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In this work, the (2 + 1)-dimensional nonlinear electrical transmission line equation (NETLE) is investigated by applying three
recent technologies, namely, the variational approach, Hamiltonian approach, and energy balance approach. Diverse exact
soliton solutions such as the bright, bright-like, kinky bright, bright-dark soliton, and periodic soliton solutions are successfully
constructed. The outlines of the different solutions are shown in the form of the 3-D plot with the help of the Wolfram
Mathematica. It reveals that the used methods are concise and effective and are expected to provide some inspiration for the

study of travelling wave solutions of the PDEs in physics.

1. Introduction

Nonlinear partial differential equations (NLPDEs) appear
in mathematics, physics, engineering, and other fields.
Many complex phenomena occurring in nature can be
described by the NLPDEs. The study of their soliton solu-
tions is of great significance since they can make us more
deeply understand the natural phenomena and their inter-
nal relations. So far, there are many effective methods
available for constructing the soliton solutions such as
the exp-function method [1-4], tanh-function method [5-9],
(G//G)—expansion method [10-12], F-expansion method
[13, 14], extended rational sine-cosine and sinh-cosh methods
[15-18], Sardar-subequation method [19-21], and Sine-
Gordon expansion method [22, 23] [24-31]. In the current
work, we aim to study the (2 + 1)-dimensional NETLE, which

is expressed by [32]
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In Eq. (1), a, B, uy, and @, are nonzero constants, &,
and §, represent the longitudinal and transverse distance
between two adjacent sections, respectively. Eq. (1) plays
an important role in the field of telecommunication and
network engineering. Up to now, some effective approaches
have been adopted to solve Eq. (1) such as the modified
simple equation method [33], Jacobi elliptic function expan-
sion method [34], sine-Gordon expansion method [35], and
the Kudryashov method [36]. In recent years, the varia-
tional theory-based methods such as the wvariational
approach (VA), Hamiltonian approach (HA), and energy
balance approach (EBA) have caught a wide attention for
solving the PDEs since they all probe the problem in view
of the energy conservation and obtain the solutions by the
stationary conditions. Additionally, these methods can help
us insight the problem from a physical perspective. Thus, in
this work, we aim to seek for the various soliton solutions
by means of the variational theory-based methods, which
are the VA, HA, and EBA. The rest content of this paper
is arranged as follows. In Section 2, the variational principle
and Hamiltonian of the studied problem are presented. In
Section 3, the various soliton solutions are derived by
applying the three methods. The behaviors of the different
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solutions are presented through the 3-D plot in Section 4.
Finally, we get a conclusion in Section 5.

2. Variational Principle and the Hamiltonian

For solving Eq. (1), we introduce the following transfor-
mation [36]:

u(x,y, 1) =U(x), x = /po(x +y = 6,t). (2)

In Eq. (2), g and 8, represent the wave number and
wave speed, respectively. Applying Eq. (2) to Eq. (1), inte-
grating the results twice with respect to y and setting the
integrating constants to zero, we get

[M = (peIT, + wyIT,) U + M(BU° - aU?)
1 d*U (3)
— o5 (oI T7 + WIT3) Fo 0,

where M = @0}, I1, = 8, and I, = 83p.
With the aid of the semi-inverse method [37-43], we
establish the variational principle of Eq. (3) as
3Mp 4
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For the convenience of calculation, we reexpress
Eq. (4) as

J(U) = J{% (U’)2 + AU - L, U +)L3U2}dx

(5)
= J{m - S}dy,

where A, = 3MB/pa 15 + @13, A, = 4Ma/pd T3 + @13, and
Ay = 6[M — (W21, + @3I1,)]/piI1? + @3I15. And there are

1/ 2
R=_(U"),

2( ) (6)
S =-1U*+1,U° -\, U~

Here, R is the kinetic energy, and J indicates the potential
energy. Then, we can get the Hamiltonian as [44, 45]

1 2
=m+szi(u’) MU+ L UR - LU (7)
3. The Solutions

3.1. The VA. The main target of this subsection is to apply
the VA to search for the abundant exact solutions of Eq. (1).
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3.1.1. The Bright Soliton Solution. Here, we suppose the solu-
tion of Eq. (3) is [46]

U(x) = & sech (). (8)

Taking it into Eq. (5) yields

(6]
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According to the Ritz-like method (RLM), we take its
stationary condition as

dj
=0 (10)

which leads to

E(32M,5% - 95,7 + 24, + 4)
12

=0. (11)

On solving it by the Wolfram Mathematica, we have

9,7+ \/81)@712 - 307211, - 5121,

== 12
641, )
Or
9,7 — \/ 81A572 — 30721, A, — 5121,
E= . (13)
64A,
So, the solution of Eq. (3) can be obtained as
U 9N, + \/81/\§n2 — 3072, 45 — 5121, .
(x) = 6an, sech (x),
(14)
or
9, — \/81A§n2 — 307244, - 5121, .
Ux) = 641, sech (y).
(15)
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In the view of Eq. (2), we have

9N, + \/ 81A372 — 30721, A, — 5121,
64A, (16)
- sech [\/p(x +y—6,t)],

u(x, y,t) =

or

9,7 — \/ 81A272 — 30721, A, — 5121,
uxy )= 641, (17)

- sech [\/p(x+y—0,t)].

3.1.2. The Bright-Like Soliton Solution. The solution of
Eq. (3) is assumed as the following form [47]:

—
—

U(x) = ﬁszh(x)' (18)

Putting above equation into Eq. (5), it gives

J(5,) =J {% (U’)2 + AU - A, U +A3U2}dx
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It results into
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Solving above equation, we have
210, + \/21 (2112 - 80A,A, - 81,)
=, = R 22
2 24A1 ( )
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3.1.3. The Kinky-Bright Soliton. Inspired by the research
results obtained in [47], we can also assume that Eq. (3) has
the following solution to construct the kinky-bright soliton:

U(x) = &5 sech?(x). (26)
By the same way, we have

o 253(24X,55 - 28),5; + 351, + 14) -
J(Es) = = . @)

Computing its stationary condition with respect to
E, yields

455 (481,55 - 421,5; + 35, + 14)

=0, 28
105 (28)

from which, we obtain

210, + \/21(21A§ — 801, - 321,)

g G
3 48A1 ( 9)
or
21, \/21(21A§ —80A, 4, — 321,
Ey= 7 ) (30)
With this, we have
210, + \/21(21A§ —80A, A - 321,)
”(%)’, t) = 48/\1 (31)
- sech?[ B+~ Byt)],
or
21M, - \/21(21A§ —80A, A - 321,)

- sech’[/p(x +y — Oyt)].



3.1.4. The Bright-Dark Soliton. Here, we search for a solu-
tion of Eq. (3) in the following form [47]:

U(x) =Z, sech () tanh (y). (33)

Substituting Eq.( 33) into Eq. (5), it produces

=2
J= % (121,53 - 281,5, + 70); + 49). (34)

Making J stationary with =, results in

.:4 - —_
105 (241,55 — 421,5, + 70); + 49) =0. (35)

From Eq. (35), we have

210, + \/21 (2122 — 804, A, — 561,

5 ., (36)
4 24,
or
210, - /21(21)3 - 04,1, - 561
_ 2 2 13 1)
E,= S ) (37)
1
So, we have
2
210, + \/21 (2112 - 8041, - 561,
Uy )= 241,
- sech {\/E(x +y- vot)} tanh [\/p(x +y —0y1)],
(38)
or
2
21M, - \/21 (2172 - 804, A, - 561,
U 1) = 241,
- sech [\/I;(x +y- vot)} tanh [\/p(x +y —6,t)].
(39)

3.2. The HA. In this section, we aim to use the HA to search
for the periodic solution of Eq. (3) as [48-50]

U(x) = A cos (), (40)

where A is the amplitude and Q is the frequency.
Form the obtained Hamiltonian provided by Eq. (7), we

construct a new function h(U) as

h(U) = " 1(U’>2—A U+ L, U - A, U2 Ldy. (a1)
= . 3 1 2 3 X
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Taking Eq. (40) into above equation, it yields

. T/4
h(U)= JO {; [~AQ sin (Qy)]* = M, [A cos (2x)]*

+A,[A cos ()] = A5[A cos (Qx)]z}d)( (42)

A2
= 150 3A - M AP +6(Q° - 205)m].

By the Hamiltonian approach, we set

o ( oh L i3
oA\o(1/Q)) (43)

which leads to

Q= \/ 8Ak, _ 21, — 34, A2, (44)
T

So, the periodic soliton solution of Eq. (1) is found as

u(x, y, t) = A cos (\/8/7?2 =20 =3 AP p(x+y — Got)}> :
(45)

3.3. The EBA. To use the EBA [50, 51], we first assume the
solution of Eq.(3) is

U(x) =Acos (Oy). (46)
And we have
U(0)=A4,U"(0)=0. (47)

The energy conservation reveals that the Hamiltonian
invariant keep unchanged for the system; so, inserting
Eq. (47) into Eq. (7) yields

H,=R+S3
1 2
= E(U’) MU+ L UP - L U2 (48)
= -1 AY + L,A% - A, A%

Then, we substitute Eq. (46) into Eq. (48) and set
Oy =m/4, and there is

(o () 4o (2]
A, (A cos (g)f s (A cos (%))2 (49)

=LA+ L,AT - 1A%
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FiGure 1: The outline of the bright soliton. (a) for Eq. (16) and (b) for Eq. (17).

Solving it gives

©= \/(4 - \fz) A, A-2), - 31, 4%, (50)

which has a well agreement with Eq. (44). It strongly
proves the correctness of the two different methods.
Thus, we get the periodic soliton solution of Eq. (1) as

u(x,y,t) = Acos <\/<4 B \/E)/\ZA —2); - 30, A p(x +y—00t)]).
(51)

4. Results and Discussion

This section will give the graphical representations and
physical interpretation of the obtained solutions in Section
3 by using proper parameters.

For p=1,0,=1,81=08=1,@,=1, py=1, a=1, and
B =1, Figure 1 plots the performance of the bright solitons
obtained by Egs. (16) and (17) within the interval —10 < x

(b)
FIGURE 2: The behaviors of the bright-like soliton. (a) for Eq. (24) and (b) for Eq. (25).

<10 and —10 < y < 10. Obviously, they have the bright soli-
ton characteristics. M = 1.

We plot the behaviors of the bright-like soliton solutions
given by Egs. (24) and (25) in Figure 2 by choosing g =1,
O=1, 81=85=1, @y=1, M=1, yy=La=1, and =1,
where the performance are like bright soliton.

Solutions of Egs. (31) and (32) are the kinky-bright sol-
itons. We plot their behaviors in Figure 3 within the interval
on -10<x<10 and -10<y <10 with for p=1, 6,=1,
8=8=1 @=1, M=1, yy=1, a=1, and f=1. As
expected, they all have the bright soliton characteristics.

Selecting =1, 0,=1, 8? :83 =1, @,=1, M=1,
Yo=1, a=1, and =1, the 3-D plots of the bright-dark
solitons given by Egs. (38) and (39) are presented in
Figure 4 within the interval —10 <x <10 and -10 < y < 10.
It can be observed that the performances are bright-dark
soliton.

Figure 5 plots the profile of Egs. (45) and (51) within the
interval =5 < x <5 and =5 < y < 5 by using the parameters as
P=1,0,=1,01=8=1,0,=1,M=1,p,=1,A=1(A=1),
a=1, and S=1. It can be seen that the two profiles are all
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(a) (b)

FiGure 5: The outline of the periodic soliton. (a) for Eq. (45) and (b) for Eq. (51).

perfect periodic waves. In addition, the two contours are  bright soliton, bright-like soliton, kinky-bright soliton,

basically the same. bright-dark soliton, and periodic soliton solutions were con-
structed by using the variational approach, Hamiltonian
5. Conclusion approach, and energy balance approach. The profiles of the

solutions were presented through the 3-D plots via selecting
In this work, diverse soliton solutions of (2 + 1)-dimensional ~ the appropriate parameters by means of the Wolfram Math-
nonlinear electrical transmission line equation like the  ematica. The results revealed that the proposed methods
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were straightforward, simple, and effective, which can be
adopted to study the traveling wave theory of the PDEs
arising in physics.
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