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ABSTRACT 
 

This article focuses on an overview of the processes of generating rainfall intensity-duration-
frequency (IDF) models, the different types and applications. IDF model is an important tool 
applied in the design of either hydrologic or hydraulic design such as prediction of rainfall 
intensities to estimate peak runoff volumes for mitigation of flooding. IDF models evolved from 
stationary – parametric (empirical) and non-parametric (stochastic) models, to non-stationary 
models in which variables vary with time. Each category controls the ways models predict rainfall 
intensities, and reveals their strength and weaknesses. IDF models must therefore, be chosen in 
terms of the project objective, data availability, size of the study, location, output needed, and the 
desired simplicity. For instance, while the parametric model predicts better for shorter durations 
and return periods only, the non-parametric models predict better for both shorter and longer 
durations and return periods. For projects requiring change of input data over time and evaluation 
of uncertainty bounds, risk assessment, including incorporation of changes in extreme 
precipitation, the non-stationary model approach must be selected. Also, of importance for 
catchments without rainfall amount and corresponding duration records but has daily (24-hourly) 
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record of rainfall depth, the Indian Meteorological Department (IMD) method of shorter duration 
disaggregation can be adopted to generate in-put data for the development of IDF curves for such 
a location. Therefore, each model type has limitations that may make it unsuitable for some 
projects. Reviewing input data and output requirements, and simplicity are all necessary to decide 
on which model type should be selected. 
 

 
Keywords: Stationary; parametric; non-parametric; non-stationary; PDF; IDF models; rainfall-runoff; 

data. 
 

1. INTRODUCTION 
 
Rainfall is the major component of the hydrologic 
cycle and is the primary source of runoff which is 
essentially required to fulfil various demands in 
human life and his environment. It is a natural 
phenomenon occurring due to atmospheric and 
oceanic circulation with local convection, frontal 
or orographic pattern and has large variability at 
different spatial and temporal scales [1]. Many 
attempts have been made to model and predict 
rainfall behavior using various empirical, 
statistical, numerical and deterministic 
techniques. The models may include other input 
variables, like temperature, information on the 
catchment or others. Rainfall-runoff models can 
be classified within several different categories. 
They can be distinguished between event-based 
and continuous-simulation models, empirical, 
conceptual or process (physically) based models, 
lumped or distributed models, and several 
others. The classifications are not rigid as 
sometimes a model may not be clearly assigned 
to one category [2]. 
 
The state-of-the-art monitoring of urban 
precipitation is based on either a network of rain 
gauge(s) or weather radars [3]. The application 
of a single rain gauge as precipitation input 
carries lots of uncertainties regarding estimation 
of runoff, because they are point precipitation 
data. This creates problems for the discharge 
prediction, especially if the rain gauge is located 
outside the basin. Rainfall generated runoff is 
very important in various activities of water 
resources development and management, such 
as: flood control and its management, design of 
irrigation and drainage works, design of hydraulic 
structures, hydro-power generation, etc. The 
method of transformation of rainfall to runoff is 
highly complex, dynamic, nonlinear, and exhibits 
temporal and spatial variability. This review is 
therefore, within the context of transformation of 
rainfall to runoff achieved through the 
development of intensities-duration-frequency 

(IDF) models as in the flowchart (diagram) shown 
in Fig. 1. 
 
A rainfall IDF model is an empirical equation 
representing a relationship among maximum 
rainfall intensity (as dependent variable) and 
other parameters of interest such as rainfall 
duration and frequency (as independent 
variables). The simplest type of these models is 
a relationship between rainfall intensity and 
duration for a given return period. The severity 
and frequency of extreme climatic events are 
growing by the day, thereby calling to question 
the adequacy of our water resources 
infrastructures to deal with these changes. 
  
Current infrastructure designs are basically on 
rainfall Intensity-Duration-Frequency (IDF) 
models with the so-called stationary assumption, 
meaning extremes will not vary significantly over 
time. Stationary IDF relationships are currently 
constructed based on at-site frequency analysis 
of rainfall data separately for different durations. 
These relationships are inaccurate and unreliable 
because they depend on many assumptions 
such as distribution selection for each duration; 
they require a large number of parameters which 
are not time-dependent. The integration of 
required parameters led to the evolution of 
parametric IDF models which have many 
disadvantages. Examples of parametric IDF 
models are the quotient, power law and quotient-
power models. In order to improve the limitations 
imposed by the years of data collection in the 
frequency analysis of rainfall data, the non-
parametric IDF models evolved which are 
probability distribution function (PDF) based IDF 
models. The frequency analysis of the non-
parametric (PDF) based models can be projected 
beyond the years of rainfall data collection which 
can be from 2 to 100 year return period. 
Common PDFs in use include the Gumbel 
Extreme Value Type-1 (GEVT-1), Log-Pearson 
Type-3 (LPT-3), Pearson, Normal and Log-
Normal distributions in the frequency analysis. 
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Fig. 1. Flowchart for developing rainfall intensity duration frequency models 
 

On the other hand, non-stationary IDF modeling 
is one with a dynamic data series in which the 
statistics of the sample (mean, variance and 
covariance) change over time. Studies are now 
focusing on non-stationary IDF modeling in 
meteorological time series. The implication is that 
neglecting to incorporate non-stationarities in 
hydrological models will likely lead to inaccurate 
results [4]. Significant trend check of the 
measured rainfall data is required. This is 
detected using non-parametric rank based Mann-
Kendal (MK) test. The null hypothesis of no trend 
remains rejected if the test statistic is significantly 
different from zero to 0.05 significance level. If a 
significant trend is detected, the location 
parameters will be evaluated based on non-
stationary assumption. Thus, allowing the 
estimation of rainfall quantities which is 
consistent with the ideal characteristics of the 
measured precipitation extremes. Otherwise, the 
non-parametric (PDF) modeling approach is 
applied as indicated in the flowchart (Fig. 1). 

 2. TREND IN RAINFALL-RUNOFF 
MODELLING 

 
Modeling runoff helps gain a better 
understanding of hydrologic phenomena and 
how changes affect the hydrological cycle. 
Runoff models visualize what occurs in water 
systems due to changes in pervious surfaces, 
vegetation, and meteorological events [2,5,6] 
defines a runoff model as a set of equations that 
aid in the estimation of the amount of rainfall that 
turns into runoff as a function of various 
parameters used to describe the watershed. In 
this paper, the relationship between the IDF 
models and how it contributes to rainfall-runoff 
estimation is explored. 
  
2.1 Rational Method  
 
The first widely used runoff method is the 
Rational Method published by Thomas Mulvaney 
in 1851, which employed rainfall intensity, 
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drainage area, and a runoff coefficient to 
determine the peak discharge in a drainage 
basin [1,5]. In the United States, Kuichling in 
1889 applied the rational method to urban 
drainage designs successfully. Also, in the 
United Kingdom, the method is often ascribed as 
the Lloyd-Davis method published in 1906 [7]. 
Widely accepted by hydraulic engineers, the 
method is based on the theory that, for a given 
storm frequency, the maximum runoff rate results 
from a rainfall intensity of duration equal to the 
time of concentration of the particular basin. The 
simplicity of the equation is misleading because 
“the critical value of the rainfall intensity which 
can be estimated from IDF models or curves, 
through the medium of concentration time, 
entails a consideration of such factors as basin 
size, shape, and slope; channel length, shape, 
slope, and conditions; as well as variation in 
rainfall intensity, distribution, duration, and 
frequency; all of which can and should be 
considered in determining its value” [8]. 
 
According to [9] recommends the use of Rational 
method for estimating the design-storm peak 
runoff from small basins with area up to 200 
acres (2ha) and for up to 300 acres (3ha) in low-
lying tidewater areas. The Rational method uses 
an empirical equation that incorporates basin and 
precipitation characteristics to estimate peak 
discharges. The method is relatively simple to 
apply; however, its concepts are sophisticated. 
Considerable engineering knowledge is required 
to select representative hydrologic characteristics 
that will result in a reliable design discharge [9]. 
Validation of the Rational Method is difficult 
because direct measurement of some hydrologic 
characteristics used in the method is not easily 
obtained. The application of the method requires 
some assumptions provided by Merit in 1976 
[10]. The rational formula is given by the 
equation: 
 

� = 0.278 ���                                    (1) 
 

Where; Q is the quantity of runoff in (m3/s), C is a 
dimensionless runoff coefficient, I is the rainfall 
intensity in (mm/hr) corresponding to a particular 
duration and average recurrence interval (ARI), 
and A is the tributary or catchment area involved 
(km2). For the application of Equation (1), C, I 
and A must be known, and if A is in (m

2
), then; Q 

becomes:  
 

� = ��� (��/�)                        (2) 
 

The Rational method uses a rainfall intensity to 
represent the average intensity for a storm of a 

given frequency for a selected duration [11]. As 
noted, assumptions of the method include that 
the rainfall intensity is constant over the entire 
basin and uniform for the time of concentration. 
Amongst the assumptions associated with the 
Rational method, is that of   constant, uniform 
rainfall intensity that are the least valid in a 
natural environment. However, the variability of 
rainfall intensity during a storm and over a basin 
becomes less as the size of the basin decreases 
such that these assumptions become more valid. 
The variability of rainfall intensity in time and 
space is a major reason for an upper limit on 
basin size when using the Rational method to 
estimate peak flow. 
 
Rainfall intensity is selected from an intensity-
duration-frequency (IDF) curve generated from 
point rainfall data collected in a given area. This 
is, however, possible if both duration and the 
return period are known. These curves are 
generated by fitting annual maximum rainfall 
intensities for specified durations to a Gumbel-
probability distribution, usually by plotting the 
data on extreme-value-probability paper. The 
rainfall intensity is estimated by transferring the 
basin time of concentration as duration in 
minutes through the desired storm frequency 
curve. The major disadvantages of the rational 
method is the need for reliable IDF relationship. 
Secondly, the recurrence interval is assumed to 
be uniform over the whole catchment.  
 
More recently, the unit hydrograph concept was 
introduced to conceptualize a catchment’s 
response to a storm event based on the 
superposition principle [1,5]. The unit hydrograph 
made it possible to separate base-flow and storm 
event runoff from stream flow. With increased 
computing power and a deeper understanding of 
hydrological processes, runoff models have 
become more sophisticated. 
 
In general design work, the major advance 
following the Rational method was the 
development of computer models for drainage 
system design and analysis. A number of urban 
storm water simulation models have been 
developed after the rational method and the unit 
hydrograph methods. Some of the frequently 
used models are: Chicago Hydrograph method 
(CHM), Road Research Laboratory method 
(RRL), Illinois Urban Drainage Area Simulator 
(ILLUDAS), Storm Water Management Model 
(SWMM) and others [11]. The progress in urban 
storm water drainage modeling has not been 
uniform in time and across different countries 
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and regions. Furthermore, the various models 
may give different solutions to the same problem. 
Therefore, communities that are experiencing 
urbanization and climate change may develop 
their own urban drainage model and local 
drainage design practice.  
 
2.2 Soil Conservation Service – Curve 

Number (SCS-CN) Method 
 
The SCS-CN method was developed by the 
United States Department of Agriculture, Soil 
Conservation Services (SCS) in 1969. The 
purpose of the curve number is to describe 
average condition for design purposes. The 
curve number was originally developed for 
agricultural watersheds with a land slope of 5% 
and an initial abstraction of rainfall of 20% due to 
infiltration. The initial abstractions consist of 
interception loss, surface storage, and infiltration 
prior to runoff.  
 
The SCS-CN method is a simple predictable, and 
stable conceptual method for estimation of direct 
runoff depth based on storm rainfall depth. It 
relies on rainfall amount and curve number (CN). 
The curve number is based on the area’s 
hydrologic soil group, land use, treatment and 
hydrologic condition. The first two requirements 
are of utmost importance. The general equation 
for the SCS-CN method is an empirical equation 
expressed in the form: 
 

� = (� − ��)� /[(� − ��) + �]          (3) 
 

Where: Q = runoff (mm); P = rainfall (mm); S = 
potential maximum retention after runoff begins; 
and Ia = initial abstractions. The initial 
abstraction, Ia can be defined as a percentage of 
S as shown in Equation (4) giving rise to 
Equation (5) 
 

�� = 0.2�                                                 (4) 
 

� = (� − 0.2�)�/(� − 0.8�)                       (5) 
 

Equation (5) is easily evaluated by substituting S 
with Equation (6). 
 

� =
����

��
− 10)                                    (6) 

 

The parameter CN is a transformation of S, and it 
is used to make interpolation, averaging, and 
weighting from the linear relationship as 
indicated in Equation (6). The curve number are 
therefore determined from chart based on the 
inputs of the hydrologic soil group, land cover 
type, and hydrologic condition. Four soil groups 

are defined as A, B, C, and D according to the 
infiltration rates. Cover types are determined by 
photographs and land use maps, ranging from 
developed surfaces to agricultural and forest 
areas. The weighted curve number method 
computes the weighted average of all the curve 
numbers in the area of interest to provide one 
curve number for runoff calculation [2]. 
 
Once the CN is determined, Equation(5) is 
employed with known amount of rainfall and 
initial abstractions to calculate the amount of 
rainfall translated into surface runoff. The CN 
method assumes the ratio of actual runoff to 
potential runoff is equal to the ratio of actual to 
potential retention. This is a purely empirical 
process for determining runoff. There is no 
temporal resolution within the CN calculation in 
order to consider rainfall duration and intensity. 
The application of the SCS-CN Weighted Curve 
Number method is used for ungauged areas and 
within other models such as the Soil and Water 
Assessment Tool (SWAT) [12].  
 

Long-term observations on streamflow are 
generally not available at desired locations, and 
these records often contain missing data 
attributable to variety of reasons. Therefore, 
many hydrological models have been developed 
in the past [13] for transformations of rainfall into 
streamflow because of easy availability of rainfall 
data for longer time periods at different locations. 
In many of these models, soil conservation 
service curve number (SCS-CN) model has been 
widely used for surface runoff computations.  
 

3. ANNUAL MAXIMUM RAINFALL 
ANALYSIS 

 

3.1 Extreme Value Theory 
 

The field of extreme value theory was pioneered 
by Leonard Tippett (1902-1985), but in 1958 [14] 
codified the theory in his book: “Statistics of 
Extremes” including the Gumbel distribution in 
his name. Extreme value theory is a branch of 
the probability that studies the stochastic 
behavior of the extremes of a set of random 
variables [15]. The extreme value theory has 
emerged as one of the most important disciplines 
of applied science in the last 50 years and it has 
been used in various fields of science, such as: 
Climate change, Oceanic modeling, and 
Hydrology. 
 

Extreme values are selected maximum values of 
data sets. For example, the annual maximum 
discharge of a given location is the largest 
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recorded discharge value during a year, and the 
annual maximum discharge values for each year 
of historical record make up a set of extreme 
values that can be analyzed statistically. 
Distributions of the extreme values selected from 
sets of samples of any probability distribution 
converge to one of the three forms of extreme 
value distributions called types 1, 2, and 3 
respectively, when the number of selected 
extreme value is large. The three limiting forms 
are special cases of a single distribution called 
the General Extreme Value (GEV) distribution. It 
is given by [16] thus: 
 

�(�) = ����− �1 − �
���

�
�

�

�
�                    (7) 

 

Where: k, u and α are parameters to be 
determined. The three limiting cases are: for k = 
0   (the Extreme Value Type 1 distribution); for k 
< 0 (the Extreme Value Type 2 distribution) for 
which Equation (7) applies for (u + α/k) ≤ x ≤ ∞. 
For k > 0 (the extreme Value Type 3 distribution) 
for which Equation (7) applies for: - ∞ ≤ x ≤ (u + 
α/k). In all three cases, α is assumed to be 
positive for EV 1 distribution, x is unbounded, 
while for EV 2, x is bounded from below by u + 
α/k. 
 
The characterization of rainfall and its intensity is 
important for the estimation of design storm 
values. Historical time series are analyzed in 
either of the two following ways being Partial 
Duration Series (PDS) or Annual Maximum 
Series (AMS).  

 
3.2 Partial Duration Series (PDS)  

 
PDS include all the values that occur within the 
period of record as long as they are higher than 
some threshold value. PDS data used for 
frequency analysis typically yields higher values 
for a given frequency than using AMS data. The 
difference in values is greater in the more 
frequent events such as 2-year, 5-year and 10-
year, and decreases as the recurrence interval 
increases. For less frequent events such as 25-
year, 50-year and 100- year, the difference in 
values is minimal between the two series. Using 
a PDS to analyze event frequency increases the 
sample size by capturing more events of interest, 
but requires that each data point used represents 
an independent event. The value of the threshold 
value also affects the distribution parameters, so 
special care are taken to choose a good 
threshold.  

3.3 Annual Maximum Series (AMS) 
  
The annual maximum series daily rainfall is 
defined as an extreme instance with critical 
duration for a water shed, catchment area, river 
basin, state or region, with immediate 
consequences to agriculture, soil conservation, 
roads, dams and drainage [17]. In many 
statistical applications the interest is directed 
towards the estimation of the central features 
such as mean value, a variable based on random 
samples from the population under study and 
draws on ideas that have such key moments 
which are approximately normal distribution, with 
theorems of analysis based on the central limit 
theory. However, as in many applied areas, the 
climatological characterization of the annual 
maximum series daily rainfall requires a suitable 
choice of methodology. These events are not in a 
central position in the probability distribution. The 
interest is to identify the occurrence of extreme 
events, that is, maximum values. The information 
about the probability of extreme values 
occurrence is fundamental to the society to 
prepare for extremes like heavy precipitations 
events. 
 
AMS include only the highest values that occur 
within each year of the period of record and   
AMS are preferable in frequency analysis. As a 
direct consequence of the increasing trends of 
daily maximum rainfall, there is an increase of 
soil loss, increase in carrying out of sediments, 
and increase loss of fertility resulting in 
decreased agricultural production. Thus, 
necessitating the need for recording daily or 24 
hourly rainfall data for obtaining extreme value 
records. The daily annual maximum series when 
collated are subjected to analysis.  
 

Different approaches have therefore been used 
for the construction of daily AMS rainfall data in 
the form of classical highest precipitation amount 
for different precipitation duration method, and 
the Indian Meteorological Department (IMD) 
method of shorter duration rainfall downscaling. 
 

3.3.1 Conventional annual maximum series 
(CAMS) method 

 

This is the most common approach used for 
construction of AMS that is applied in rainfall 
analysis and Intensity-Duration-Frequency (IDF) 
modeling the world over. The analysis is 
anchored on ground-based observations of 
precipitation extremes being the annual maxima. 
The annual maxima series is constructed by the 
extraction of the highest precipitation amount for 
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different durations. Thus, numerical analysis is 
performed on AMS for storm durations such as 5, 
10, 15, and 30 minutes which are typical time of 
concentration for small urban catchments and 1, 
2, 6, 12, and 24 hours, also typical time of 
concentration for larger rural watersheds.  
 
In the USA,  [18] adopted the AMS rainfall 
analysis method to develop a scaling model of a 
rainfall IDF relationship; [19] used the AMS 
construction method to develop a generalized 
framework for estimating IDF curves and their 
uncertainties using Bayesian inference. Like in 
USA and other Countries, the AMS method as 
the most prevalent rainfall analysis method has 
been of immense utility by Nigerian scholars to 
develop IDF models for Nigerian cities 
[20,21,22,23,24]. 
 
3.3.2 Indian meteorological department (IMD) 

method 
 
The availability of observed hourly rainfall data is 
limited by very poor network of such rain gauges. 
By analyzing data at some locations where both 
hourly and daily rainfall data are available [25] 
proposed a relationship adopted by Indian 
Meteorological Department (IMD), to 
disaggregate daily rainfall to a given ‘t’  hour 
rainfall in the form:  
 

��=��� �
�

��
�

�.��

                                    (8) 

 
Where: �� is the required precipitation depth for 
the duration t-hour in mm, ���  is the daily 
precipitation in mm and t is the time duration in 
hours for which precipitation depth is required. 
 
Using this relationship, daily (24 hourly) rainfall 
data commonly found in both urban and rural 
locations especially in developing Countries, can 
be converted to peak hourly rainfall as may be 
required for analysis. Thus, from the annual 
maximum series (AMS) daily (24 hourly) rainfall 
data recorded for any gauge station, 
disaggregation can be performed using the IMD 
empirical formula to shorter durations such as 
0.16, 0.33, 0.5, 1, 2, 6 and 12  hours. The 
derived rainfall values of shorter durations serve 
as representative values of the various durations 
from the statistical population of the annual daily 
extreme values for the gauge station [26]. The 
IMD method was applied by [27,28] to develop 
IDF models for Cities in Iraq while [29] applied a 
modified version of the empirical formula for 
frequency analysis, infilling and trends for 
extreme precipitation for Jamaica (1895-2100).  

 4. RAINFALL INTENSITY-DURATION-
FREQUENCY (IDF) MODELING 

 
This section of the review shall focus on the 
trend of evolution of IDF types from the 
stationary to non-stationary, their strength and 
weaknesses including their applications in 
hydrologic designs. 
 

4.1 Stationary IDF Modeling 
 
Under the assumption of a stationary climate, the 
concepts of return level and return period provide 
critical information for design, decision-making, 
and assessing the impacts of rare weather and 
climate events such as the return level with a T-
year return period representing an event that has 
1/T chance of occurrence in any given year [30]. 
Infrastructure design concepts have long relied 
on stationary return levels, which assume no 
change to the frequency of extremes over time 
[31]. Frequency distribution and analysis 
methods is a key feature in differentiating types 
of stationary IDF modelling that can be classified 
as either parametric (empirical) or non-
parametric (stochastic) IDF modelling. 
 
4.1.1 Parametric IDF modeling 
 
In parametric IDF modeling the parameter of the 
IDF relationship assume fixed values. In other 
words, the variables are defined by model 
parameters. The models are therefore 
deterministic and continuous; because the 
variables are not detached but represented in a 
continuous manner. Empirical continuous 
probability distribution function (ECPDF) are 
applied to determine the return period of the 
rainfall AMS events for historical measured 
rainfall data. The probability of exceedance of the 
AMS events are determined by the rank-order 
method. This method involves ordering the 
events from the largest events ranked as 1 to the 
lowest as m, being the sample size of events 
[32,33]. 
 
The observed cumulative frequency is computed 
by the use of the Weibull’s plotting position 
formula: 
 

� = �/(� + 1)                                    (9) 
 
Where; p is the exceedance probability for an 
event with rank m, m is the rank of the event and 
n is the sample size. The empirical return period 
(T) of each event is determined as the inverse of 
its exceedance probability:  
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� = 1/�                                   (10) 
 

Major source of uncertainty in the IDF 
relationship are insufficient quantity and quality of 
data leading to parameter uncertainty due to the 
distribution of the data. Thus, it is important to 
study these uncertainties and propagate them to 
future for accurate assessment of return levels 
for future [34]. Also, another major short coming 
of the IDF models developed from return period 
T obtained from this method of empirical 
continuous probability distribution function  
(ECPDE) are that they are return period specific 
and are seriously limited by the years of data 
collection. The IDF models showed higher 
prediction at lower durations of 10 – 40 minutes 
[23]. Typical empirical equations calibrated for 
IDF modeling are those of power and quotient-
power governing equations. 
 

Studies conducted in Nigeria on IDF 
development are all site specific and are also 
based on the stationary concept [20,21,35,36, 
37]. Most of the studies applied short 
precipitation records varying between 10 to 13 
years except for those of [37] which were 
between 17 – 35 years term. The various studies 
focused on derivation of deterministic IDF 
models where the variables are defined by the 
parameters of the calibrated equations. 
 

4.1.2 Non-parametric (stochastic) IDF 
modeling 

 

When IDF model’s relationship has variables 
which are not defined by the model parameters 
but rather by the state of the system such as 
probability distribution functions such a model is 
said to be stochastic. The sampled data when 
plotted in a normality graph paper does not 
exhibit a normal shape but are better described 
as a non-parametric shape giving either a 
positive or negative coefficient of skewness.  
Frequency analyses of the hydrologic data 
therefore, use probability distributions to relate to 
the magnitude of extreme events to their 
frequency of occurrence. The most common and 
important probability distributions in use are the 
Normal, Log-Normal, Exponential, Gamma, 
Pearson Type 1, 2, and 3, Log Pearson, General 
Extreme Value 1 (Gumbel), General Extreme 
Value 2 (Frechet), and General Extreme Value 3 
(Weibull). The Normal and Log-Normal 
distribution generally fits to the annual flows of 
rivers [16]. 
 
To deal with frequency analysis of rainfall, 
emphasis is laid on frequency of occurrence of 

the events. Thus, probability distribution 
functions (PDFs) are the basis for analysis. 
Computing the magnitudes of the extreme 
random events using the PDF methods requires 
that the PDFs be given a value for any given 
return period, (T) or [ F(��) = T/(T-1)], that can 
enable corresponding event value �� , to be 
computed. The magnitude ��  of any hydrologic 
event such as rainfall intensity or flooding can be 
evaluated from Equation (11): 
 

�� =  � +  ∆��                                  (11) 
 
Where μ = the mean, and ∆��  the departure of 
the variate from the sample mean which can be 
written as ∆�� =  ��� ; where: S = standard 
deviation, and ��= distribution factor. 
 
These two parameters are rather functions of 
return period and PDF type. Equation (11) can 
be written in the form; 
 

 �� =  � +  ���                                  (12) 
 
Similarly, [16] also proposed that the same 
formulae applies to the statistics for the 
logarithmic data, in the form: 
 

log �� = log �̅ +  �������                      (13)  
 

Where, log ��  = logarithmic mean and �����  = 

standard deviation. And the required rainfall 
intensity, XT is found taking the antilog of  log ��. 
 

Frequency analysis of any event starts with 
calculation of the statistical parameters (the 
mean(�̅), standard deviation (S), and coefficient-
of-skewness (CS)) needed for an intended 
probability distribution by using methods of 
moment from the observed data [32]. Equations 
describing the relationship of the frequency 
distribution factors (KT) are provided in literature 
with their applicable PDFs as applied for 
generation of relevant frequency distribution 
factors (��)  substituted for eventual calculation 
of the required rainfall intensity values [16,38]. 
The model varies directly with the probability or 
inversely with the return period, for a two 
parameter distribution and coefficient of 
skewness for a skewed distribution. Frequency 
factor (��)  is a function of standard deviation 
and return period. Recently in Nigeria, pioneering 
effort has been observed in the use of the 
stochastic IDF modeling approach to develop 
IDF models for some cities such as Lokoja, Port 
Harcourt, Akure and Abeokuta [22, 23, 24]. [23] 
in their study found that the probability 
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distribution function (PDF) IDF models showed 
higher prediction at higher durations of 50 – 120 
minutes and also predicted higher rainfall 
intensities for longer return period of 25, 50, and 
100 years that were far beyond years of data 
collection.  
 
4.2 Non-Stationary IDF Modeling 
 
Classical frequency analysis provides adequate 
engineering design values when the data series 
from which the probability distribution parameters 
are to be estimated come from a stationary 
distribution and the observations are 
independent or weakly dependent. In contrast to 
its classical alternative, a dynamic data series is 
one in which the statistics of the sample (mean, 
variance and covariance) change over time 
technically referred to as non-stationary. Non-
stationary in hydrologic records can be attributed 
to local anthropogenic impacts, such as 
deforestation and other land use change, or to 
global climate change and low frequency climate 
oscillations [4,39]. 
 
A commonly used tool for the design of water 
resources infrastructure are rainfall Intensity-
Duration-Frequency (IDF) models or curves. 
Studies are now focusing on non-stationary IDF 
modeling in meteorological time series. The 
implications means that neglecting to incorporate 
non-stationarities in hydrological models will 
likely lead to inaccurate results [4]. 
 
4.2.1 Extreme Value theory in non-stationary 

IDF modeling 
 
Non-stationary models are generally fit on data 
series of specific durations. A single model with a 
separate functional relation with the return period 
and rainfall duration can be used. The 
Generalized Extreme Value (GEV) and the 
Gumbel Extreme Value Type 1 (Gumbel EVT-1) 
distributions are also used as the time dependent 
functions in the general IDF relationship [19]. The 
GEV distribution is a combination of Gumbel, 
Frechet, and Weibull distributions and is based 
on the limit theorems for block maxima or annual 
maxima [40]. 
 
The standard cumulative distribution function 
(CDF) of the GEV as in Equation (7) can be 
rewritten as expressed by [41] 
 

F(X|�, �, ��) = exp�− �1 + � �
�� �

�
��

��

�
�         (14) 

Where F(x) is defined for 1+� �
���

�
� > 0; where 

sometimes, F(x) is either 0 or 1 [42]. The GEV 
distribution has the location parameters (�), the 
scale parameter (�) and the shape parameter (K) 
to specify the center of the distribution, the 
deviation, about �  and the tail behavior of the 
GEV distribution, respectively. For � → 0, � < 0, 
and  �  > 0, the GEV leads to the Gumbel, 
Weilbull and Frechet distributions, respectively. 
 
The extreme value theory of stationary random 
sequences assumes that statistical properties of 
extremes such as distribution parameters � = (�, 
�, �) are independent of time [43]. However in a 
non-stationary process the parameters of the 
underlying distribution function are time-
dependent and the properties of the distribution 
would vary with time [44]. In order to represent a 
dynamic distribution, the location and scale 
parameters can be assumed to be linear 
functions of time to account for non-stationarity, 
with the shape parameter kept constant 
[40,43,45,46,47]. Then, �  and �  can be defined 
as; 
 

�� = �� + ����                      (15) 
 

�(�) = �� + ��                      (16) 
 
Where t is the time in years, ��  denotes the 
intensity of the T-years return period event, �� is 
the frequency factor, �� and �� are the mean and 
the standard deviation of the set of AMS, 
respectively. While � = (��, ��) are the regression 
parameters.  
 
The equation for fitting the Gumbel EVT-1 
distribution to precipitation of AMS for different 
return periods T is similar to Equation (12) [16], 
with the frequency factor �� as: 
 

��=-
√�

�
�0.5772 + �� ��� �

�

���
���        (17) 

 
 
4.2.2 Significant trend check in non-

stationary IDF modeling 
 
Testing historical records of intensity, data for 
non-stationary signals are required. The rank-
based non-parametric revised Mann-Kendall 
[48,49,50] method is applied on the data to 
detect statistically significant trends. 
 
The null hypothesis of no trend remains rejected 
if the test statistic is significantly different from 
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zero to 0.05 significance level. If a significant 
trend is detected, the location parameters will be 
evaluated based on non-stationary assumption. 
Thus allowing the estimation of rainfall quantities 
which is consistent with the ideal characteristics 
of the measured precipitation extremes. The aim 
of the MK test is to ensure the avoidance of 
implementing a time varying extreme value 
analysis in a data that do not indicate a 
significant change in extremes over time. 
However, the same method can be technically 
applied to all data sets regardless of their trend 
where a subjective significance measure is 
unnecessary. 
 
4.2.3 Evaluation of time-variant parameters 

and return level/period 
 

Temporal scaling function for simultaneous 
determination of trend in frequency parameters 
(location  �, scale �, and shape k, respectively) 
for time in years (t) for varying growth functions 
(i=0 is no growth, i=1 is linear and i=2 is power), 
hence;  
 

��(t)=��+∑ ��
���
� .��                                  (18) 

 

��(t)=��+∑ ��
���
� ��                                  (19) 

 

��(t)=��+∑ ��
���
� ��                                  (20) 

 

The model parameters are used to estimate the 
non-stationary precipitation intensity or 
equivalent return levels. Using the GEV 
distribution, the return periods and return levels 
of extremes in Equations (18) to (20) are 
determined by expressing return levels as a 
function of the return period T [51]:  
 

T=
�

���
                                                                       (21) 

 

Where p is the non-exceedance probability of 
occurrence in a given year, assumed constant 
under stationary. The p-return level ��  derived 

from the GEV distribution can be expressed as 
[41,46]: 
 

��=��−
�

�� �
�

�

− 1� ×  
�

�
+�, (K≠0)        (22) 

 

For non-stationary GEV model, time varying 
covariates are incorporated into GEV location as 
per Gumbel EVT-1, to describe trends as linear 
function of time in years, that is, �(t) = ��� + �� 
as in Equations (18). Modeling temporal 
changes, shape and scale parameters requires 
long term records, that means, where there are 
short-term records these two parameters are 

assumed constant. Therefore, for estimation of 
GEV parameters, a Bayesian inference is 
performed combined with Differential Evolution 
Markov Chain (DE-MC) Monte Carlo (MC) 
simulation as proposed by [19,46,47]. For the 
AMS, the parameters are derived by computing 
50th (median), 5th and 95th (lower and upper 
bounds) of the DE-MC sampled GEV 
parameters. The model parameters are then 
used to estimate the non-stationary return level 
as follows: 
 

�̅=������, ���, … ., ����, ( �(�) = ��� +  ��)    (23) 
 

��=��−
�

�� �
�

�
− 1�x 

�

�
 + �̅, (k≠ 0)        (24) 

 

The computation of non-stationary design storm 
intensity is similar to the stationary model except 
the inclusion of time-varying location parameters. 
The calculation can be performed following [52] 
using an MATLAB-based software package, non-
Stationary Extreme Value Analysis (NEVA), 
Version 2.0. 
 

A number of studies have been focused on the 
development of IDF curves with consideration of 
non-stationary concept [4,18,19,47]. [18] 
proposed scaling method of rainfall IDF 
relationship and reported that rainfall follow 
simple scaling process which is more efficient 
and gives more accurate estimates in non-
stationary IDF modeling than that from traditional 
techniques.  
 

Severe climatic conditions with potential                
human and socioeconomic consequences 
induced decades of observed warming                 
climate with more intense precipitation in some 
regions of the world likely due to increase in the 
water holding capacity of the atmosphere    
require integration in non-stationary IDF 
development. [53] outlined a framework for 
quantifying climate change impacts on natural 
and man-made infrastructures using bias-
corrected multi-model simulations of historical 
and projected precipitation extremes. The 
approach evaluates changes in rainfall IDF 
curves and their uncertainty bounds using a non-
stationary model based on Bayesian inference. 
The research went on to show that highly 
populated areas across California may 
experience extreme precipitation that is more 
intense and twice as frequent, relative to 
historical records, despite the expectation of 
unchanged annual mean precipitation. [4] in their 
investigation of non-stationary IDF curves 
integrating information concerning tele-
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connections and climate change presented the 
study result that showed that non-stationary 
framework for IDF modeling provides a better fit 
to the data than stationary counterpart. Thus, 
providing a generalized approach which is more 
robust than the common methods especially for 
stations with short rainfall records. In assessment 
of future changes in IDF curves for Southern 
Ontario using Northern American (NA) - 
CORDEX models with non-stationary methods, 
[54] found that extreme precipitation intensity 
driven by future climate forcing indicated a 
significant increase in intensity relative to 
baseline period and exhibited opposite trend for 
longer return period. [55] worked on impacts of 
spatial heterogeneity and temporal non-
stationary on IDF estimates – A case study in a 
Mountainous California – Nevada Watershed. 
The result presented proved the existence of 
strong heterogeneity and variability in IDF 
estimates using high resolution simulation data 
and discrepancies in spatial variability supports 
the use of an ensemble of non-stationary 
approach. 
 

4.3 IDF Model Relationships 
 

Intensity-Duration-Frequency (IDF) relationships 
provide the basis for estimating the design              
storm value. IDFs are usually constructed                 
using historical rainfall records under the 
assumption of stationary, that is, the                       
future rainfall has the same statistical 
characteristics as the historical rainfall [56]. 
These relationships can be calculated for both 
point rainfall and spatial averages. From IDF 
equations or curves, design rainfall can be 
derived. Typical empirical IDF relationships 
usually adopted for calibration found in literature 
are of the form shown in Equations (25) to (28) 
[16,57].  
 

Talbot equation, �(��, ��) =  
���

�

����
         (25) 

 

Sherman equation, �(��, ��) =  
���

�

(����)�      (26) 

 

 Modified Sherman equation, �(��, ��) =

 
���

�

��
�                                                                           (27) 

 

Kimijima equation, �(��, ��) =  
���

�

��
� ��

        (28) 

 

Where; I (Td, Tr) are the intensities for a given 
aggregation level or duration ��  and or return 
period ��. C > 0 is scale parameters b > 0, 0 < a 
< 1 are shape parameters and for some cases a, 

assume the value of 1. The modified Sherman’s 
equation was applied in the form given in 
Equation (27) [8,16,23,58,59,60]. Where: I = 
rainfall intensities (mm/hr); ��  = return period in 
years; �� = duration of rainfall in minutes; and c, 
a, and m = physiographic constants. The 
equation depicts probabilities that are conditional 
of rainfall-intensities averages over duration 
typical of storm intervals. 
 

Equations (25) to (28) are empirical and show 
that rainfall intensity is a decreasing function of 
rainfall duration for a given return period. The 
equation parameters represent the influence of 
climatic and physiographic features of the 
catchments or drainage basin on rainfall. 
Different organizations and researchers have 
applied IDF models in any of the listed equation 
forms. [61] used a model of Equation (25) type to 
fit rainfall data throughout the United States. The 
constants (a and b) serve as characteristics 
features of both the region and the frequency of 
rainfall occurrence. For instance, [62] used 
Equation (26) type, which relates rainfall intensity 
to rainfall duration, along with a table of the 
coefficients tabulated as a function of recurrence 
interval for each of the 254 counties of the state. 
[63] provided intensity-duration relationships for a 
10 year recurrence interval based on Equation 
(25) type. [64,65] used Equation (26) type to 
develop rainfall IDF models and studies of Urban 
drainage failures and incidence of flooding in 
Southern Nigeria, respectively. [66] also adopted 
Equation (25) model type for fitting rainfall 
intensities in Nigeria. 
 

4.4 IDF Model Calibration 
 

For efficient and accurate prediction of                
rainfall intensities in a catchment, model 
calibration to the specific catchment is required. 
There are different ways to calibrate an IDF 
model; the manual process which may include 
trial-and-error, linearization and graphical 
method. Manual calibration is time-consuming 
and experience is needed to obtain a                     
good calibration [5]; difficulty in determining when 
the best-fit has been achieved is another             
flaw [67]. Automatic methods using computer 
based algorithms such as optimization technique 
speeds up the calibration time and accuracy               
of predicted intensities. Least squares methods 
and maximum likelihood methods are         
examples of goodness-of-fit techniques that put a 
value on correctness in numerical relationship 
between observed and predicted rainfall 
intensities [54]. 
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5. COMPARATIVE MODELS’ PERFORMA- 
NCE AND GAP ANALYSIS 

 
The trend of research in IDF modeling is herein 
summarized in tabular format with respect to the 

authors, title of articles, contributions and gaps 
(i.e areas not covered in the study).Tables 1a & b 
present summary account on Non-stationary IDF 
modeling world-wide and stationary IDF 
modeling in a developing nation (Nigeria).

 
Table 1a. Non-stationary IDF modeling 

 
Authors Title of Article Contribution(s) Gap(s) 
[18] Scaling model of a 

rainfall Intensity-
Duration-Frequency 
relationship. 

Results showed that rainfall follow 
simple scaling process. This is 
more efficient and gives more 
accurate estimates in non-
stationary IDF modelling than that 
from traditional techniques. 

The study did not 
account for climate 
change impact in non-
stationary IDF modeling. 
Research is not in 
present study area. 

[28] Developing of rainfall 
IDF model for 
Sulaimam City. 

The study found that the LPT-3 
was better than the Gumbel EVT -
1 IDF models developed using 
IMD method to downscale rainfall 
data with reduced duration from 
daily AMS. 

The study developed 
stationary IDF models 
with sufficient data. 

[27] Drawing curves of the 
rainfall IDF and 
assessment equation 
intensity of rainfall for 
Nasiriyah City, Iraq. 

The study found that the LPT-3 
was better than the Gumbel EVT -
1 IDF models developed using 
IMD method to downscale rainfall 
data with reduced duration from 
daily AMS.  

36 years rainfall data 
were used to develop 
stationary IDF models. 

[19] Non-stationary 
Precipitation IDF 
Curves for 
Infrastructure Design in 
a changing climate. 

The study provided a generalized 
framework for estimating non-
stationary IDF curves and their 
uncertainties using Bayesian 
inference. 

The study failed to 
integrate impacts from 
changing climatic 
condition and parameters. 
Work was not in present 
study area. 

[47] Does non-stationarity in 
rainfall require non-
stationary intensity-
duration-frequency 
curves? 

The study revealed that despite 
signals of non-stationary in rainfall 
extremes in all locations, the 
stationary versus non-stationary 
models do not exhibit any 
significant difference in the design 
storm for short intervals. But needs 
updates of 2-44% in current IDF 
models. 

The research emphasis 
was not to develop IDF 
equations nor did it 
incorporate climate 
change parameters. 
The focus was on 
evaluation of the validity 
of non-stationary 
modeling. 

[53] Projected changes in 
California’s 
precipitation I-D-F 
curves. 

The study approach evaluates 
changes in rainfall I-D-F curves 
and their uncertainty bounds using 
a non-stationary model based on 
Bayesian inference. 

The study did not 
develop IDF model with 
empirical equations but 
computed rainfall 
intensities to draw IDF 
curves from GEV-CDF.  

[4] Non-stationary I-D-F 
curves integrating 
information concerning 
Tele-connections and 
climate change. 

Results of study showed that non-
stationary framework for IDF 
modeling provides a better fit to 
the data than its stationary 
counterpart. That the generalized 
approach is more robust than the 
common methods especially for 
stations with short rainfall records. 

The study did not apply 
downscaled RCM data 
from GCM ensemble 
but applied co-variate of 
time and climate indices 
or oscillations, with 
measured rainfall data 
to derive non-stationary 
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Authors Title of Article Contribution(s) Gap(s) 
IDF curves. Work was 
not in study area. 

[54] Assessment of future 
changes in I-D-F 
curves for Southern 
Ontario using Northern 
American (NA)-
CORDEX models with 
non-stationary 
methods. 

Results indicated that extreme 
precipitation intensity driven by 
future climate forcing shows a 
significant increase in intensity 
relative to baseline period and 
exhibited opposite trend for longer 
return period. 

The study did not extend 
to the formulation and 
calibration of any 
empirical equation as a 
general IDF model for 
easy application in 
hydraulic designs. Also, 
not in present study area. 

[55] Impacts of spatial 
heterogeneity and 
temporal non-stationary 
on I-D-F estimates - A 
case study in a 
mountainous 
California-Nevada 
Watershed. 

Results indicated strong 
heterogeneity and variability in IDF 
estimates using high resolution 
simulation data and discrepancies 
in spatial variability supports the 
use of an ensemble of non-
stationary approach. 

The study did not 
develop IDF equations 
but was limited in 
comparison of different 
RCM ensemble data 
IDF curves obtained 
from PDF-computed 
rainfall intensities. Work 
is not in present study 
location.  

 
Table 1b. Stationary IDF modeling in Nigeria 

 
Authors Title of Article Contribution(s) Gap(s) 
[64] Developing rainfall IDF 

models for Port Harcourt 
City. 

Results showed two sets of 
rainfall models: either 
intensity or frequency 
against duration.  

IDF models were 
empirical and limited by 
10 years of insufficient 
data collection.  

[20] Developing rainfall IDF 
models for Calabar City, 
South-South, Nigeria. 

Results showed two sets of 
rainfall models: either 
intensity or frequency 
against duration. 

The IDF were empirical 
types and was limited by 
10 years of insufficint 
rainfall data collection. 

[21] Rainfall Intensity 
Frequency models for 
selected cities in Southern 
Nigeria. 

Programmable tools for 
hydrologic design of 
structures using 5 equation 
types.  

Less than 25 year 
rainfall data were used 
and IDF models were all 
stationary types. 

[35] Rainfall intensity- duration- 
frequency modeling and 
comparative analysis of 
developed models for 
Abakiliki. 

IDF models developed for 
Abakaliki used 4 equation 
types and quotient-power 
IDF model was the best in 
rainfall predictions. 

IDF models were all 
stationary type. 

[57] Comparative analysis of 
rainfall IDF equation types 
for predicting rainfall 
intensity in Southern 
Nigeria. 
 

 4 IDF equation types were 
compared, and the quotient-
power IDF model predicted 
higher rainfall intensity than 
others. 

The IDF equations 
developed and 
compared were all 
stationary types. 
 
 

[36] Rainfall intensity- duration-
frequency (IDF) models 
for Uyo City, Nigeria. 

Results showed two sets of 
rainfall models, which were 
either intensity or frequency 
against duration. 

Return period specified 
empirical IDF models 
were developed and 
were limited by 10 years 
insufficient rainfall data 
collection. 

[68] Deriving Rainfall I-D-F 
relationship for region with 

Developed PDF-IDF model 
for Ikeja, Western Nigeria. 

Applied 10 year 
insufficient rainfall data. 
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Authors Title of Article Contribution(s) Gap(s) 
inadequate data. Model was stationary 

type. 
[22] Rainfall intensity- duration-

frequency (IDF) models 
for Lokoja metropolis, 
Nigeria.   

Developed 5 general PDF-
IDF model types with the 
LPT-3 as the best fit model 
for design application.  

16 years rainfall data 
was applied. Models 
developed were 
stationary types. 

[23] Probability and non-
probability rainfall IDF 
modeling for Port Harcourt 
metropolis, Nigeria.  

Developed PDF and nPDF 
IDF models for Port-Harcourt 
using 3 types of equations. 
PDF-IDF models predicted 
intensity higher than 
empirical models. 

Applied 16 year of 
rainfall data and IDF 
models developed were 
all stationary types. 

[24] Development of models 
for rainfall IDF for Akure, 
South-West, Nigeria. 

Developed PDF-IDF models 
for Akure, South-West, 
Nigeria. 

Applied 25 year rainfall 
data. Model was 
stationary type. 

[69] Modeling rainfall intensity 
by optimization technique 
in Abeokuta, South-West, 
Nigeria. 

Developed PDF-IDF models 
for Abeokuta, South-West, 
Nigeria. 

Applied 25 year rainfall 
data. Model was 
stationary type. 

[70] Trend in climate change 
and Vulnerability 
Assessment of Nigerian 
Gulf of Guinea. 

The result indicated a rising 
temperature and rainfall, with 
rise in sea level. Thus, the 
use of higher return period to 
account for climate change 
was recommended. 

 Vulnerability assessment 
of climate change was not 
factored into IDF 
development for the study 
area. The models was 
stationary type. 

[71] Assessment of the impact 
of climate change on IDF 
equations in Benin City. 

Climate change effect on 
IDF curves with observed 
data was insignificant. 

Did not apply RCM data 
and models were only 
stationary types. 

[72] Rainfall Probability density 
function (PDF) and non-
PDF IDF modeling for Uyo 
City, Nigeria. 

Developed 3 PDF-IDF 
models types and confirmed 
the LPT-3 PDF model as the 
best-fit and predictive model 
for design application. 

10 years rainfall data 
was applied. Models 
developed were 
stationary types.  

 
6. CONCLUSION 
 

Flood mitigation is a major challenge faced                  
by hydrologists who rely on the use of the IDF 
models, a tool for prediction of rainfall               
intensities used in the determination of peak 
runoff volume in a catchment. Various IDF 
models have emerged over the years with 
different predictive capabilities. Some IDF 
models predict rainfall intensities with higher 
degree of efficiency and accuracy while others 
performance are limited by insufficiency and 
quality of measured data, variability and 
insufficient temporal details of input rainfall data. 
The incompatibility of different IDF models to 
different catchment areas requires careful 
selection. 
 
IDF models must be chosen in terms of the 
project objective, data availability, study size, 
location, output needed, and the desired 
simplicity. For a watershed with short-term 

historical data, the parametric (empirical) IDF 
model especially the quotient type is preferable 
for shorter durations of 10-40 minutes, while for 
higher durations of 50-120 minutes and above 
the non-parametric (PDF) IDF models will suffice 
[23]. If the project involved requires evaluation of 
the statistics of the input data changing over time 
with their uncertainty bounds, using a non-
stationary model becomes expedient. The IDF 
curves developed by this method have the 
potential application in adapting infrastructure 
design and risk assessment to incorporate 
projected changes in extreme precipitation [53]. 
 

Also, of importance for catchments without 
rainfall amount and corresponding duration 
records but has daily (24-hourly)  record of 
rainfall depth, the IMD method of shorter duration 
disaggregation can be adopted to generate in-
put data for the development of IDF curves for 
such a location. Therefore, each model type has 
limitations that may make it unsuitable for some 
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projects. Reviewing data requirements, output 
requirements and simplicity are all necessary to 
decide on which model type should be selected. 
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