLUSIONS 
 
This study has analyzed the flow, heat and mass 
transfer of a nanofluid over a porous plate in a 
Darcy-Forchheimer flow numerically. By using 
the similarity transformation approach, the 
governing partial differential equations are 
transformed into non-linear ordinary differential 
equations and the resulting problem is solved 
using Runge-Kutta method. The influence of the 
governing parameters on the flow, heat and 
mass transfer has been closely examined. The 
following conclusions are drawn from the 
analysis: 
 

1. The velocity of the flow accelerates with an 
increase in the inertial and permeability of 
the medium 

2. The temperature of the flow  rises with an 
increase in the thermophoretic number , 
the Brownian motion parameter and  fall 
with an increase in the permeability of the 
medium, the inertial parameter, the Prandtl 
number and the Lewis number 

3. Nanoparticle concentration increases with 
an increasing thermophoresis and Prandtl 
number and decreases with an increase in 
permeability, inertia, Brownian motion and 
Lewis number 

4. Skin friction coefficient increases with an 
increase  in permeability and  the  inertia 
parameter of the medium 

5. Heat transfer rate rises with an increase in 
permeability, the inertia and Prandtl 
number (for fluids with �� number between 
0.71 and 6, and decreases for fluids with 
higher Prandtl numbers). The rate falls with 
an increase in Brownian motion, 
thermophoresis and Lewis number 

6. Mass transfer rate increases with an 
increase in permeability, inertia, 
thermophoresis, Prandtl number and Lewis 
number and decreases with an increase in 
Brownian motion 
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