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ABSTRACT 
 

This study examines the sensitivity of the posterior mean to change in the prior assumptions. Three 
plausible choices of prior which include informative, relative-non informative and non-informative 
priors are considered. The paper considers information level for a prior to cause a notable change 
in the Bayesian posterior point estimate. The study develops a framework for evaluating a bound 
for a robust posterior point estimate. The Ellipsoid Bound theorem is employed to derive the 
Ellipsoid Bound for an independent normal gamma prior distribution. The proposed modification 
ellipsoid bound for the large prior was establised by varrying different variance co-variance sizes 
for the independent normal gamma prior. This bound represents the range for the posterior mean 
when is insensitive and when it’s sensitive in both location and spread. The result shows that; for a 
large prior parameter value (greater than the OLS estimate) with a positive definite prior variance 
covariance matrix, and prior parameter values interval which contains the OLS estimate then, the 
posterior estimate will be less than both the OLS and the prior estimates. Similarly, if the lower 
bound of the prior parameter values range is greater than the OLS estimate then: The posterior 
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estimate will be greater than the OLS estimate but smaller than the prior estimate. Furthermore, it 
is observed that no matter the degrees of confidence in the prior values, data information is 
powerful enough to modify it. 
 

 
Keywords: Bayesian posterior estimate; precision parameter; robustness; independent normal gamma 

distribution. 
 

1. INTRODUCTION 
 
To resolve that the use of prior information is 
restricted to Bayesian methods which is to 
consider researchers preconceived idea and 
position of believe, before the observation or 
experiment, about population of which he seeks 
knowledge [1,2]. The prior even guide how the 
experiment is carried out or observed, to create 
the experimental evidence (likelihood) about the 
uncertainty of interest θ [3,4]. 
 
The conclusion is given as a result of support for 
or against the researchers believes (prior) in the 
presences of observed data.

1 
In the application of 

the Bayesian method of analysis [5,6,7] about an 
unknown parameter, it is required that 
quantification of the prior information should be in 
form of prior distribution. Importance of the prior, 
relevance of a posterior estimate in the presence 
of the OLS estimate and to some extent, the 
sensitivity of results to change in the prior 
assumptions (precision, sample size, prior 
degrees of freedom, distribution, functional form, 
etc) are always recognized in Bayesian paradigm 
[8,9]. These concerns are of a great interest with 
certain validity, as it is required for a sound 
Bayesian report, thus the need of proper 
elicitation of these conditions. In practice, 
availability of prior information, no matter how 
relevant appears improper, due to the limitation 
of proper and accurate quantification in terms of 
distribution and functional form for the Prior 
information. 
 
No matter how modern operational definitions of 
personal probability may look, it is usually 
possible to determine the personal probabilities 
of important events only crudely [10]. Hence it is 
unreasonable to expect that beliefs can be model 
by a single Prior distribution. But, the prior 
distribution in itself represent a degree of 
uncertainty in the data, hence its uncertainty in 

                                                           
1 Coherence requirements lead one to believe that, given a 
sampling model, the only sensible way to make inference 
about its parameters is to assess a prior distribution 
describing ones initial knowledge about their values and use 
the data to derive, via Bayes theorem, the appropriate 
posterior distribution [17] 

itself can then be altered by the information 
contained in the data [11]. As long as prior 
information is not too vague (Large variance), it is 
altered only by the signals and not by the noise 
contained in the sample [12]. Thus after deciding 
a single prior p(β), through a carefully carried out 
process of prior elicitation, one would usually feel 
somewhat uncertain about the posterior p(β/y) as 
any other prior, that is close to p(β) will seems to 
be equally plausible. 
 
In this study, some prior convictions were 
highlighted; issues regarding the sensitivity of 
posterior results to the prior assumptions [13] are 
also discussed. However, robust priors [14] are 
required for an Ellipsoid bound theorem to 
function properly. Basically, this theorem needs a 
positive definite prior variance co-variance to 
explain the relationship of the prior, posterior and 
OLS  estimates [15,10,16]. 
 
The rest of the paper is divided into four sections. 
Section 2 discuses the theoretical framework for 
the study. Section 3 shows the result of the 
simulations and the data analysis. Section 4 
summarises the modification of the Ellipsoid 
bound theory. Concluding remarks are given in 
section 5. 
 
2. THE THEORETICAL FRAMEWORK FOR 

THE STUDY 
 

2.1 The Model 
 
The linear regression model is the workhorse of 
econometrics. The linear regression model, 
presents a linear relationship between the 
dependent variable and a 1 × k vector of 
explanatory variables xi, where y are indexes of 
the relevant observational unit. In matrix notation, 
the linear regression model can be written as 
 
y = Xβ + ε                                                          (1) 

 
where: β = [β0,β1,β2,...,βK]’, is a (k+1) vector of 
regression parameters, X,is an (n ×(k+1)) Matrix 
of Explanatory variables Y,1×n vector of 
response variable (data) ε ∼ Nm(0n,σ

2I) is an N 
vector of errors which are independently 



Multivariate Normally distributed, With mean 
an n vector of zeros, In is an n × n identity matrix. 
h = σ−2, is the error precision and thus, the 
normal linear regression model depends on the 
parameter vector [β, h]’. 
 

Assumptions about ε and X which 
likelihood function: 
 

• Independency of ε and X. 

• X are exogenous. 

• Elements of X are not correlated.
 

2.2 The Likelihood 
 
By using the properties of the multivariate normal 
distribution, it follows that p(y|β,h) = 
and thus the likelihood function is given by;
 

�(� �, ℎ⁄ ) =
ℎ

�
�

(2�)
�

�

��� �−
ℎ

2
(� − ��)′(� −

 

2.3 Bayesian Inference with the 
Exponential Family Sampling Model

 
Consider the exponential family likelihood (e.g 
Normal distribution), for a random variable Y 
whose probability distribution depends on a 
single parameter θ = Xβ. 
 
The distribution can be written in the form
 

p(yi/θ) = h(yi) exp[θyi − g(θ)],    for i = 1
 

Summing over n, the functions h and g are 
known and yn denotes the full vector of n 
observations. 
 
It is straightforward to show that the MLE is 
determined by solving 
 

              
 

Where , represent the MLE. That is 
eqn 4, can be interpreted as the population 
 

 

Since 
 

wn + (1 − wn) = 1 
 

Hence: 
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Multivariate Normally distributed, With mean 0n 

is an n × n identity matrix. 
the error precision and thus, the 

normal linear regression model depends on the 

which define the 

Elements of X are not correlated. 

By using the properties of the multivariate normal 
) = φ(y;Xβ,h−1In), 

and thus the likelihood function is given by; 

( − ��)�           (2) 

Bayesian Inference with the 
Exponential Family Sampling Model 

Consider the exponential family likelihood (e.g 
Normal distribution), for a random variable Y 
whose probability distribution depends on a 

The distribution can be written in the form 

= 1,2,...,n.   (3) 

the functions h and g are 
denotes the full vector of n 

It is straightforward to show that the MLE is 

                       (4) 

, represent the MLE. That is gθ(θ0), from 
eqn 4, can be interpreted as the population 

average of the random variable y and our 
maximum likelihood estimate is derived from the 
sample analog of this moment condition.
 
The Bayesian takes the exponential family 
likelihood above, add to it a prior (in this case, a 
Natural conjugate prior), and combines them via 
Bayes theorem to obtain a posterior distribution 
for θ. 
 
The prior of such family is given by:
 
p(θ/a,b) α exp(aθ − bg(θ))                                 
 
a and b are hyper parameters selected by the 
researcher. Using the same type of argument 
that was used to derive eqn 4, it is 
straightforward to show, provided the moment 
exists, 
 
E(ψ) = µ

ψ
 = ab

−1                                         

 
With ψ ≡ gθ(θ),Combining the likelihood derived 

from eqn 3 where 
in eqn 5, we obtain via Bayes theorem
 

p(θ/yn) α exp[(nyn + a)θ − (n + b)g(
 

Inspection of Equation 7 reveals that the prior in 
eqn 5 is indeed conjugate, as the posterior in eqn 
7 is of the same functional form as the prior, with 
updated definitions of the parameters 

and � = n + b. Using the result in Equation 6, we 
then obtain 
 

                    
 

From the above equation let wn = n

8 is equivalently as: 
 

 

Which gives a weighted average of the data 

mean (or MLE ) and the prior mean 
with the weight wn. eqn 9 immediately reveals

,      

)     
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average of the random variable y and our 
maximum likelihood estimate is derived from the 
sample analog of this moment condition. 

The Bayesian takes the exponential family 
ior (in this case, a 

Natural conjugate prior), and combines them via 
Bayes theorem to obtain a posterior distribution 

The prior of such family is given by: 

                         (5) 

parameters selected by the 
researcher. Using the same type of argument 
that was used to derive eqn 4, it is 
straightforward to show, provided the moment 

                                                     
(6) 

),Combining the likelihood derived 

with the prior 
in eqn 5, we obtain via Bayes theorem 

θ)]                 (7) 

Inspection of Equation 7 reveals that the prior in 
the posterior in eqn 

7 is of the same functional form as the prior, with 
of the parameters � = n�n + a 

. Using the result in Equation 6, we 

                               (8) 

n/n + b then eqn 

,                  (9) 

Which gives a weighted average of the data 

) and the prior mean µψ 
. eqn 9 immediately reveals 

                      (10) 

                   (11) 



Obviously, as wn → 1 the Bayesian posterior 
mean and the frequentist MLE in this case are 
asymptotically equivalent. That is, the asymptotic 
sampling properties of the Bayesian 
mean are identical to the sampling properties of 
the classical MLE. The above result position the 
Frequentist who questions the role of the prior in 
a potentially insecure position, as it is clear that 
the weight of information needed in eqn 11 c
be shared between the data and the prior 
information. To conduct an inference, for which 
finite-sample results are seldom available, the 
Frequentist typically relies on asymptotic 
approximations to the sampling distribution of the 
estimator. Also, under this large-sample metric, 
the sampling distribution of the Bayes rule is 
identical, suggesting that, according to his recipe 
for an inference, the prior does not matter.
 
Hence as shown above Bayesian posterior 
intervals with large samples generally will 
good Frequentist coverage probabilities, 
whereas, numerically, the reported classical 
confidence interval should be close to the 
Bayesian posterior interval. Never the less, since 
realization of large samples is seldom available 
for a true life situation, but how large the 
samples, is unknown. 
 

2.4 Assessing the Effect of Prior Variance 
Assumption on the Sensitivity of 
Posterior Means 

 
The model used in simulating the data is 
considered as the base line model, denoted as 
M0, characterized by the Likelihood 
the prior as p(θ/M0) which yield

distribution p(θ/y,M0), where θ includes 
of βs) and h (precision parameter). Of interest to 
this research is to determine how sensitive, the 
reported estimate of posteriors mean (a typical 
Bayesian point estimate) is to changes in the 
prior assumptions (prior values). A possible way 
to achieve it is to separately re
models under the different prior Assumptions, 
obtain simulations from this ne
distribution, and use these simulations to 
recalculate the posterior mean. This procedure is 
however, unappealing, as one may desire to 
consider a wide range of possible Variation in 
Prior Assumption, because considerable effort 
and computing time will be required to fit the 
model over and over again. 
 
Another related procedure in the likeness of 
importance sampling [18], is simply to reweight 
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→ 1 the Bayesian posterior 
mean and the frequentist MLE in this case are 
asymptotically equivalent. That is, the asymptotic 
sampling properties of the Bayesian posterior 
mean are identical to the sampling properties of 
the classical MLE. The above result position the 
Frequentist who questions the role of the prior in 
a potentially insecure position, as it is clear that 
the weight of information needed in eqn 11 can 
be shared between the data and the prior 
information. To conduct an inference, for which 

sample results are seldom available, the 
Frequentist typically relies on asymptotic 
approximations to the sampling distribution of the 

sample metric, 
the sampling distribution of the Bayes rule is 
identical, suggesting that, according to his recipe 
for an inference, the prior does not matter. 

Hence as shown above Bayesian posterior 
intervals with large samples generally will enjoy 
good Frequentist coverage probabilities, 
whereas, numerically, the reported classical 
confidence interval should be close to the 
Bayesian posterior interval. Never the less, since 
realization of large samples is seldom available 

tion, but how large the 

Prior Variance 
on the Sensitivity of 

The model used in simulating the data is 
considered as the base line model, denoted as 

, characterized by the Likelihood p(y/θ,M0) and 
) which yield a posterior 

includes � (vector 
(precision parameter). Of interest to 

this research is to determine how sensitive, the 
timate of posteriors mean (a typical 

Bayesian point estimate) is to changes in the 
A possible way 

is to separately re-estimate the 
models under the different prior Assumptions, 
obtain simulations from this new posterior 
distribution, and use these simulations to 
recalculate the posterior mean. This procedure is 
however, unappealing, as one may desire to 
consider a wide range of possible Variation in 
Prior Assumption, because considerable effort 

ime will be required to fit the 

Another related procedure in the likeness of 
, is simply to reweight 

the simulations from the initial baseline model to 
assess the impact of the prior change. We 
explain below why such an approach is valid, and 
how it is often implemented in practice.

 
Let consider a different model, denoted as 
that contains the same parameters, y and 
likelihood function that characterize the baseline 
model M0, but with a different prior 
the posterior mean under this new prior is 
obtained as. 

 

 
where the denominator is the marginal 
distribution of the data, it serves as the 
normalizing constant of the posterior distribution. 
Suppose the baseline posterior p(θ/y,M
be used as an importance function to numerically 
approximate values of both the numerator and 
denominator integrals in Equation 1
of importance sampling is to divide and multiply 
terms within the integrand by another densit
from which draws are easily obtained,
the application of direct Monte Carlo integration. 
The choice of the baseline posterior as the 
importance function affords some considerable 
simplifications to this general exercise, as the 
likelihoods are unchanged in M1 and 
normalizing constant of the baseline posterior 
cancels in the ratio of Equation 1
this, the desired posterior mean can be written as

 

 
Since: 

 
p(y/θ,M1) = p(y/θ,M0) = p(θ/y,M
advantage of Equation (13) is that the averaging 
within the integrals is done now with respect to 
the baseline posterior p(θ/y,M0) for which a set of 
simulations is already available. As a result, one 
does not need to re-estimate the model to assess 
prior sensitivity, but instead can simply reweight 
the baseline posterior simulations in the 
appropriate way. Specifically, the forms of the 
integrals in Equation 13 suggest that a 
simulation-consistent estimate of the new 
posterior mean is 
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the simulations from the initial baseline model to 
assess the impact of the prior change. We 

below why such an approach is valid, and 
how it is often implemented in practice. 

Let consider a different model, denoted as M1, 
that contains the same parameters, y and 
likelihood function that characterize the baseline 

or p(θ/M1). Then 
the posterior mean under this new prior is 

           (12) 

where the denominator is the marginal 
distribution of the data, it serves as the 
normalizing constant of the posterior distribution. 

θ/y,M0), were to 
as an importance function to numerically 

approximate values of both the numerator and 
denominator integrals in Equation 12. The insight 
of importance sampling is to divide and multiply 
terms within the integrand by another density 
from which draws are easily obtained, to enable 
the application of direct Monte Carlo integration. 
The choice of the baseline posterior as the 
importance function affords some considerable 
simplifications to this general exercise, as the 

and M0, and the 
normalizing constant of the baseline posterior 
cancels in the ratio of Equation 12. Considering 
this, the desired posterior mean can be written as 

                   
(13) 

θ/y,M0)/p(θ/M0). The 
is that the averaging 

within the integrals is done now with respect to 
for which a set of 
As a result, one 

estimate the model to assess 
rior sensitivity, but instead can simply reweight 

the baseline posterior simulations in the 
appropriate way. Specifically, the forms of the 
integrals in Equation 13 suggest that a 

consistent estimate of the new 



 
 
Where the weight ωm are defined as
 

 
where ‘k’ is the number of θ in the model.
 
The above is used to check posterior mean 
changes with changes in the prior by simply 

reweighting the initial 
that are more likely to arise under the new prior 
are appropriately assigned more weight in the 
calculation. 
 

2.5 The Prior and Posterior 
 
2.5.1 The prior 
 
An independent Normal Gamma prior is used 
this study. 
 
P(β,h) = P(β). P(h),                                          
 

 
Where: 
 
Q = hy’y + β’V 

−1
β – β’ V

−1
β 

 
The joint posterior density in equation
the parameter constant makes the full conditionals obtainable. But approximately:
 
p(β,h/y) ≈ p(β/y,h) p(h/y,β) according Law of Large Numbers, which states that; if adequate random 
alternating samples can be obtained from the full conditionals, then our mean estimate can 
approximate the true posterior density estimate.
called The Gibbs sampler which simulate from each parameter given that the other
be adopted. 
 
The respective full conditionals are:
 

•  Ignoring terms that do not involve 
 

 
which is the kernel of multivariate Normal density. In other words
 
β|y,h ∼ N(β,V)                                                                                      
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                (14) 

are defined as 

         (15) 

in the model. 

The above is used to check posterior mean 
changes with changes in the prior by simply 

. Simulations 
likely to arise under the new prior 

are appropriately assigned more weight in the 

An independent Normal Gamma prior is used for 

                 (16) 

 
Where,  
 
where, k = prior sample size, 
integrating constant, E [β/y] = β, prior mean of 
 
Var (β/h) = V, the prior covariance matrix of 
with the mean of h as s

−2
 and V is the degree of 

freedom. 
 

The degree of information about prior parameter 
� is captured in the variance co-variance matrix 

V, in that the larger it is the lesser the information 
about the prior parameters. 
 

2.5.2 The posterior 
 

In this study, the posterior distribution doesn’t 
have a familiar form, hence the posterior 
properties can not be obtained analytically. It is 
usually denoted by P(β,h/y) m
using p(β,h/y) = p(y/β,h)p(β,h) which gives

The joint posterior density in equation (18) is not a, well known distribution form, but holding each of 
the full conditionals obtainable. But approximately: 

) according Law of Large Numbers, which states that; if adequate random 
alternating samples can be obtained from the full conditionals, then our mean estimate can 
approximate the true posterior density estimate. Thus, the implementation of a posterior simulator 
called The Gibbs sampler which simulate from each parameter given that the others have occurred will 

The respective full conditionals are: 

Ignoring terms that do not involve β (including Q), we can write 

                                                                   

which is the kernel of multivariate Normal density. In other words 

)                                                                                                                                     
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(17) 

where, k = prior sample size, CG
−1 

is an 
, prior mean of β 

, the prior covariance matrix of β 
is the degree of 

The degree of information about prior parameter 
variance matrix 

, in that the larger it is the lesser the information 

n this study, the posterior distribution doesn’t 
familiar form, hence the posterior 

t be obtained analytically. It is 
mathematically, 

) which gives 

           (18) 

) is not a, well known distribution form, but holding each of 

) according Law of Large Numbers, which states that; if adequate random 
alternating samples can be obtained from the full conditionals, then our mean estimate can 

posterior simulator 
have occurred will 

                   (19) 

                                               (20) 



• Ignoring terms that don’t involve h, we have
 

 
which is the Kernel of a Gamma density.
 

                                                                                                                             
 

2.6 Ellipsoid Bound Theorem, 
Conjugate Normal Gamma Distribution 

 
Introducing these concepts under a different umbrella of a conjugate Normal Gamma Prior distribution, 
such that our parameters estimation can first be understood analytically and with simple extension
[19], its validity can be checked with the simulation method of the non
This is necessary because if the analytical agrees then the simulated methods should also do.
 
2.6.1 Ellipsoid bound theorem 
 
Ellipsoid bound Theorem states that If there 
of parameters and V is the variance co variance Matrix, with natural conjugate prior which is a Normal 
- Gamma Distribution: β, h ∼ NG(β,V
 
for every positive definite prior Variance co var
 

 
Where: 
 

 
 

Where, �� = OLS estimate, � = prior parameter and 

 

Recall, the Posterior is given as �(�
 
With, V = (V

−1 
+ h (X

’
X))

−1 
and β = V 

 
Equation (23) is proved as follow: if 
 

 

Since V−1 is positive definite, then (�

concluded that: 
 

(� − �)’X’X( �� − �) ≥ 0                                                                                                                     

 
From the Ellipsoid Bound equation above expanding the bracket in the L.H.S and R.H.S of equation
(25), and collecting like terms 
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Ignoring terms that don’t involve h, we have 

                    

which is the Kernel of a Gamma density. Therefore, 

                                                                                                                             

heorem, Ellipsoid Modifications, Bartlett’s Paradox for a 
Gamma Distribution for Prior 

concepts under a different umbrella of a conjugate Normal Gamma Prior distribution, 
such that our parameters estimation can first be understood analytically and with simple extension

be checked with the simulation method of the non-analytic posterior distributions.
This is necessary because if the analytical agrees then the simulated methods should also do.

Ellipsoid bound Theorem states that If there exist a random variable y∼NG (β,h−1V) where 
of parameters and V is the variance co variance Matrix, with natural conjugate prior which is a Normal 

V ,s
−2

,v), 

for every positive definite prior Variance co variance matrix V then: 

)       

= prior parameter and � = posterior parameter. 

(�, ℎ �⁄ ) = ��(�, �, �
��

, �)  

V (V
−1

β + h(X
’
Xβ) 

) is proved as follow: if β = V (V−1β + (X’X) βb), then from above, it can be seen that

) 

� − � )’ V−1(� − �) > 0, hence from the equation (24) above it can be 

                                                                                                                     

ound equation above expanding the bracket in the L.H.S and R.H.S of equation
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                   (21) 

                                                                                                                                     (22) 

aradox for a 

concepts under a different umbrella of a conjugate Normal Gamma Prior distribution, 
such that our parameters estimation can first be understood analytically and with simple extension 

analytic posterior distributions. 
This is necessary because if the analytical agrees then the simulated methods should also do.

) where β is a vector 
of parameters and V is the variance co variance Matrix, with natural conjugate prior which is a Normal 

                    (23) 

it can be seen that 

          (24) 

) above it can be 

                                                                                                                     (25) 

ound equation above expanding the bracket in the L.H.S and R.H.S of equation 



 
 

which satisfied the bound in equation (25), where 

matries. 
 
If  k = 1,              � ′� = ∑ ���

���  
 
Therefore, 
 

 (� − �)’X’X� �� − �� = �� − �� ∑ �
���

 
Given the two equations: 
 

 
 

Therefore: β ≥ �    and  �� ≥ � 

 
which implies 
 

� ≤ � ≤ � �                                                   

 
hence proved. 
 
The above explains that for any given positive prior 
always less than the OLS estimate. 
 
2.6.2 Theoretical modification of the ellipsoid bound for large prior
 
Case 1: 
 
Large prior �∗ with positive definite 

prior parameter �∗ is ≥ � � , such that equation (25) becomes

 

 (� − �∗)’X’X( �� − �) ≤ 0                                  

 
As result of the prior �∗ used in the Ellipsoid bound theorem then equation (27) becomes,

 

(� − ����)’X’X( �� − ����) ≥
 ( ����∗)’�’�

�

 
If equation (28) is expanded, it gives back equation (27), 
 
Similarly, when k = 1:    � ′� = ∑ ��

���

 
Therefore,  
 

(� − �∗)’X’X� �� − �� = �� − �∗� ∑ �
���
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in equation (25), where �, �,�  � are all (k x 1) vectors and X’X is a (k x k) 

�� � �� − �� = (� − �)’� �� − ��  ≥ 0 

                                                                                                         

The above explains that for any given positive prior variance covariance, the posterior estimate are 
 

modification of the ellipsoid bound for large prior 

with positive definite V 
*
, such that the lower bound

 
of the interval created by it for the 

such that equation (25) becomes 

                                                                                                                

used in the Ellipsoid bound theorem then equation (27) becomes,

�( ����∗)
, ���� =

�

�
� �� + �∗�,                                                    

If equation (28) is expanded, it gives back equation (27),  

�� 

��
� � �� − �� = (� − �∗)’� �� − �� ≤ 0                                         
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(k x 1) vectors and X’X is a (k x k) 

                      (26)  

variance covariance, the posterior estimate are 

of the interval created by it for the 

                                                                                   (27) 

used in the Ellipsoid bound theorem then equation (27) becomes, 

                         (28) 

                                   (29) 



Gives the two equations: 
 

(� − �∗) ≤ 0                                                                                                                             

� �� − �� ≤ 0                                                                                                                               
 

Therefore: � ≤ �∗ and �� ≤ �, which implies

 

�� ≤ � ≤ �∗                                                                       

 

Case 2: 
 

Large prior �∗ with positive definite 

prior parameter �∗ is ≤ � � , such that equation (25) becomes

 

(�
∗∗

− �∗)’X’X( �� − �) ≤ 0                                                         

 

Since (�
∗∗

− �∗) ≤ 0. As a result of the prior 

bound becomes; 
 

(�
∗∗

− ����)’X’X( �
∗∗

− ����) ≥
 ( ����∗

 

By expansion, it becomes, 
 

(�
∗∗

− �∗)’X’X( �� − �
∗∗

) ≤ 0                                  

 

Thus, equation (33) satisfied equation (31) above, then similarly,
 

If k = 1: � ′� = ∑ ���
���  

 

Therefore,  
 

(�
∗∗

− �∗)’X’X� �� − �
∗∗

� = ��
∗∗

− �∗

 

   = (�
∗∗

− �∗)’ � �� − �
∗∗

� ≤ 0                    

 

Thus, equation (34) gives these two equations:
 

(�
∗∗

− �∗) ≤ 0                                                                                                                

� �� − �
∗∗

� ≥ 0                                                                                                                      

 

Therefore: �
∗∗

≤ �∗   and  �� ≥ �
∗∗

, which implies

 

�
∗∗

≤ �� ≤ �∗                                                               

 

2.6.3 Barttlet’s paradox 
 
Given two models: M0 = Unconstrained model and 
 
The posterior odd ratio given as 
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, which implies 

                                                                                                                            

with positive definite V**, such that the lower bound of the interval created by it for the 

such that equation (25) becomes 

                                                                                                    

. As a result of the prior �∗, and variance covariance matrix V
**
 used, the Ellipoid 

∗)’�’�( ����∗)

�
                                                                                 

                                                                                                                 

Thus, equation (33) satisfied equation (31) above, then similarly, 

∗� ∑ ���
��� � �� − �� 

                                                                                                           

two equations:  

                                                                                                           

                                                                                                              

, which implies 

                                                                                                                            

= Unconstrained model and M1 = Constrained model 
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                                                                                                                                 (i) 

                                                                                                                                     (ii) 

                  (30) 

of the interval created by it for the 

                                                           (31) 

used, the Ellipoid 

                                              (32) 

                                 (33) 

                        (34) 

                         (i) 

                                                                                                                                 (ii) 

                                                                     (35)

                  (36) 



Though posterior estimates may not 
by the Prior variance covariances, but e
large size of it will always yield support for the 
unconstrained model. Also of a suitable benefit to 
an inference, is to be able to select the best 
model with minimum parameters possible, as 
it is cleared that all independent variables
have equal effects on the dependent variable
[20]. 
 

3. ANALYSIS OF RESULTS 
 
To illustrate the effect of prior assumptions for the 
posterior sensitivity, the degree of confidence 
(DC) in the prior information about h,
defined as the ratio of the prior degrees of 
freedom (v) to the sample size (n), ��

each cases, two possible situations of Priors are 
considered; (i) prior greater than the OLS 
Estimate and (ii) Prior Less than OLS Estimate 
and for both cases change in variance 
assumption was considered. Data simulation 
study was carried out to show how close the 
estimates are to the true parameters.
 

                             
 

where εi ∼ N(0,1), j = 0,1,2,3, i = 1,...,n
1,10, 28, 100, X0 = 1, X ∼ unif (0,1) As a result of 
the form the posterior distribution is taken, it 
seems impossible to obtain posterior estimate for 
the parameters by direct simulation, hence, the 
Gibbs sampler method is introduced, to simulate 
from full conditionals for the estimate. As
of the posterior simulator employed, the 
 

Table

  
  β0 
 ��  (SE) -0.180(0.08)

 Trβ 1 
. �1 0 

 � 2 5 

Iv1 = 10 �11(SE) -0.095(0.005)

  HPDI(.95) (-0.83, 0.60)
 �21(SE) -0.20(0.005)

  HPDI(.95) (-0.91, 0.51)
Iv2 = 10

100
 �12(SE) -0.18(0.005)

 HPDI(.95) (-0.89, 0.53)
  �22(SE) -0.18(0.005)

 HPDI(.95) (-0.89, 0.53)
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Though posterior estimates may not be affected 
by the Prior variance covariances, but excessive 

will always yield support for the 
of a suitable benefit to 

an inference, is to be able to select the best 
model with minimum parameters possible, as            

that all independent variables don’t 
have equal effects on the dependent variable 

To illustrate the effect of prior assumptions for the 
the degree of confidence 

(DC) in the prior information about h, which is 
the prior degrees of 

�� = �

�
. Under 

each cases, two possible situations of Priors are 
considered; (i) prior greater than the OLS 
Estimate and (ii) Prior Less than OLS Estimate 

change in variance 
. Data simulation 

study was carried out to show how close the 
estimates are to the true parameters. 

                                      (37) 

j = 0,1,2,3, i = 1,...,n, β
’
s = 

1) As a result of 
the form the posterior distribution is taken, it 
seems impossible to obtain posterior estimate for 
the parameters by direct simulation, hence, the 
Gibbs sampler method is introduced, to simulate 
from full conditionals for the estimate. As a result 
of the posterior simulator employed, the 

parameter of interest β is a function of the Data 
and precision parameter, from the full 
conditionals p(β|y, h), where the precision 
depends on the posterior degrees of freedom (
N) and precision mean (s−2) 
interest is to observe the effect of change in 
parameter assumptions (degree of freedom of h 
and variance covariance matrix). 
 

3.1 Accessing Sample Size 
Ellipsoid Bound Theorem

 
Case 1: In this case, the effect of change in prior 
and weighted prior Variance covariance matrix 
using relatively small data information is checked. 
DC = 0.6; the prior information about ‘h’ has 
about 60% weight, as the data information.
 
Table 1 shows that, for small sample
prior position with respect to the OLS estimate 
have no effect on posterior position, as the 
posterior estimates with respect to
though not equal but remains ≤ the OLS result, 
while increase in prior variance
equal posteriors which is also 
estimate, showing a conformity to the ellipsoid 
bound and also with this increase
no effect on the Highest Posterior Density 
Interval (HPDI). 
 
Case 2: Increasing the sample sizes, such that 
DC = 0.15; 15% prior information about h is about 
of the weight as data information. The Precision 
prior mean (s

−2
) was also varied. 

that, variation in the prior mean of the precision 
parameter (h), only affects the HPDI and have 
little or no effect on the posterior estimate.

Table 1. Sample size = 5, v = 3 & DC= 0.6 
 

Case 1   
 β1 β2 β

0.180(0.08) 8.94(0.074) 32.40(0.09) 97.86(0.07)

10 28 100
5 15 50

15 50 120

0.095(0.005) 8.88(0.005) 32.36(0.006) 97.76(0.004)

0.83, 0.60) (8.14, 9.55) (31.49, 33.25) (97.08, 98.41)
0.20(0.005) 8.96(0.005) 32.40(0.006) 97.89(0.004)

0.91, 0.51) (8.29, 9.70) (31.52, 33.29) (97.25, 98.57)
0.18(0.005) 8.94(0.005) 32.40(0.006) 97.86(0.004)

0.89, 0.53) (8.26, 9.68) (31.54, 33.26) (97.19, 98.50)
0.18(0.005) 8.94(0.005) 32.40(0.006) 97.87(0.005)

0.89, 0.53) (8.25, 9.67) (31.53, 33.28) (97.23, 98,56)
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is a function of the Data 
and precision parameter, from the full 

where the precision 
depends on the posterior degrees of freedom (v + 

 therefore, the 
interest is to observe the effect of change in 
parameter assumptions (degree of freedom of h 

ize Effect on 
lipsoid Bound Theorem 

, the effect of change in prior 
and weighted prior Variance covariance matrix 
using relatively small data information is checked. 

the prior information about ‘h’ has 
eight, as the data information. 

Table 1 shows that, for small sample sizes, the 
prior position with respect to the OLS estimate 
have no effect on posterior position, as the 

o the two prior, 
≤ the OLS result, 

variance (10
100

) yields 
equal posteriors which is also ≤ the OLS 
estimate, showing a conformity to the ellipsoid 

increase, have little or 
Highest Posterior Density 

Increasing the sample sizes, such that 
15% prior information about h is about 

of the weight as data information. The Precision 
 Table 2, shows 

that, variation in the prior mean of the precision 
(h), only affects the HPDI and have 

on the posterior estimate. 

 
β3 
97.86(0.07) 

100 
50 

120 

97.76(0.004) 

(97.08, 98.41) 
97.89(0.004) 

(97.25, 98.57) 
97.86(0.004) 

(97.19, 98.50) 
97.87(0.005) 

(97.23, 98,56) 
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Table 2. Sample size = 20, v = 3  & DC= 0.15 
 

 Case 2  

  β0 β1 β2 β3 

 ��  (SE) -0.180(0.08) 8.94(0.074) 32.40(0.09) 97.86(0.07) 

 Trβ 1 10 28 100 
. �1 0 5 15 50 

 � 2 5 15 50 120 

Iv1 = 10 �11(SE) 1.35(0.006) 8.57(0.007) 28.54(0.006) 99.47(0.006) 

 HPDI(.95) (0.48, 2.22) (7.45, 9.64) (27.48, 29.55) (98.57, 100.40) 

 �21(SE) 1.16(0.006) 8.64(0.007) 28.62(0.007) 99.73(0.006) 

 HPDI(.95) (0.27, 2.01) (7.59, 9.73) (27.6, 29.62) (98.81, 100.62) 

Iv2 = 10
100

 �12(SE) 1.23(0.04) 8.62(0.05) 28.55(0.05) 99.71(0.04) 

 HPDI(.95) (-4.74, 7.40) (1.18, 16.08) (20.90, 35.14) (92.97, 105.55) 

 �22(SE) 1.36(0.24) 8.42(0.22) 28.72(0.22) 99.45(0.27) 

 HPDI(.95) (-8.24, 12.29) (-3.51, 20.96) (16.08, 40.08) (88.65, 108.51) 
 
Case 3: Increasing the sample size = 50, keeping 
degrees of freedom v = 3, such that DC = 0.06; 
6% prior information about h is about of the 
weight as data information. 
 
Table 3 shows that, increasing the sample size, 
with small variance covariance, makes a prior 
greater than the OLS estimate, yield a posterior 
estimates approximately equal to the OLS 
estimate and it reduces the HPDI hence 
increasing the precision. 
 
Case 4: Increasing the sample size = 100 and 
holding the prior degrees of freedom constant at 
3, such that DC = 0.03; 3% prior information 
about precision parameter h. 
 

Table 4, shows that, increasing the sample size, 
with small variance covariance, makes a prior 
greater than the OLS estimate, yield a posterior 
estimate approximately equal to the OLS 
estimate and it reduces the HPDI hence 
increasing the precision. 
 

3.2 Accessing Variance Covariance effect 
on Large Prior 

 

Since the posterior mean is the weighted average 
of the prior values and the OLS estimate, 
posteriors are expected to take values between 
them. However, not every posterior mean based 
on informative prior lies between the OLS 
estimates and the Prior values. 

Table 3. Sample size = 50, v = 3  &  DC= 0.06 
 

 Case 3  

  β0 β1 β2 β3 

 ��  (SE) 1.26(0.43) 8.84(0.52) 28.85(0.48) 99.78(0.46) 

 Trβ 1 10 28 100 

. �1 0 5 15 50 

 � 2 5 15 50 120 

Iv1 = 10 �11(SE) 1.53(0.008) 8.79(0.010) 28.80(0.010) 99.36(0.010) 

 HPDI(.95) (0.29, 2.77) (7.31, 10.39) (27.38, 30.18) (98.92, 100.67) 

  �21(SE) 1.15(0.008) 8.90(0.010) 28.9(0.010) 99.89(0.009) 

 HPDI(.95) (0.29, 2.97) (7.41, 10.29) (27.38, 30.18) (98.52, 100.97) 

Iv2 = 10100 �12(SE) 1.26(0.008) 8.84(0.010) 28.88(0.010) 99.78(0.009) 

 HPDI(.95) (0.02, 2.49) (7.30, 10.33) (27.46, 30.21) (98.43, 101.04) 

 �22(SE) 1.25(0.008) 8.83(0.009) 28.87(0.009) 99.80(0.009) 

 HPDI(.95) (-0.02, 2.46) (7.21, 10.28) (27.46, 30.24) (98.52, 101.22) 
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Table 4. Sample size = 100, v = 3 & DC= 0.03 
 

 Case 4  
  β0 β1 β2 β3 
 ��  (SE) 1.22(0.28) 9.29(0.31) 28.44(0.31) 99.88(0.33) 

 Trβ 1 10 28 100 
. �1 0 5 15 50 

 � 2 5 15 50 120 

Iv1 = 10 �11(SE) 1.76(0.01) 9.28(0.01) 28.31(0.01) 98.95(0.01) 

 HPDI(.95) (-0.03, 3.40) (7.48, 11.12) (26.29, 30.02) (96.84, 96.84) 
 �21(SE) 1.03(0.01) 9.33(0.01) 28.66(0.01) 100.07(0.01) 

 HPDI(.95) (-0.63, 2.74) (7.59, 11.28) (26.77, 30.55) (98.08, 102.09) 
Iv2 = 10100 �12(SE) 1.20(0.01) 9.30(0.01) 28.43(0.01) 99.92(0.01) 

 HPDI(.95) (-0.63, 2.95) (7.45, 11.34) (26.48, 30.35) (97.83, 101.92) 
 �22(SE) 1.20(0.01) 9.29(0.01) 28.46(0.01) 99.90(0.01) 

 HPDI(.95) (-0.63, 2.94) (7.42, 11.29) (26.47, 30.38) (97.86, 101.90) 
 
If X is normally distributed with mean µ and 
variance σ2, then � = ���

�
 is standard normal, with 

E(Z) = 0 and var(Z) =1. Since the prior 

information about the parameters is, β ∼ N(β,V 
Ivi), therefore: 
 

(� − �)������
��

~�(0, 1)                                  (38) 

 

A 95% confidence interval for the parameter β is 
given as: 
 

� ± 1.96 �������                                              (39) 

 

Special Case 1: Keeping all parameter in case 1 
constant, a large prior was introduced with four 
levels of variance covariance matrix, the 
largeness at each level, was captured in the 
scalar value Ivi. 
 

Table 5 shows that, when the prior considered 
are far greater than the OLS estimates, then the 
interval created by the prior variance covariance 
matrix for the prior values, is of significant 
relevance to the position of the posterior 
estimate, for normal gamma prior with normal 
likelihood. When the interval does not contain the 
OLS estimates the posterior estimates are 
greater than the OLS, but less than it when the 
OLS estimates exists in the interval. 
 

Special Case 2: Keeping all parameter in case1 
constant, a large prior was introduced with four 
levels of variance covariance matrix, the 
largeness at each level, was captured in the 
scalar value Ivi. 
 

Table 6, shows that, when prior considered are 
far greater than the OLS estimates, with large 

data information, the interval created by the prior 
variance covariance matrix for the prior values, 
remains significant, with respect to the position of 
the posterior estimate, for normal gamma prior 
with normal likelihood. When the interval lower 
bound is greater than the OLS estimates the 
posterior estimates are greater than the OLS 

(small prior variance), � � ≤ � ≤ �, but less than it 

when the OLS estimates is greater than that its 
lower bound of the interval (Large prior variance 

covariance),  � ≤ � � ≤ �. 

 
Considering all the cases shown above, it is 
observed that the degree of confidence in Prior 
information have no effect on the posterior 
estimate and when the OLS estimate exist in            
the interval created by the prior variance 
covariance matrix or the prior is less than the 
OLS estimate, then posterior estimate will be less 
than the OLS Estimate and with greater 
precision. 
 

3.3 Prior Effect on Negligible Data 
 
Special Case 3: In this special case, it is to 
explore how sensitive the posterior estimate can 
be to negligible data information. This may be 
seen as an impossible situation but it can 
suggest a solution to a limitation. Here we 
consider data of sample size = 3 with prior 
degrees of freedom taken as 30. Where the 
confidence in the prior takes a positive value of 
DC=10. In the table below it was observed that 
no matter how small or negligible data might 
appear, combination of such to a prior can yield a 
reasonable posterior estimate. The HPDI 
contains the true parameter of interest when the 
prior is reasonably far from the true parameter. 
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Attaching a prior with large variance covariance, 
to negligible data information leads to loss of the 
whole information. 
 
Special Case 4: This examines the sensitivity of 
the posterior estimate, considering small data 
information with large prior degrees of freedom. 
Here data of sample size = 5 were selected, with 
prior degrees of freedom taken as 25 and 

confidence in the prior takes a positive value of 5; 
DC = 5. 
 
Table 8 depicts that no matter how relevant the 
prior information might be for a normal Likelihood 
with an independent normal Gamma Prior, the 
data information is reasonably powerful enough 
to enable the prior yields a reasonable posterior 
estimate. 

 

Table 5. Sample size = 5, v = 3 & DC= 0.6 
 

  Special case 1   
   β0 β1 β2 β3 
 ��  (SE) -0.1803 (0.0750) 8.9403 (0.0745) 32.3984 (0.0914) 97.8612 (0.0703) 

 Trβ 1 10 28 100 
. �1 50 100 280 1000 

Iv1 = 10 �11 (SE) -1.0979 (0.0048) 9.8378 (0.0047) 32.2192 (0.0058) 99.7515 (0.0048) 

 HPDI(.95) (-1.825, -0.368) (9.139, 10.571) (31.346, 33.101) (99.048, 100.493) 
Iv2 = 100 �12 (SE) -0.2784(0.0048) 9.0346(0.0047) 32.3867(0.0058) 98.0511(0.0044) 

Iv3 = 1000 �13 (SE) -0.1968(0.0046) 8.9544(0.0046) 32.3982(0.0057) 97.8901(0.0044) 

Iv4 = 10
100

 �14 (SE) -0.1862(0.0047) 8.94674(0.0047) 32.4017(0.0058) 97.8621(0.0044) 

. HPDI (.95) (-0.888, 0.557) (8.211, 9.632) (31.529, 33.300) (97.205, 98.529) 
 

Table 6. Sample size = 100, v = 3 & DC= 0.03 
 

 Special case 2  
  β0 β1 β2 β3 
 ��  (SE) 1.2214 (0.2840) 9.2896 (0.3083) 28.4468 (0.3075) 99.8843(0.3293) 

 Trβ 1 10 28 100 
. �1 50 100 280 1000 

Iv1 = 10 �11 (SE) -4.1663 (0.0252) 9.3760 (0.0098) 29.3804 (0.0104) 109.98 (0.0471) 

Iv2 = 100 HPDI(.95) 0.3173(0.0119) 9.3070(0.0124) 28.6351(0.0125) 101.52(0.0147) 
Iv3 = 1000 �12 (SE) 1.1118(0.0116) 9.2944(0.0127) 28.4861(0.0127) 100.05(0.0137) 

Iv4 = 10
100

 �13 (SE) 1.2018(0.0118) 9.3013(0.0127) 28.4279(0.0127) 99.9157(0.0137) 

. �14 (SE) (-0.6289, 2.9481) (7.4452, 11.3446) (26.4887, 30.357) (97.83, 101.924) 

 
Table 7. Sample size = 3, v = 30 & DC= 10 

 
  Special case 3   
  β0 β1 β2 β3 
 �� (SE) 120.46(NA) -110.32(NA) 32.41(NA) NA(NA) 

 Trβ 1 10 28 100 
. �1 0 5 15 50 

 � 2 5 15 50 120 

Iv1 = 10 �11(SE) 5.85(0.03) 2.97(0.03) 32.50(0.01) 92.81(0.03) 

 HPDI(.95) (1.25, 11.03) (-1.83, 7.82) (31.17, 33.77) (88.85, 96.88) 
 �21(SE) 1.03(0.01) 9.33(0.01) 28.66(0.01) 100.07(0.01) 

 HPDI(.95) (-0.63, 2.74) (7.59, 11.28) (26.77, 30.55) (98.08, 102.09) 
Iv2 = 10100 �12(SE) NA(NA) NA(NA) NA(NA) NA(NA) 

 HPDI(.95) NA(NA) NA(NA) NA(NA) NA(NA) 
 �22(SE) NA(NA) NA(NA) NA(NA) NA(NA) 

 HPDI(.95) NA(NA) NA(NA) NA(NA) NA(NA) 
Note: NA = Not Available 



 
 
 
 

Akanbi et al.; JSRR, 26(7): 134-149, 2020; Article no.JSRR.61039 
 
 

 
146 

 

Table 8. Sample size = 5, v = 25 & DC= 5 
 

                                            Special case 4   
  β0 β1 β2 β3 
 ��  (SE) -0.180(0.08) 8.94(0.074) 32.40(0.09) 97.86(0.07) 

 Trβ 1 10 28 100 
. �1 0 5 15 50 

 � 2 5 15 50 120 

Iv1 = 10 �11(SE) -0.04(0.006) 8.84(0.006) 32.34(0.008) 97.69(0.006) 

 HPDI(.95) (-0.96, 0.86) (7.86, 9.70) (31.22, 33.50) (96.84, 98.56) 
 �21(SE) -0.21(0.006) 8.97(0.006) 32.41(0.007) 97.92(0.006) 

 HPDI(.95) (-1.13, 0.71) (8.16, 9.92) (31.29, 33.54) (97.08, 98.80) 
Iv2 = 10100 �12(SE) -0.18(0.006) 8.95(0.006) 32.40(0.007) 97.86(0.006) 

 HPDI(.95) (-1.07, 0.77) (-1.07, 0.77) (8.05, 9.89) (97.03, 98.73) 
 �22(SE) -0.18(0.006) 8.94(0.006) 32.41(0.008) 97.86(0.006) 

 HPDI(.95) (-1.10, 0.76) (8.05, 9.89) (31.30, 33.55) (97.03, 98.76) 
 

4. MODIFICATION OF THE ELLIPSOID 
BOUND FOR THE INDEPENDENT 
NORMAL GAMMA PRIOR 

 

• For a large prior value which is greater than 
the OLS estimate, if there exist a positive 
definite prior variance covariance matrix V, 
with an interval for the prior values, which 
contains the OLS Estimate, Then: 

 

� ≤ � � ≤ � 

 

• For a large prior value which is greater than 
the OLS estimate, if there exist a positive 
definite prior variance covariance matrix V, 
with an interval for the prior values, which 
the lower bound is greater then the OLS 
Estimate, then: 
 

� � ≤ � ≤ � 

 
5. CONCLUSION 
 
This study has shown the asymptotic equivalence 
of the Frequentist MLE and the Bayesian 
Posterior mean. The result shows that, for a large 
prior parameter value (greater than the OLS 
estimate) with a positive definite prior variance 
covariance matrix and prior parameter values 
interval which contains the OLS estimate then, 
the posterior estimate will be less than both the 
OLS and the prior estimates. Similarly, if the 
lower bound of the prior parameter value range is 
greater than the OLS estimate then: the posterior 
estimate will be greater than the OLS estimate 
but smaller than the prior estimate. Finally, it was 

shown that relevant data information under 
Multivariate Normal distribution serves as a good 
modifying factor for the independent Normal 
Gamma prior to yield reasonable posterior 
estimates; mean closer to the true value, smaller 
posterior variance realized. Also, the higher the 
prior variance covariance is, the better estimates 
are obtained as the sample size increases 
especially when data are negligible. The Credible 
intervals (HPDI) for the posterior estimates give 
smaller/closer posterior intervals due to the 
smaller error variances when compared with the 
confidence intervals of OLS estimates which can 
only be varried by data information. 
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