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Abstract: Motivated by the rapid progress of aerospace and robotics engineering, the navigation and
control systems on matrix Lie groups have been actively studied in recent years. For rigid targets,
the attitude estimation problem is a benchmark one with its states defined as rotation matrices on
Lie groups. Based on the invariance properties of symmetry groups, the invariant Kalman filter
(IKF) has been developed by researchers for matrix Lie group systems; however, the limitation of
the IKF is that its estimation performance is prone to be degraded if the given knowledge of the
noise statistics is not accurate. For the symmetry Lie group attitude estimation problem, this paper
proposes a new variational Bayesian iteration-based adaptive invariant Kalman filter (VBIKF). In
the proposed VBIKF, the a priori error covariance is not propagated by the conventional steps but
directly calibrated in an iterative manner based on the posterior sequences. The main advantage
of the VBIKF is that the statistics parameter of the system process noise is no longer required and
so the IKF’s hard dependency on accurate process noise statistics can be reduced significantly. The
mathematical foundation for the new VBIKF is presented and its superior performance in adaptability
and simplicity is further demonstrated by numerical simulations.

Keywords: attitude estimation; variational Bayesian inference; fixed-point iteration; posterior stochas-
tic sequences; invariant Kalman filter; matrix Lie groups

1. Introduction

Attitude determination is a benchmark and important problem in astronautic engi-
neering for the state estimation and control of spacecraft and robotic systems [1–4]. As a
widely used attitude estimator, the Kalman filter (KF) is an optimal, numerically efficient,
and widely used tool that infers based on all available information, i.e., the dynamic model
of the system, sensor data, and the probabilities of both sensor signals and the algorithm’s
numerical behavior [5,6]. Generally, the state estimation system is usually modeled as
vector state space model in Euclidean space and solved with a Kalman filter for vector
state variables. In recent years, building navigation and control systems on matrix Lie
groups have been actively studied and the properties of the group system provide practical
convenience for the definition and simplification of navigation and control system mod-
els [7,8]. For engineering applications, the Euclidean system models are usually corrupted
by unknown noises or unpredictable disturbances; this is also true for the attitude estima-
tion problems defined on matrix Lie groups and the performance of employed filtering
methods is prone to be influenced by inaccurate covariance parameters [6,9,10]. Therefore,
for attitude estimation systems on matrix Lie groups, this work aims to study the Kalman
filtering problem with unknown noise statistics parameters.

For attitude representation, the widely used quaternions can present a uniform ap-
proximation of attitude representation without gimbal-locks [1,9]. The quaternion-based
algorithms do not need to compute trigonometric functions and allow for the writing of
attitude changes as matrix–vector products. The multiplicative extended Kalman filter is
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an ad hoc modification of the extended Kalman Filter that accounts for the constraint of a
unit quaternion, but its convergence property is ensured only at equilibrium points and
the antipodal quaternions should be identified [11]. Recently, there has been significant
research interest in the estimation and control of matrix Lie group systems, including state
observers and filters for attitude estimation on SO(3) and SE(3) [12,13]. Building attitude
kinematics on matrix Lie groups can usually preserve the geometrical property of group
systems and the resulting attitude representation does not suffer from the problems of
singularities and unwinding [11]. Nevertheless, these studies only generalize the extension
to Euclidean Kalman filter theory for attitude estimation on matrix Lie groups and the
symmetry properties of attitude estimation models are not sufficiently exploited.

Accounting for the invariance property of Lie groups’ attitude kinematics will lead
to well-posed problems and boost the performance of attitude estimation algorithms [14].
According to the theory of the invariant Kalman filter (IKF), using the mapping between
matrix Lie groups and Lie algebra, attitude estimation systems on matrix Lie groups can be
equivalently mapped into a Euclidean vector space and, therefore, the classical Kalman-
type estimation methods can be applied to solve the corresponding problems [15,16]. The
implementation steps of the IKF are derived based on the invariance and log-linearity of the
linear invariant error, which contributes to better filtering convergence on a much bigger
set of state trajectories [16]. The necessary probability theory for uncertainty definition on
matrix Lie groups has been studied in [17,18] and the concept of a concentrated Gaussian
distribution has been employed to describe the noisy and random variables on matrix
Lie groups [19,20]. Note that the IKF actually obeys the classical Kalman theory and so
its estimation performance also heavily depends on the parameters of the noise covari-
ance matrices being accurate; however, in aerospace and satellite engineering, accurate
noise statistics parameters are usually not available due to the presence of unpredictable
noises and disturbances, which are sure to have a negative influence on the estimation
performance of the invariant Kalman filter [21,22].

Motivated by above discussion, it is meaningful to further improve the filtering perfor-
mance of the invariant Kalman filter for the matrix Lie group attitude estimation problem
in the presence of unpredictable noises and disturbances. Note that, for conventional
Euclidean space filtering problems, some adaptive techniques have already been devel-
oped [23,24] and the most common way is to directly scale or estimate the unknown noise
parameters, i.e., the process and observation noise covariance [25]. Recently, variational
Bayesian (VB) methods have been applied to the joint estimation of system state and
unknown noise parameters [26,27]. A novel adaptive Kalman filter utilizes the VB tech-
nique to obtain an approximate inference for inaccurate process and measurement noise
covariance [28]. Note that, to the best of our knowledge, for matrix Lie group systems there
remains no investigation on adaptive methods for invariant Kalman filtering.

Therefore, for aerospace, satellite, and robotics engineering, this work aims to investi-
gate the benchmark matrix Lie group attitude estimation problem. Note that, in practice,
the noise parameter of onboard observation sensors usually depends on the utilized sens-
ing technique and can be determined offline, but it is impractical to accurately evaluate the
unpredictable disturbances in the kinematics/dynamics model [23,24]. In this work, the
matrix Lie group attitude estimation problem with inaccurate process noise covariance is
investigated and a variational Bayesian iteration-based adaptive invariant Kalman filter
(VBIKF) is proposed. In the VBIKF, the a priori error covariance is not propagated by the
conventional steps but directly calibrated in an iterative manner based on the posterior
sequences. The main advantage is that the statistics parameter of the system process noise
is no longer required and so the IKF’s hard dependency on accurate process noise statistics
can be reduced significantly. The mathematical foundation for the new VBIKF is presented
and its superior performance in adaptability and simplicity is further demonstrated by
numerical simulations.
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2. Primaries and Problem Definition

This section first presents the essential primaries about matrix Lie groups and the
uncertainty definition, which constitute the fundamental theory of the matrix Lie group
attitude estimation problem. The attitude estimation problem is described with discussions
on the symmetry invariance property of the attitude system. Then, the invariant Kalman
filter is introduced and its heavy constraint on the noise parameter is also presented in the
problem definition of this work.

2.1. Matrix Lie Groups and the Concentrated Gaussian Distribution

In this paper, a matrix Lie group G ⊂ Rm×m is characterized as the set of square,
invertible m×m matrices satisfying the matrix operations of multiplication and inversion
without going outside [29–31].

Id ∈ G, ∀χ ∈ G, χ−1 ∈ G, ∀χ1, χ2 ∈ G, χ1χ2 ∈ G (1)

where the m×m identity matrix Id is the group identity element.
For every matrix Lie group G, there is an associated Lie algebra g ⊂ Rm×m and, from

the differential geometric point of view, it is an open neighborhood of 0m×m in the tangent
space TId G of G at the identity element Id. The matrix exponential exp(·) and logarithm
log(·) mappings establish a local diffeomorphism between an open neighborhood of the
group identity Id in G and the associated Lie algebra g, i.e.,

exp(·) : g→ G and log(·) : g→ G. (2)

As a linear space, the Lie algebra g of p-dimensional matrix Lie group G is related to
the p-dimensional Euclidean vector space Rp through the natural linear isomorphism

(·)∨ : g→ Rp and (·)∧ : Rp → g. (3)

The uncertainty representation of additive noise in Euclidean vector space cannot be
directly applied to matrix Lie group space. The Baker–Campbell–Haussdorff formula [19]
provides an approximate to the product of Lie groups in Rp [29,30], i.e., for a, b ∈ Rp.

BCH(a, b) = log
(
exp

(
a∧
)

exp
(
b∧
))∨

= a + b + O
(
|a, b|2

)
, (4)

where O
(
|a, b|2

)
is the negligible second- and higher-order terms if a and b are small

enough. In a concentrated Gaussian distribution (CGD) [19,20,32], a random Lie group
variable χ ∈ G has a CGD with mean µ ∈ G and covariance Σ ∈ Rp×p, i.e., χ = χ′µ ∼
G(µ, Σ), if:

χ′ = exp
(
ξ∧
)
∼ G

(
Id, Σ

)
, ξ ∼ N c(0p, Σ) ∈ Rp (5)

where G(·, ·) denotes the concentrated Gaussian distribution (CGD) and N c(·, ·) denotes
the classical Gaussian distribution in Rp; χ′ ∈ G is a CGD random variable with mean
Id and covariance Σ; and ξ is a zero-mean normally distributed random variable with
covariance Σ.

2.2. The Attitude Estimation Systems on Special Orthogonal Group SO(3)

One motivating example of estimation on matrix Lie groups is the attitude determina-
tion on special orthogonal group SO(3) ⊂ R3×3 for a rigid spacecraft with model [1,14].

Rk =

Aerospace 2021, 8, x FOR PEER REVIEW 4 of 18 
 

 

2.2. The Attitude Estimation Systems on Special Orthogonal Group SO(3) 

One motivating example of estimation on matrix Lie groups is the attitude deter-

mination on special orthogonal group 3 3(3)SO   for a rigid spacecraft with model 

[1,14]. 

( )( )1 1, expk k k k k kR R w


− −=    =  (6) 

' ' '

'' '' ''
,

T

k k k

k T

k k k

y R b v
Y

y R b v

   +
= =   

+   
 (7) 

where (3)kR G SO =  denotes the rotation matrix from the body frame to the 

Earth-fixed frame at time instant k ; ( )~ ,d

k kI   is the left-multiplied random varia-

ble on group (3)SO  with ( ) 3

3 1~ 0 ,c

k ww     as the corresponding random process 

noise vector in
p

; k G   is the rotation control input; 6

kY   is a composition of 

two discrete noisy observations ' '' 3,k ky y   given the parameter ' '' 3,b b  ; and 

( )'

3 1 '~ 0 ,c

k vv    and ( )'' 3~ 0 ,c

k vv   are mutually independent isotropic observation 

noises. 

On group (3)SO , all elements are 3 ×  3 real rotation matrices R satisfying

3 3

TRR I = and determinant ( )det 1R =  [31]. The associated Lie algebra g  is actually the 

space of 3 × 3 real skew-symmetric matrices, i.e., ( )  3 33 , TA A A=  = −so . Addition-

ally, for   3

1 2 3, ,
T

   =  , the mapping from the vector to the corresponding 

skew-symmetric matrix has the form of (8) and its relations to group element R  are (9) 

and (10) [31]. 

( )
1 3 2

2 3 1

3 2 1

0

0 ,

0

  

    

  







−   
   

= = = −    
   −   

g  (8) 

( )( ) ( )
( )

2

2

3 3 2
0

sin / 2sin
: exp exp 2 ,

!

m

m

R I
m


   

 


 

   

=

= = = = + +

 

(9) 

( ) ( ) ( )log if 1
2sin

TR R R tr R



= −  −

 

(10) 

where   denotes the common skew-symmetric operation for vector 3  ;   rep-

resents the standard Euclidean vector norm; and the   in (10) satisfies    and 

( )1 2cos tr R+ =  with ( )tr   being the trace of a matrix. For the special case of 

( ) 1tr R = − , the antipodal solutions to ( )log R  can be determined according to the rela-

tion ( )2 2

3 3 2 /R I   = + . 

Let ( )1 1 1
ˆ ,k k kR R− − −  be an estimate for the true 1kR −  of instant k − 1 and 

1 1
ˆ ˆ

k k kR R − −=   be the estimate for the true kR  satisfying ( )ˆ ,k k kR R  . If we define the 

multiplicated form of invariant error ( )1ˆlog( )k k kR R


−= , then the motion of k  can be 
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where Rk ∈ G = SO(3) denotes the rotation matrix from the body frame to the Earth-fixed
frame at time instant k;
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{
A ∈ R3×3, A = −AT}. Additionally, for

ξ = [ξ1, ξ2, ξ3]
T ∈ R3, the mapping from the vector to the corresponding skew-symmetric

matrix has the form of (8) and its relations to group element R are (9) and (10) [31].

(ξ)∧ = ξ× =

 ξ1
ξ2
ξ3


×

=

 0 −ξ3 ξ2
ξ3 0 −ξ1
−ξ2 ξ1 0

 ∈ g, (8)
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θ

2 sin θ
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R− RT
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where ξ× denotes the common skew-symmetric operation for vector ξ ∈ R3; ‖·‖ represents
the standard Euclidean vector norm; and the θ in (10) satisfies |θ| < π and 1 + 2 cos θ =
tr(R) with tr(·) being the trace of a matrix. For the special case of tr(R) = −1, the antipo-
dal solutions to log(R) can be determined according to the relation R = I3×3 +

(
2/π2)ξ2

×.
Let R̂k−1 ∼ G(Rk−1, Σk−1) be an estimate for the true Rk−1 of instant k − 1 and

R̂k = R̂k−1Ωk−1 be the estimate for the true Rk satisfying R̂k ∼ G(Rk, Σk). If we define the

multiplicated form of invariant error ξk =
(

log(R̂kR−1
k )
)∨

, then the motion of ξk can be
obtained as.

ξk =
(

log(R̂kR−1
k )
)∨

=
(

log
(

R̂k−1Ωk−1(
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space of 3 × 3 real skew-symmetric matrices, i.e., ( )  3 33 , TA A A=  = −so . Addition-

ally, for   3

1 2 3, ,
T

   =  , the mapping from the vector to the corresponding 

skew-symmetric matrix has the form of (8) and its relations to group element R  are (9) 

and (10) [31]. 

( )
1 3 2

2 3 1

3 2 1

0

0 ,

0

  

    

  







−   
   

= = = −    
   −   

g  (8) 

( )( ) ( )
( )

2

2

3 3 2
0

sin / 2sin
: exp exp 2 ,

!

m

m

R I
m


   

 


 

   

=

= = = = + +

 

(9) 

( ) ( ) ( )log if 1
2sin

TR R R tr R



= −  −

 

(10) 

where   denotes the common skew-symmetric operation for vector 3  ;   rep-

resents the standard Euclidean vector norm; and the   in (10) satisfies    and 

( )1 2cos tr R+ =  with ( )tr   being the trace of a matrix. For the special case of 

( ) 1tr R = − , the antipodal solutions to ( )log R  can be determined according to the rela-

tion ( )2 2

3 3 2 /R I   = + . 

Let ( )1 1 1
ˆ ,k k kR R− − −  be an estimate for the true 1kR −  of instant k − 1 and 

1 1
ˆ ˆ

k k kR R − −=   be the estimate for the true kR  satisfying ( )ˆ ,k k kR R  . If we define the 

multiplicated form of invariant error ( )1ˆlog( )k k kR R


−= , then the motion of k  can be 

obtained as. 

−1
k

))∨
=
(
log
(
exp

(
ξ∧k−1

)
exp

(
−w∧k

)))∨
= BCH(ξk−1,−wk)

.
= ξk−1 − wk,

(11)

where the last step is a first-order approximation of the BCH formula (4). In the evolution
model (11) for ξk, the true state Rk−1 and the control input Ωk−1 have been cancelled out,
which means that the motion of ξk is independent of the true state trajectory and control
input Ωk−1, which is called the trajectory-independent property of error ξk [15,16].

2.3. The Invariant Kalman Filter for Attitude Estimation

In the invariant Kalman filter (IKF), if given the initial R̂0|0 ∼ G
(

R0, Σ0|0

)
, the state

prediction using the deterministic part of the dynamics (6) is:

R̂k|k−1 = R̂k−1|k−1Ωk−1, (12)

where R̂k|k−1 and R̂k−1|k−1 denote the prior and posterior error estimate, respectively.
Resorting to the equivalence of Rk and ξk in the probability distribution, the prior error
covariance Σk|k−1 for R̂k|k−1 can be propagated according to the evolution of ξk in (11).

Σk|k−1 = Σk−1|k−1 + Σw, (13)
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where Σk−1|k−1 is the covariance of the posterior estimate ξ̂k|k−1 =
(

log(R̂k|k−1R−1
k )
)∨

and

R̂k|k−1.
As to the steps for updating the invariant Kalman filter, the two-vector-based observa-

tion Yk ∈ R6 can be reformulated to define the new innovation vector zk ∈ R6 [14].

zk = R̂k|k−1Yk −
(

b′

b′′

)
:= Hξ ξ̂k|k−1 + Vk, (14)

where H =

(
b′×
b′′×

)
and Vk = R̂k|k−1

(
v′k
v′′k

)
are respectively the new observation matrix

and the noise with ΣV = Cov
(
VkVT

k
)
= diag(Σv′, Σv′′ ). Then, the steps for the correction

of the IKF are:
R̂k|k = exp

(
(Kkzk)

∧
)

R̂k|k−1, (15)

Kk = Σk|k−1HT/
(

HΣk|k−1HT + ΣV

)
, (16)

Σk|k = Σk|k−1 − Kk HΣk|k−1, (17)

where Kk is the gain matrix correction term, and the vector term Kkzk is projected into the
matrix Lie group space through the matrix exponential operation in (15) [16,17].

2.4. The Constraint on the Invariant Kalman Filter for Attitude Estimation

In IKF theory, the matrix Lie group system (6) and (7) for rotation Rk is converted to
the Euclidean vector space system (11) and (14) for error ξk; therefore, according to the
equivalence of Rk and ξk in the probability distribution, the propagation of the covariance
and gain parameters in the IKF can mimic that of the classical Kalman filter [14–16].

However, while the IKF resembles the simple and elegant filtering steps of the classical
Kalman filter, at the same time it also inherits the hard constraint that the system model and
noise statistics parameters should be accurately given; if the noise covariance parameters
are not correct, the estimate results are rather prone to being biased. Nevertheless, for
some aerospace and astronautics applications, the noise parameter of the observation
sensors usually depends on the utilized sensor technique and could be tuned by offline
tests; however, it is too difficult to precisely determine the statistics of unpredictable
disturbances that are often influenced by the operating environment of different target
missions [1,21,23,24].

Note that, for conventional Euclidean space filtering problems, some adaptive tech-
niques have already been developed but, to the best of our knowledge, for matrix Lie group
systems there remains no investigation on adaptive methods for invariant Kalman filtering.
Therefore, this work focuses on adaptive invariant Kalman filtering methods for matrix Lie
group attitude estimation problems without an accurate process noise covariance Σw and
attempts to remove the IKF’s hard constraint on an a priori and accurate Σw.

3. Variational Iteration-Based Invariant Kalman Filter for Attitude Estimation

In the invariant Kalman filter, given the prior error covariance matrix Σk|k−1, the
predicted probability density function (PDF) p(Rk|Y1:k−1 ) and the likelihood probability
density function p(Yk|Rk ) are assumed to be a concentrated Gaussian distribution, i.e.,

p
(

Rk

∣∣∣Y1:k−1, Σk|k−1

)
= G

(
R̂k|k−1, Σk|k−1

)
, (18)

where the prior estimate R̂k|k−1 is obtained with (12) and the prior error covariance Σk|k−1
is propagated through the calculus (13) with Σw required. Obviously, if the true value of
the process noise covariance Σw cannot be accurately determined in advance, the Σk|k−1 is
sure to be misled by an incorrect Σw, which will in turn degrade the estimation results of
the IKF.
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3.1. Distribution Definition for the Prior Error Covariance

To deal with the trouble caused by an inaccurate Σw, in this work we choose to
infer the rotation group state R̂k|k−1 together with the prior error covariance Σk|k−1. The

basic idea is that, before calculating the required PDF p
(

Rk

∣∣∣Y1:k−1, Σk|k−1

)
, the probability

density function of the prior error covariance Σk|k−1 should first be calculated based on all
the historical observation sequences, i.e., by calculating the probability density function
p
(

Σk|k−1|Y1:k−1

)
.

As to the definition of the conjugate prior distribution PDF p
(

Σk|k−1|Y1:k−1

)
for Σk|k−1,

in this work we define it as the inverse Winshart distribution, which has been commonly
employed as the conjugate for the prior covariance matrix of Gaussian distributions with
known mean [28]. The inverse Winshart probability density function of a symmetric
positive definite d× d random matrix B ∈ Rd×d is formulated as:

IW(B; λ, Ψ) =
|Ψ|λ/2|B|−(λ+d−1)/2 exp

{
−0.5tr

(
ΨB−1)}

2dλ/2Γd(λ/2)
, (19)

where IW is the inverse Winshart distribution; λ denotes the degrees of freedom (dof) for
the inverse Winshart distribution; Ψ denotes the inverse scale matrix, which should be
a d× d symmetric and positive definite matrix; |·| is the matrix determinant operation;
and Γd(·) denotes the d-variate gamma function [28]. For covariance matrix B with an
inverse Winshart distribution, i.e., B ∼ IW(B; λ, Ψ), the expectation of the matrix inverse
E
(

B−1) is:

E
(

B−1
)

= (λ− d− 1)Ψ−1, if λ > d + 1. (20)

Therefore, to infer the prior error covariance Σk|k−1, the following inverse Winshart
distribution is employed in this work to describe the distribution of Σk|k−1.

p
(

Σk|k−1|Y1:k−1

)
= IW

(
Σk|k−1; λ̂k|k−1, Ψ̂k|k−1

)
=
|Ψ̂k|k−1|λ/2|Σk|k−1|−(λ̂k|k−1+d−1)/2

exp
{
−0.5tr

(
Ψ̂k|k−1Σ−1

k|k−1

)}
2

dλ̂k|k−1/2
Γd(λ̂k|k−1/2)

, (21)

where λ̂k|k−1, Ψ̂k|k−1 are respectively the degree of freedom parameter and the inverse scale

matrix parameter for the PDF p
(

Σk|k−1|Y1:k−1

)
that needs to be determined.

3.2. Variational Bayesian Approximations of Posterior PDF

To infer the rotation group state R̂k|k−1 together with the prior error covariance Σk|k−1,

the joint posterior probability density function p
(

Rk, Σk|k−1|Y1:k

)
should be calculated. In

this work, we use the variational Bayesian method to obtain an approximation factored
from [33], i.e.,

p
(

Rk, Σk|k−1|Y1:k

)
≈ q(Rk)q

(
Σk|k−1

)
, (22)

where q(·) denotes the approximate posterior probability density function p(·); and
q(Rk) and q

(
Σk|k−1

)
can be determined by minimizing the Kullback–Leibler divergence

(KLD) [28,33] between q(Rk)q
(

Σk|k−1

)
and p

(
Rk, Σk|k−1|Y1:k

)
, i.e.,{

q(Rk), q
(

Σk|k−1

)}
= argminKLD

(
q(Rk)q

(
Σk|k−1

)∥∥∥p
(

Rk, Σk|k−1|Y1:k

))
, (23)

where KLD(q(x)‖p(x) ) ,
∫

q(x) log q(x)
p(x)dx denotes the KLD between q(x) and p(x).

The optimal solution to (23) can be obtained based on the following equations:

log q(Rk) = EΣk|k−1

[
log p

(
Rk, Σk|k−1, Y1:k

)]
+ cRk , (24)
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log q
(

Σk|k−1

)
= ERk

[
log p

(
Rk, Σk|k−1, Y1:k

)]
+ cΣk|k−1

, (25)

where EΣk|k−1
[·] denotes the mathematical expectation only for the variable Σk|k−1 and

ERk [·] denotes the mathematical expectation only for the variable Rk; and cRk , cΣk|k−1
are

the constants with respect to Rk and Σk|k−1, respectively. Note that fixed-point iterations
are needed in order to solve above two coupled equations; the approximation to the
posterior PDF q(Rk) is updated as q(i+1)(Rk) at the i+1th iteration using the approximate
PDF qi

(
Σk|k−1

)
, while the approximate q

(
Σk|k−1

)
is updated as q(i+1)

(
Σk|k−1

)
at the i+1th

iteration using the qi(Rk) [33].
The joint PDF p

(
Rk, Σk|k−1, Y1:k

)
can be factored based on the conditional indepen-

dence properties as follows:

p
(

Rk, Σk|k−1, Y1:k

)
= p(Yk|Rk )p

(
Rk

∣∣∣Y1:k−1, Σk|k−1

)
p
(

Σk|k−1|Y1:k−1

)
p(Y1:k−1)

= p(Yk|Rk )G
(

R̂k|k−1, Σk|k−1

)
IW
(

Σk|k−1; λ̂k|k−1, Ψ̂k|k−1

)
p(Y1:k−1)

(26)

Note that the PDF p(Yk|Rk ) is actually the distribution of the noisy observation Yk
conditioned on the true rotation state Rk and, according to (7) and (14), we have:

p(Yk|Rk ) = p
(

RT
k Yk −

(
b′

b′′

)∣∣∣∣Rk

)
= p(zk|ξk ). (27)

Besides, G
(

R̂k|k−1, Σk|k−1

)
is actually the prior distribution of the rotation group state

Rk; then, according to the equivalence of Rk and ξk in the probability distribution, we have:

log p
(

Rk, Σk|k−1, Y1:k

)
= log

(
p(zk|ξk )N c

(
ξ̂k|k−1, Σk|k−1

)
IW
(

Σk|k−1; λ̂k|k−1, Ψ̂k|k−1

)
p(Y1:k−1)

)
= −0.5(zk − Hξk)

TΣ−1
V (zk − Hξk)− 0.5

(
d + λ̂k|k−1 + 2

)
log
∣∣∣Σk|k−1

∣∣∣
−0.5

(
ξk − ξ̂k|k−1

)T
Σ−1

k|k−1

(
ξk − ξ̂k|k−1

)
− 0.5tr

(
Ψ̂k|k−1Σ−1

k|k−1

)
+ constant.

(28)

Then, using (24) and (25) in (28), we have:

log q(i+1)
(

Σk|k−1

)
= −0.5

(
d + λ̂k|k−1 + 2

)
log
∣∣∣Σk|k−1

∣∣∣ − 0.5tr
((

Π(i)
k + Ψ̂k|k−1

)
Σ−1

k|k−1

)
+ cΣ, (29)

log q(i+1)(Rk) = −0.5(zk − Hξk)
TΣ−1

V (zk − Hξk) − 0.5
(

ξk − ξ̂k|k−1

)T
E(i+1)

[
Σ−1

k|k−1

](
ξk − ξ̂k|k−1

)
+ cR. (30)

where q(i+1)(·) is the iterative approximation of PDF q(·) at the i+1th iteration; E(i+1)[·]
represents the mathematical expectation at the ith iteration; and Π(i)

k is given by:

Π(i)
k = E(i)

[(
ξk − ξ̂k|k−1

)(
ξk − ξ̂k|k−1

)T
]

= E(i)
[(

ξk − ξ̂
(i)
k|k + ξ̂

(i)
k|k − ξ̂k|k−1

)
×
(

ξk − ξ̂
(i)
k|k + ξ̂

(i)
k|k − ξ̂k|k−1

)T
]

= E(i)
[(

ξk − ξ̂
(i)
k|k

)(
ξk − ξ̂

(i)
k|k

)T
]
+
(

ξ̂
(i)
k|k − ξ̂k|k−1

)(
ξ̂
(i)
k|k − ξ̂k|k−1

)T

= Σ(i)
k|k +

(
ξ̂
(i)
k|k − ξ̂k|k−1

)(
ξ̂
(i)
k|k − ξ̂k|k−1

)T

= Σ(i)
k|k + ∆(i)

k|k

(
∆(i)

k|k

)T
,

(31)
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where ∆(i)
k|k = ξ̂

(i)
k|k − ξ̂k|k−1 is the correction term at the i+1th iteration and will be calculated

later. Note that, since the PDF of Σk|k−1 is considered to be an inverse Wishart distribu-

tion, the updated PDF q(i+1)
(

Σk|k−1

)
in (29) with the updated λ̂

(i+1)
k and Ψ̂(i+1)

k can be
written as:

q(i+1)
(

Σk|k−1

)
= IW

(
Σk|k−1; λ̂

(i+1)
k , Ψ̂(i+1)

k

)
, (32)

λ̂
(i+1)
k = λ̂k|k−1 + 1, (33)

Ψ̂(i+1)
k = Π(i)

k + Ψ̂k|k−1. (34)

Then, according to (20), the E(i+1)
[
Σ−1

k|k−1

]
in (30) can be calculated as:

E(i+1)
[
Σ−1

k|k−1

]
=
(

λ̂
(i+1)
k − d− 1

)(
Ψ̂(i+1)

k

)−1
. (35)

3.3. The Variational Bayesian Iteration-Based Invariant Kalman Filter

Define the propagated p(i+1)(ξk|z1:k−1 ) at the i+1th iteration as:

p(i+1)(ξk|z1:k−1 ) = N c
(

ξ̂k|k−1, Σ(i+1)
k|k−1

)
, (36)

Σ(i+1)
k|k−1 =

{
E(i+1)

[
Σ−1

k|k−1

]}−1
, (37)

then the propagated PDF p(i+1)(Rk|Y1:k−1 ) at the i+1th iteration can be written as:

p(i+1)(Rk|Y1:k−1 ) = G
(

R̂k|k−1, Σ(i+1)
k|k−1

)
, (38)

Then, using (27) and (36)~(38) in (30) yields:

q(i+1)(ξk) =
p(zk|ξk )p(i+1)(ξk|z1:k−1 )∫

p(zk|ξk )p(i+1)(ξk|z1:k−1 )dξk
(39)

q(i+1)(Rk) =
p(Yk|Rk )p(i+1)(Rk|Y1:k−1 )∫

p(Yk|Rk )p(i+1)(Rk|Y1:k−1 )dRk
(40)

According to the above equations, the q(i+1)(ξk) can be updated as a Gaussian PDF
with the mean being ξ̂

(i+1)
k|k and the covariance being Σ(i+1)

k|k , i.e.,

q(i+1)(ξk) = N c
(

ξ̂
(i+1)
k|k , Σ(i+1)

k|k

)
, (41)

and the propagated PDF q(i+1)(Rk) at the i+1th iteration can be updated as the concentrated
Gaussian distribution with the mean being R̂(i+1)

k|k and the covariance being Σ(i+1)
k|k , i.e.,

q(i+1)(Rk) = G
(

R̂(i+1)
k|k , Σ(i+1)

k|k

)
, (42)

where the mean R̂(i+1)
k|k and the covariance Σ(i+1)

k|k at the i+1th iteration are calculated as:

R̂(i+1)
k|k = exp

((
K(i+1)

k zk

)∧)
R̂k|k−1, (43)
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K(i+1)
k = Σ(i+1)

k|k−1HT
(

HΣ(i+1)
k|k−1HT + ΣV

)−1
, (44)

Σ(i+1)
k|k = Σ(i+1)

k|k−1 − K(i+1)
k| HΣ(i+1)

k|k−1, (45)

Additionally, according to the definition of invariant error ξk =
(

log(R̂kR−1
k )
)∨

, the

correction term ∆(i)
k|k that is required in (31) can be calculated as follows:

∆(i)
k|k = ξ̂

(i)
k|k − ξ̂k|k−1 =

(
log
(

R̂(i)
k|kR−1

k

))∨
−
(

log
(

R̂k|k−1R−1
k

))∨
=
(

log
(

R̂(i)
k|kR−1

k

)
− log

(
R̂k|k−1R−1

k

))∨
=
(

log
(

R̂(i)
k|kR̂−1

k|k−1

))
= K(i+1)

k zk

(46)

Then, for N iterations, the variational Bayesian approximation of posterior PDFs is:

q(Rk) ≈ q(N)(Rk) = G
(

R̂(N)
k|k , Σ(N)

k|k

)
= G

(
R̂k|k, Σk|k

)
, (47)

q
(

Σk|k−1

)
≈ q(N)

(
Σk|k−1

)
= IW

(
Σk|k−1; λ̂

(N)
k , Ψ̂(N)

k

)
= IW

(
Σk|k−1; λ̂k|k, Ψ̂k|k

)
. (48)

Therefore, the filtering steps of proposed approach include the prediction step (12), the
initialization of the λ̂k|k−1 and Ψ̂k|k−1 for inverse Wishart distribution, and the variational
Bayesian iteration steps of (31)~(35), (37), and (43)~(48). The details of the implementation
of the proposed method for attitude estimation is presented in Algorithm 1.

Algorithm 1. The filtering steps of one time instant in the proposed approach to attitude
estimation.

Inputs: R̂k−1|k−1, Σ̃k|k−1 = Σk−1|k−2, Ωk−1, H, Yk, Σw, d = 3, b′, b′′

Time update:
1: R̂k|k−1 = R̂k−1|k−1Ωk−1

2: zk = R̂k|k−1Yk −
(

b′

b′′

)
Measurement update:
3: Initialization: R̂(0)

k|k = R̂k|k−1, Σ(0)
k|k = Σ̃k|k−1, Ψ̂k|k−1 = kΣ̃k|k−1, λ̂k|k−1 = k + d + 1, ∆(0)

k|k = 0n×1

for i from 0 to N−1

update q(i+1)
(

Σk|k−1

)
= IW

(
Σk|k−1; λ̂

(i+1)
k , Ψ̂(i+1)

k

)
given q(i)(Rk):

4: Π(i)
k = Σ(i)

k|k + ∆(i)
k|k

(
∆(i)

k|k

)T
, λ̂

(i+1)
k = λ̂k|k−1 + 1, Ψ̂(i+1)

k = Π(i)
k + Ψ̂k|k−1

update q(i+1)(Rk) = G
(

R̂(i+1)
k|k , Σ(i+1)

k|k

)
given q(i+1)

(
Σk|k−1

)
:

5: E(i+1)
[
Σ−1

k|k−1

]
=
(

λ̂
(i+1)
k − d− 1

)(
Ψ̂(i+1)

k

)−1
, Σ(i+1)

k|k−1 =
{

E(i+1)
[
Σ−1

k|k−1

]}−1

6: K(i+1)
k = Σ(i+1)

k|k−1HT
(

HΣ(i+1)
k|k−1HT + ΣV

)−1

7: R̂(i+1)
k|k = exp

((
∆(i)

k|k

)∧)
R̂k|k−1, ∆(i)

k|k = K(i+1)
k zk

8: Σ(i+1)
k|k = Σ(i+1)

k|k−1 − K(i+1)
k| HΣ(i+1)

k|k−1
end for
9: R̂k|k = R̂(N)

k|k , Σk|k = Σ(N)
k|k , Σk|k−1 = Σ(N)

k|k−1, λ̂k|k = λ̂
(N)
k , Ψ̂k|k = Ψ̂(N)

k
Outputs: R̂k|k, Σk|k−1, Σk|k, Ψ̂k|k
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3.4. Parameter Selection for the Proposed Approach to Attitude Estimation on SO(3)

For the attitude estimation problem, the matrix Lie group system (6) and (7) for
rotation Rk is converted to the Euclidean space system (11) and (14) for error ξk; therefore,
according to the equivalence of Rk and ξk in the probability distribution, the propagation of
the filtering parameters for rotation Rk mimics that of the classical Kalman filter for error ξk.
Note that the projected Euclidean space system (3) and (7) for error ξk is actually a linear
time-invariant system, for which the optimal Kalman filtering parameters, including the
prior error covariance Σk|k−1 and the Kalman gain, would converge to constants [14,22,24].
Similarly, for attitude estimation the parameters Σk|k−1 and the Kalman gain of the invariant
Kalman filter will also converge to their optimal values, which has been validated in [14]
and can be used to help simplify the parameter selection for the proposed approach.
Therefore, to initialize the prior error covariance Σk|k−1, the covariance Σk−1|k−2 of the last
time instant can be used as the initial estimate Σ̃k|k−1 = Σk−1|k−2 before the iteration so that
the negative influence caused by the inaccurate covariance Σw can be considerably reduced.

In the conventional invariant Kalman filter, the prior error estimate R̂k|k−1 is actually
based on all the historical observations Y1:k−1 before time instant k. In this work, the
covariance parameter Σk|k−1 is also inferred using the historical observations Y1:k−1 until
time instant k. As to the inverse Wishart distribution of Σk|k−1, at time instant k the dof
parameter is set as λ̂k|k−1 = k + d + 1 and the inverse scale matrix parameter is set as
Ψ̂k|k−1 = kΣ̃k|k−1 because the following conditions should be satisfied according to (19)
and (20):

λ̂k|k−1 > d + 1, d = p = 3 (49)

E
[
Σ̃−1

k|k−1

]
=
(

λ̂k|k−1 − d− 1
)

Ψ̂−1
k . (50)

The number of iterations N is also a crucial parameter for the proposed approach
and, generally, it should be set to a value larger than d to guarantee the convergence of
variational Bayesian iterations; nevertheless, a value that is too large is sure to increase the
computational cost of the algorithm’s implementation and so a balance between precision
and cost should be considered according to the particular application.

Note that, for invariant Kalman filtering without an accurate process noise covariance,
it is impossible to directly obtain the optimal estimates. In the related work [21–27], some
suboptimal approximations and assumptions were used to asymptotically approach the
optimal results. In this sense, the proposed variational iteration-based invariant Kalman
filter is actually a suboptimal approach for the following reasons:

(1) In the parameter setting shown in Algorithm 1, the initialization of the parameter
Σ̃k|k−1 at the kth time instant is based on the estimate Σk−1|k−2 of the last time instant,
i.e., Σ̃k|k−1 = Σk−1|k−2; the advantage of this setting is that usage of an inaccurate
Σw can be avoided, but the validity of the parameter Σ̃k|k−1 = Σk−1|k−2 actually
assumes that the filtering remains around its steady state. A similar usage can be
found in [21,23–25].

(2) The variational Bayesian iteration method is based on fixed-point iterations that are
only guaranteed to converge to a local optimum [28], and iteratively updating steps
are employed to reduce the negative influence caused by an inaccurate covariance
parameter. A similar usage can be found in [26,27].

(3) The precision and convergence performance of the proposed approach can be further
improved by regulating the filtering process into a steady state; for example, using
a larger Σw for the first few time instants of the filtering process to initialize the
Σ̃k|k−1 = Σk−1|k−2 of the proposed approach will contribute to better results.
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4. Numerical Simulations

To further demonstrate the performance of the variational Bayesian iteration-based
invariant Kaman filter, the attitude estimation system (6) and (7) was simulated with
Σ0|0 = 0.52362 I3×3, Σw = 0.017452 I3×3, b′ = [1, 0, 0]T , b′′ = [0, 1, 0]T , Σv′ = 0.08732 I3×3,
Σv′′ = 0.08732 I3×3. The real attitude trajectories were generated with the true Σw and the
number of total time steps was set to 10,000 s. Note that, according to (11), the control
parameter Ωk is independent of the error propagation process; in this work, it was set
to a time-dependent random rotation matrix. To study the filtering adaptability to Σw of
various qualities, the filtering of the proposed approach (denoted VBAIKF), the IKF [14,16],
and the QeIKF [23,24] was conducted using an inaccurate Σ̂w = Σw × diag([α, 1/α, 1]) with
α ranging from 1 to 10. To implement the VBIKF and the QeIKF, the filtering instants before
k = 8 were initialized using the IKF with an inaccurate Σ̂w and, for this attitude model, at
time step 8 the covariance parameters of the IKF gradually converge. The error variable
in the Lie algebra of 5000 random simulations was employed to evaluate the root mean
square error RMSEk during the filtering processes and the average root mean square error
ARMSE, i.e.,

RMSEk ,

√√√√ 1
5000

5000

∑
l=1

∥∥∥ξk,l − ξ∗k,l

∥∥∥2
(51)

ARMSE ,

√√√√ 1
5000× 5000

5000

∑
k=1

5000

∑
l=1

∥∥ξ̂k,l − ξk,l
∥∥2

(52)

where ξk,l denotes the true estimate at the k-th time instant of the l-th simulation run and ξ̂k,l
is the corresponding estimate for the true ξk,l ; and ‖·‖ denotes the Euclidean vector norm.

As to the performance of the proposed VBIKF, the following conclusions can be drawn
according to the results shown in Figures 1–8 and Table 1:

(1) Although for Σ̂w = Σw (i.e., α = 1) the precision of the VBIKF is not optimal, the
ARMSE value of the VBIKF (0.0356) is only slightly inferior to that of the IKF (0.0353)
and better than that of the QeIKF (0.0359) as shown in Figure 1 and Table 1;

(2) For all cases of the biased Σ̂w with α 6= 1, the presented ARMSE and RMSEk data
clearly demonstrate that the proposed VBIKF not only shows better filtering precision
than the QeIKF but its filtering stability is obviously superior to that of QeIKF;

(3) Note that, for the biased Σ̂w with different α, although the ARMSE of the proposed
VBIKF is still influenced to some extent (i.e., the higher ARMSE value 0.0376 for
α = 10), the negative influence caused by the inaccurate Σ̂w is significantly reduced
compared with and smaller than the 0.0422 of the QeIKF and the 0.443 of the IKF;

(4) The respective errors of three elements of ξk with the corresponding 3 σ boundary for
the VBIKF are presented in Figure 8 using the scaled Σ̂w with α = 1, 2, 4, 6, 8, and 10,
which clearly shows that most of the time estimation errors would fall within the 3 σ
boundary.

(5) As to the computational cost, the usage of extra fixed-point iterations introduces a
longer running time than that of the conventional methods. For example, in this
work the iteration number N was set to 8 and the average running time was about 6
times that of the conventional IKF. Obviously, an N that is too large is sure to increase
the computational cost of the algorithm’s implementation and so a balance between
precision and cost should be considered according to the particular application.

As to the ARMSE result displayed in Figure 1 and Table 1, if the scale parameter α
is close or equal to 1 (α = 1), the employed covariance Σ̂w is close to its true Σw. Then,
the ARMSE value of the standard IKF is the lowest among the three methods and its
performance is optimal in the least square sense, which is also certified by the data on
RMSEk displayed in Figure 2. However, when α becomes larger (for instance, α ≥ 2), the
accuracy of the employed Σ̂w is biased by the scaling parameter α and the ARMSE value of
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the IKF increases significantly, which means that the optimal estimation performance of
the IKF is destroyed by the inaccurate Σ̂w. We can conclude that the performance of the
IKF is rather sensitive to the accuracy of Σ̂w and, for cases of an inaccurate Σ̂w, adaptive
methods are necessary to improve the performance of attitude estimation.
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Figure 1. The ARMSE result of the IKF, the QeIKF, and the VBIKF for the scaled Σ̂w with 1 ≤ α ≤ 10.

Table 1. The ARMSE result of the different filtering methods with Σ̂w of different accuracies.

Σ̂w=Σw×diag([α,1/α,1]) IKF QeIKF Proposed VBIKF

Σ̂w = Σw 0.0353 0.0359 0.0356

Σ̂w = Σw × diag([2, 1/2, 1]) 0.0361 0.0364 0.0358

Σ̂w = Σw × diag([4, 1/4, 1]) 0.0386 0.0387 0.0365

Σ̂w = Σw × diag([6, 1/6, 1]) 0.0408 0.0403 0.0369

Σ̂w = Σw × diag([8, 1/8, 1]) 0.0427 0.0413 0.0373

Σ̂w = Σw × diag([10, 1/10, 1]) 0.0443 0.0422 0.0376

Note that the ARMSE result of the QeIKF shows some adaptability to the inaccurate
Σ̂w with α > 4, which can also be verified by the data on RMSEk in Figures 4–7; however,
the estimation precision is still degraded by the inaccurate parameter and its effective range
is limited. For the cases of α > 6, the estimation precision is still degraded by the inaccurate
parameter and its effective range is rather small and limited. Moreover, as the RMSEk
data show in Figures 5–7, the process data on the QeIKF show some instability during the
initializing stage; in fact, the critical issue with the QeIKF is that its filtering is not stable
and rather prone to divergence [28]. In conclusion, the filtering precision and stability of
the available QeIKF could not effectively reduce the influence of the inaccurate Σ̂w.
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and 10.

5. Conclusions

For aerospace, satellite, and robotics engineering, the matrix Lie group attitude es-
timation problem with an inaccurate process noise covariance was investigated and a
variational Bayesian iteration-based adaptive invariant Kalman filter (VBIKF) was pro-
posed. In the VBIKF, the a priori error covariance is not propagated by the conventional
steps but directly calibrated in an iterative manner based on the posterior sequences. The
main advantage is that the statistics parameter of the system process noise is no longer
required such that the IKF’s hard dependency on accurate process noise statistics can be
reduced significantly. The numerical simulation results presented demonstrate the superior
performance of the proposed VBIKF in terms of filtering adaptability and simplicity.
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