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Abstract
In this article, the determinant of tridiagonal Toeplitz matrices is determined recursively and explicitly. The method used is
descriptive exploratory the journal written by Fitri Aryani. The inverse of tridiagonal Toeplitz matrices is calculated using
the adjoint method, but the determinant and adjoint of the matrices are based on the recursive calculation of the determinant.
With this approach, the formulas for the determinant and inverse of tridiagonal Toeplitz matrices can be formulated clearly
and efficiently. This study demonstrates the effectiveness of the method used in simplifying computations and provides an
algorithm for the formulation.
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1 Introduction
The tridiagonal Toeplitz matrix often appears in several applications, such as the discretization of differential equations,
which are related to the solution of a difference equation, which is needed to determine the solution of a differential equation
problem (Noschese et al., 2013). In addition, the tridiagonal Toeplitz matrix can be used in time series analysis and discrete
mathematics (Da Fonseca and Petronilho, 2005). Furthermore, the explicit inverse of a tridiagonal Toeplitz matrix can be used
to calculate values such as the trace of the matrix, row sums, and their bounds, as well as to apply it to autoregressive AR(1)
models with noise. This is relevant for statistical data modeling and other applications in economics, quantum mechanics,
and signal processing (Wang and Zhang, 2016). The characteristic of this matrix is that it has nonzero elements on the
main diagonal, subdiagonal/bottom diagonal (first diagonal below the main diagonal), and supra-diagonal/top diagonal (first
diagonal above the main diagonal). In contrast, the other elements have a value of 0. Based on this characteristic, the
determinant formulation recursively and explicitly, and the inverse can be done with efficient proof steps. The following is an
explanation of the tridiagonal Toeplitz matrix. Let An =ToeTrD[a,b,c,n] be a tridiagonal Toeplitz matrix in order n×n of the
following form.

An =



b c 0 · · · 0 0 0
a b c · · · 0 0 0
0 a b · · · 0 0 0
. . .

. . .
. . .

. . .
. . .

. . .
. . .

0 0 0 · · · a b c
0 0 0 · · · 0 a b


(1.1)

with a,b,c ̸= 0,∈ R. (Salkuyeh, 2006) (Zhang, 2005) (Bhimasankaram et al., 2000)

The problem in the tridiagonal Toeplitz matrices study is determining the matrix’s determinant and inverse. Researchers
have developed research on the determinant and inverse of the tridiagonal Toeplitz matrix. In Bakti Siregar (Siregar et al.,
2014), theorems about the determinant of the Toeplitz matrix, cofactors of the Toeplitz matrix, and the inverse of the Toeplitz
matrix were derived. Subsequently, Fitri Aryani (Aryani and Corazon, 2016) derived the theorem about the determinant of the
tridiagonal Toeplitz matrix, cofactors of the tridiagonal Toeplitz matrix and used the adjoint method to determine the inverse
of the tridiagonal Toeplitz matrix. Based on the background above, this article will discuss the determinant of tridiagonal
Toeplitz matrices using recursive and explicit methods and the inverse based on a recursive algorithm. Implementing this
theorem’s development is expected to exhibit more efficient performance.

The determinant and cofactor of the tridiagonal Toeplitz matrix of the previous research are presented in lemma 1 and lemma
2 as follows.

Lemma 1. Given An = ToeTrD[a,b,c,n] a tridiagonal Toeplitz matrix of size n ≥ 3 with a,b,c ̸= 0,∈ R the determinant of
the matrix An is

|An |=bn− (n−1)abn−2c+
n−3

∑
i=1

ia2bn−2c2−

(
1

∑
i=1

i+
2

∑
i=1

i+ . . .+
n−5

∑
i=1

i

)
a3bn−6c3

+

[
(n−7)

1!

1

∑
i=1

i+
(n−8)

1!

2

∑
i=1

i+
(n−9)

1!

3

∑
i=1

i+ . . .+1
n−7

∑
i=1

i

]
a4bn−8c4

−

[
(n−9)(n−8)

2!

1

∑
i=1

i+
(n−10)(n−9)

2!

2

∑
i=1

i+ . . .+1
n−9

∑
i=1

i

]
a5bn−10c5

+

[
(n−11)(n−10)(n−9)

3!

1

∑
i=1

i+
(n−12)(n−11)(n−10)

3!

1

∑
i=1

i

+ . . .+1
n−11

∑
i=1

i

]
a6bn−11c6

−

[
(n−13)(n−12)(n−11)(n−10)

4!

1

∑
i=1

i

+
(n−14)(n−13)(n−12)(n−11)

4!

1

∑
i=1

i+ . . .+
n−13

∑
i=1

i

]7

bn−14c7 + ....

(1.2)
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The cofactor matrix can be determined using the equation Ci j = (−1)i+ jMi j, such that the general form of the cofactor matrix
becomes a tridiagonal Toeplitz matrix of order n×n, as presented in the following Lemma 2.

Lemma 2. Given An = ToeTrD[a,b,c,n] a tridiagonal Toeplitz matrix of order n ≥ 3 with a,b,c ̸= 0,∈ R, the cofactors of
the matrix An is

Cn =



(−1)2|An−1| (−1)3a|An−2| ... (−1)nan−2|A1| (−1)n+1an−1

(−1)3c|An−1| (−1)4|A1||An−2| ... (−1)n+1an−3|A1||A1| (−1)n+2an−2|A1|
(−1)4c2|An−3| (−1)4c|A1||An−3| ... (−1)n+3an−5|A1||A2| (−1)n+3an−3|A3|
(−1)5c3|An−4| (−1)6c3|A2||An−4| ... (−1)n+3an−5|A1||A2| (−1)n+4an−4|A3|

...
... ...

...
...

(−1)ncn−2|A1| (−1)n+1cn−3|A1||A1 ... (−1)n−2|A1||A3| (−1)n−2a|An−2|
(−1)n+1cn−1 (−1)n+2cn−2|A1| ... (−1)n−1c|An−2| (−1)2nc|An−1|


(1.3)

From the cofactor matrix above, the adjoint of the matrix can be determined as follows.

ad j(An) =



(−1)2 |An−1 | (−1)3c|An−2 | ... (−1)ncn−2 |A1 | (−1)n+1cn−1

(−1)3a|An−1 | (−1)4 |A1||An−2 | ... (−1)n+1cn−3 |A1 ||A1 | (−1)n+2cn−2|A1 |

(−1)4a2|An−3 | (−1)4a|A1 ||An−3| ... (−1)n+3cn−5 |A1 ||A2 | (−1)n+3cn−3 |A3|

(−1)5a3|An−4| (−1)6a3 |A2||An−4 | ... (−1)n+3cn−5|A1 ||A2 | (−1)n+4cn−4 |A3 |
.
.
.

.

.

. ...

.

.

.
.
.
.

(−1)nan−2 |A1 | (−1)n+1an−3 |A1 ||A1 ... (−1)n−2 |A1||A3 | (−1)n−2c|An−2 |

(−1)n+1an−1 (−1)n+2an−2 |A1 | ... (−1)n−1a|An−2 | (−1)2nc|An−1 |


(1.4)

After determining the determinant and adjoint of the tridiagonal Toeplitz matrix, the inverse of the tridiagonal Toeplitz matrix
can be determined as follows:

A−1
n =

1
det(A)

ad j(A) (1.5)

(Heinig and Rost, 1984) (Gray, 2005)
Based on the explanation of the above theorem, determining the determinant is explicitly defined as the value of a single
matrix determinant. Meanwhile, the determinant is explicitly determined when finding the cofactor matrix to determine the
inverse repeatedly. Therefore, in this article, a theorem related to the recursive determination of the determinant will be
constructed, which involves determining subsets of determinants of matrices. This data is then utilized to determine the
inverse of tridiagonal Toeplitz matrices.

2 The Determinant and Inverse Formulation
In this section, we will discuss determinants, inverses, and algorithms for determining the determinant and inverse of tridiagonal
Toeplitz matrices.

2.1 The determinant of The Tridiagonal Toeplitz Matrix
The following will be derived from the formula for calculating the determinant of a tridiagonal Toeplitz matrix, both recursively
and explicitly.

Theorem 1. The determinant of the tridiagonal Toeplitz matrix An = ToeTrD[a,b,c,n], denoted as det(An) = dn, and dn is
obtained recursively as follows:

Recursive basis: d1 = b and d2 = b2− x, with x = ac.

Recursive process: For all n ∈ Z and n≥ 3, dn = bdn−1− xdn−2.
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Proof. Proof of the theorem using direct proof.

Recursive basis: d1 = b and d2 = b2− x, with x = ac.

Recursive process for n = 3:

d3 =

∣∣∣∣∣∣
b c 0
a b c
0 a b

∣∣∣∣∣∣
= b

∣∣∣∣b c
a b

∣∣∣∣− c
∣∣∣∣a c
0 b

∣∣∣∣
= bd2− c(ab)

= bd2− xd1, with x = ac

In general, for n ∈ N, such that

dn = b

∣∣∣∣∣∣∣∣∣∣∣∣∣

b c 0 · · · 0 0
a b c · · · 0 0
0 a b · · · 0 0
...

...
...

...
...

...
0 · · · 0 a b c
0 · · · 0 0 a b

∣∣∣∣∣∣∣∣∣∣∣∣∣
− c

∣∣∣∣∣∣∣∣∣∣∣∣∣

a c 0 · · · 0 0
0 b c · · · 0 0
0 a b · · · 0 0
...

...
...

...
...

...
0 · · · 0 a b c
0 · · · 0 0 a b

∣∣∣∣∣∣∣∣∣∣∣∣∣
= bdn−1−ac(dn−2)

= bdn−1− xdn−2, with x = ac.

Theorem 2. The determinant of the tridiagonal Toeplitz matrix An = ToeTrD[a,b,c,n], denoted as det(An) = dn and dn is
obtained explicitly as follows:

dn =
⌊n/2⌋

∑
i=0

(−1)i
(

n− i
i

)
bn−2ixi ,∀n ∈ N

Proof. Proof of the theorem by using mathematical induction(Burden and Faires, 2020).

Basic Induction : n = 1

det(A1) = |A1|= |b|= b

= (−1)0
(

2− i
i

)
b1x0

Induction step:

Assume dk =
⌊k/2⌋

∑
i=0

(−1)i(k−i
i
)
bk−2ixi, true ∀k ∈ N, will be proven correct for

dk+1 =
⌊(k+1)/2⌋

∑
i=0

(−1)i(k+1−i
i
)
bk+1−2ixi.

In this section, two cases will be proven.

1. For the case k is even, let ⌊ k
2 ⌋= ⌊

k+1
2 ⌋=

k
2 and ⌊ k−1

2 ⌋=
k
2 −1 , then will be proven correct for dk+1

=
⌊k+1/2⌋

∑
i=0

(−1)i
(

k+1− i
i

)
bk+1−2ixi.
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Based on Theorem 1, dk+1 = bdk− xdk−1, we have

dk+1 = b
⌊k/2⌋

∑
i=0

(−1)i
(

k− i
i

)
bk−2ixi− x

⌊k−1/2⌋

∑
i=0

(−1)i
(

k−1− i
i

)
bk−1−2ixi

=
k/2

∑
i=0

(−1)i
(

k− i
i

)
bk+1−2ixi−

k/2−1

∑
i=0

(−1)i
(

k−1− i
i

)
bk−1−2ixi+1

= bk+1−
[(

k−1
1

)
+

(
k−1

0

)]
bk−1x+

[(
k−2

2

)
+

(
k−2

1

)]
bk−3x2

− ·· ·+(−1)k/2
[(

k/2
k/2

)
+

(
k/2

k/2−1

)]
bkxk/2

if and only if

dk+1 = bk+1 +
k/2

∑
i=1

(−1)i
[(

k− i
i

)
+

(
k− i
i−1

)]
bk+1−2ixi

=
⌊k+1/2⌋

∑
i=1

(−1)i
(

k+1− i
i

)
bk+1−2ixi

2. For the case of k is odd, let ⌊ k+1
2 ⌋=

k+1
2 and ⌊ k

2⌋= ⌊
k−1

2 ⌋=
k−1

2 , will be proven correct for dk+1

=
⌊k+1/2⌋

∑
i=0

(−1)i
(

k+1− i
i

)
bk+1−2ixi.

Based on Theorem 1, dk+1 = bdk− xdk−1, we have

dk+1 = b
⌊k/2⌋

∑
i=0

(−1)i
(

k− i
i

)
bk−2ixi− x

⌊(k−1)/2⌋

∑
i=0

(−1)i
(

k−1− i
i

)
bk−2ixi

= bk+1−
(

k−1
1

)
bk−1x+

(
k−2

2

)
bk−3x2−

(
k−3

3

)
bk−5x3 + · · ·

+ (−1)(k−1)/2b2x(k−1)/2

−
(

bk−1x+
(

k−2
1

)
bk−3x2−

(
k−3

2

)
bk−5x3 + · · ·+(−1)(k−1)/2x(k+1)/2

)
= bk+1−

[(
k−1

1

)
+

(
k−1

0

)]
bk−1x+

[(
k−2

2

)
+

(
k−2

1

)]
bk−3x2

− ·· ·+(−1)(k−1)/2
[(

k− (k−1)/2
(k−1)/2

)
+

(
k− (k−1)/2

k−3/2

)]
b2x(k−1)/2

if and only if

dk+1 = bk+1 +
k+1/2

∑
i=1

(−1)i
[(

k− i
i

)
+

(
k− i
i−1

)]
bk+1−2ixi

=
⌊k+1/2⌋

∑
i=1

(−1)i
(

k+1− i
i

)
bk+1−2ixi

so, dn =
⌊n/2⌋

∑
i=0

(−1)i
(

n− i
i

)
bn−2ixi ,∀n ∈ N.
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2.2 The inverse of The Tridiagonal Toeplitz Matrix
An exploratory illustration will be provided for cases n = 6 and n = 7 to determine the inverse of a tridiagonal Toeplitz matrix.

Lemma 3. Let a tridiagonal Toeplitz matrix A6 =ToeTrD[a,b,c,6].
If [d1,d2,d3,d4,d5,d6] sequence of submatrix determinants A6, which has been computed based on Theorem 1, the inverse of
matrix A6 can also be efficiently formulated as

A−1 = 1
d6



d5 −cd4 c2d3 −c3d2 c4d1 −c5

−ad4 d1d4 −cd1d3 c2d1d2 −c3d1
2 c4d1

a2d3 −ad1d4 d2d3 −cd2
2 c2d1d2 −c3d2

−a3d1 a2d1d2 −ad2
2 d2d3 −cd1d3 c2d3

a4d1 −a3d1
2 a2d1d2 −ad1d3 d1d4 −cd4

−a5 a4d1 −a3d2 a2d3 −ad4 d5


Proof. According to the definition of the inverse, A−1 = 1

d6

(
αi, j
)6

i, j=6 with αi, j = (−1)i+ jMi j and Mi j is minor of row to− j
, column to−i from matrix A for all i, j = 1,2,3, ...,6 applies :

1. The entries of the main diagonal αi,i = α7−i,7−i for i = 1,2,3 and formulated as follows.
α1,1 = α6,6 = d5 α2,2 = α5,5 = d1d4 α3,3 = α4,4 = d2d3

2. In the entries of i+ j = 3 and i ̸= j, obtained αi, j = α7− j,7−i and formulated as follows.
α1,2 = α5,6 =−cd4 α2,1 = α6,5 =−ad4

3. In the entries of i+ j = 4 and i ̸= j, obtained αi, j = α7− j,7−i and formulated as follows.
α1,3 = α4,6 = c2d3 α3,1 = α6,4 = a2d3

4. In the entries of i+ j = 5 and i ̸= j, obtained αi, j = α7− j,7−i and formulated as follows.
α1,4 = α3,6 =−c3d2 α4,1 = α6,3 =−a3d2
α2,3 = α4,5 =−cd1d3 α3,2 = α5,4 =−ad1d3

5. In the entries of i+ j = 6 and i ̸= j, obtained αi, j = α7− j,7−i and formulated as follows.
α1,5 = α2,6 = c4d1 α5,1 = α6,2 = a4d1

α2,4 = α3,5 = c2d1d2 α4,2 = α5,3 = a2d1d2

6. In the entries of i+ j = 7 and i ̸= j, obtained αi, j = α7− j,7−i and formulated as follows.
α1,6 =−c5 α6,1 =−a5

α2,5 =−c3d2
1 α5,2 =−a3d2

1
α3,4 =−cd2

2 α4,3 =−ad2
2

Lemma 4. Let a tridiagonal Toeplitz matrix A7 =ToeTrD[a,b,c,7].

If [d1,d2,d3,d4,d5,d6,d7] sequence of submatrix determinants A7, which has been computed based on Theorem 1, the inverse
of matrix A7 can also be efficiently formulated as

A−1
7 =

1
d7



d6 −cd5 c2d4 −c3d3 c4d2 −c5d1 c6

−ad5 d1d5 −cd1d4 c2d1d3 −c3d1d2 c4d2
1 −c5d1

a2d4 −ad1d4 d2d4 −cd2d3 c2d2
2 −c3d1d2 c4d2

−a3d3 a2d1d3 −ad2d3 d2
3 −cd2d3 c2d1d3 −c3d3

a4d2 −a3d1d2 a2d2
2 −ad2d3 d2d4 −cd1d4 c2d4

−a5d1 a4d2
1 −a3d1d2 a2d1d3 ad1d4 d1d5 cd5

a6 −a5d1 a4d2 −a3d3 a2d4 −ad5 d6


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Proof. According to the definition of the inverse, it can be written that
A−1 = 1

d7

(
αi, j
)7

i, j=7 with αi, j = (−1)i+ jMi j and Mi j is the minor of row to − j , column to−i from matrix A for all i, j =
1,2,3, ...,7 we have :

1. In the entries of main diagonal αi,i = α8−i,8−i for i = 1,2,3,4 and formulated as follows.
α1,1 = α7,7 = d6 α2,2 = α6,6 = d1d5

α3,3 = α5,5 = d2d4 α4,4 = d2
3

2. In the entries of i+ j = 3 and i ̸= j, obtained αi, j = α8− j,8−i and formulated as follows.
α1,2 = α6,7 =−cd5 α2,1 = α7,6 =−ad5

3. In the entries of i+ j = 4 and i ̸= j, ,obtained αi, j = α8− j,8−i and formulated as follows.
α1,3 = α5,7 = c2d4 α3,1 = α7,5 = a2d4

4. In the entries of i+ j = 5 and i ̸= j, ,obtained αi, j = α8− j,8−i and formulated as follows.
α1,4 = α4,7 =−c3d3 α4,1 = α7,4 =−a3d3
α2,3 = α5,6 =−cd1d4 α3,2 = α6,5 =−ad1d4

5. In the entries of i+ j = 6 and i ̸= j ,obtained αi, j = α8− j,8−i and formulated as follows.
α1,5 = α3,7 = c4d2 α5,1 = α7,3 = a4d2

α2,4 = α4,6 = c2d1d3 α4,2 = α6,4 = a2d1d3

6. In the entries of i+ j = 7 and i ̸= j, ,obtained αi, j = α8− j,8−i and formulated as follows.
α6,1 = α2,7 =−c5d1 α1,6 = α7,2 =−a5d1

α5,2 = α3,6 =−c3d1d2 α5,2 = α6,3 =−a3d1d2
α3,4 = α4,5 =−cd2d3 α4,3 = α5,4 =−ad2d3

7. In the entries of i+ j = 8 and i ̸= j ,obtained αi, j = α8− j,8−i and formulated as follows.
α1,7 = c6 α7,1 = a6

α2,6 = c4d2
1 α6,2 = a4d2

1
α3,5 = c2d2

2 α5,3 = a2d2
2

From the results of the explorations in Lemma 3 and Lemma 4, the inverse of the tridiagonal Toeplitz matrix An for each
n ∈ N is provided in the following theorem.

Theorem 3. Let a tridiagonal Toeplitz matrix An =ToeTrD[a,b,c,n].
If [d1,d2, ....,dn−1,dn] sequence of submatrix determinants An, which has been computed based on Theorem 1, and defined
d0 = 1, then the inverse of matrix An is

A−1 = 1
dn

(
αi, j
)n

i, j=n

with:

1. In entries of the main diagonal αi, j = αn+1−i,n+1−i = di−1dn−i with i = 1,2, ...,⌊ n+1
2 ⌋

2. The entries matrix is formulated as follows:

(a) αi, j = αn+1− j,n+1−i = kc j−i

(b) α j,i = αn+1−i,n+1− j = ka j−i

for i = 1,2, ...,⌊ n+1
2 ⌋ and j = (i+1),(i+2), ...,(n− i+1) with k = (−1)i+ jdi−1dn−1− j+i

Proof. Inverse of the tridiagonal Toeplitz matrix An can be expressed as
A−1 = 1

dn

(
αi, j
)n

i, j=n with αi, j = (−1) j+iM ji and M ji is the minor of row to− j, column to−i from matrix A for all i, j =
1,2, ...,n subsequently applies :
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1. In the main diagonal entries can be expressed as αii = αn+1−i,n+1−i for i = 1,2, ...,⌊ n+1
2 ⌋ and formulated as follows:

α1,1 = αn,n = d0dn−1 = dn−1
...
α⌊ n+1

2 ⌋,⌊
n+1

2 ⌋
= αn−1,n−1 = αn+1−⌊ n+1

2 ⌋,n+1−⌊ n+1
2 ⌋

= d⌊ n+1
2 ⌋−1dn−⌊ n+1

2 ⌋

2. In entries of the matrix for i = 1,2, ...,⌊ n
2 ⌋ and j = (i+1),(i+2), ...,(n− i+1) can be formulated as follows.

(a) αi, j = αn+1− j,n+1−i, with k = (−1)i+ jdi−1dn−1− j+i

to prove this case:

i. for i = 1 and j = (i+1),(i+2), ...,(n− i+1), so αi, j can be formulated as follows.
α1,2 = αn−1,n =−kc2−1 =−cd0dn−2 =−cdn−2
...
α1,n = (−1)n−1kcn−1 = (−1)n−1cn−1d0d0 = (−1)n−1cn−1

ii. In entries of matrix for i = 2 and j = (i+1),(i+2), ...,(n− i+1), αi, j can be formulated as follows.
α2,3 = αn−2,n−1 =−kc3−2 =−cd1dn−2
...
α2,n−1 = (−1)n+1kcn−3 = (−1)n+1cn−3d1d2
...
In entries of matrix for i = ⌊ n

2 ⌋ and j = (i+1),(i+2), ...,(n− i+1), αi, j can be formulated as follows.
α⌊ n

2 ⌋,⌊
n
2 ⌋+1 = αn+⌊ n

2 ⌋,n+1−⌊ n
2 ⌋ = (−1)2⌊ n

2 ⌋+kc = (−1)2⌊ n
2 ⌋+1cd⌊ n

2 ⌋−1dn−2

...
α⌊ n

2 ⌋,n−⌊
n
2 ⌋+1 = (−1)n+1kcn−2⌊ n

2 ⌋+1 = (−1)n+1cn−2⌊ n
2 ⌋+1d⌊ n

2 ⌋−1d2⌊ n
2 ⌋+2

(b) α j,i = αn+1−i,n+1− j with k = (−1)i+ jdi−1dn−1− j+i

to prove this case:

i. In entries of matrix for i = 1 and j = (i+1),(i+2), ...,(n− i+1), αi, j can be formulated as follows.
α2,1 = αn,n−1 =−ka2−1 =−cd0dn−2 =−adn−2
...
αn,1 = (−1)n+1kan−1 = (−1)n+1an−1d0d0 = (−1)n+1an−1

ii. In entries of matrix for i = 2 and j = (i+1),(i+2), ...,(n− i+1), αi, j can be formulated as follows.
α3,2 = αn−1,n−2 =−ka3−2 =−ad1dn−2 =−ad1dn−2
...
αn−1,2 = (−1)n+1kan−3 = (−1)n+1an−3d1d2
...
In entries of matrix for i = ⌊ n

2 ⌋ and j = (i+1),(i+2), ...,(n− i+1), αi, j can be formulated as follows.
α⌊ n

2 ⌋+1,⌊ n
2 ⌋ = αn+1−⌊ n

2 ⌋,n−⌊
n
2 ⌋ =

(−1)2⌊ n
2 ⌋+1ka = (−1)2⌊ n

2 ⌋+1ad⌊ n
2 ⌋−1dn−2

...
αn−⌊ n

2 ⌋+1,⌊ n
2 ⌋ = (−1)n+1kan−2⌊ n

2 ⌋+1 =

(−1)n+1an−2⌊ n
2 ⌋+1d⌊ n

2 ⌋−1d2⌊ n
2 ⌋+2
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2.3 Computational remark
In this subsection, we provide a simple illustration to explain the formula for calculating the determinant based on Theorem 1
and the inverse based on Theorem 3. Then, considering that illustration, we construct an algorithm.

Example 1. (Simple illustration) Let A5 = [1,−2,1,5] with b=−2,a= c= 1. Using Theorem 1, we obtain the [−2,3,−4,5,−6],
where d0 = 1 is define. Appplying Theorem 3, the inverse of the matrix A5 is given by:

A−1 =−1
6


5 4 3 2 1
4 8 6 4 2
3 6 9 6 3
2 4 6 8 4
1 2 3 4 5


From the illustration above, the determinant of matrix is determined recursively, resulting in a subset of the matrix determinant.
To determine the determinant, some data can be stored for the subsequent process of calculating the inverse. Therefore,
the computational process can be performed within single function and in parallel to achieve a high-speed and efficient
performance.

Algorithm 1. INPUT 1 : DetToeTrD[a,b,c,n]
OUTPUT 1 : [d1,d2,d3, ...,dn] ; subdeterminan of tridiagonal Toeplitz matrix

1. x← a · c; d1← b; d2← b2− x.

2. L← [d1,d2]; j← 2

3. for i while j < n do

u← b ·L[ j]− x ·L[ j−1]

L← [op(L),u]

j← j+1

end do

4. return(L)

(Golub and Loan, 2013) (Bini and Pan, 1994)
The data generated by Algorithm 1 will be utilized to determine the inverse in the following Algorithm 2.

Algorithm 2. INPUT 2 : InvMToeTrD[a,b,c,n]
OUTPUT 2 : inverse tridiagonal Toeplitz matrix A−1

n

1. SeqDet← DetMToeTrD(a,b,c,n); dt← SeqDet[n]

2. L← [1,op(1..n−1,SeqDet)]; C← [seq(ci, i = 0..n−1)]

3. A← [seq(ai, i = 0..n−1)]

4. M←Matrix(n)

5. m← f loor(n/2)

6. for i from 1 to m do

u← L[i]·L[n+1−i]
dt

M[i, i]← u; M[n+1− i,n+1− i]← u

for j from i+1 to (n− i) do

k← (−1)i+ j ·L[i] ·L[n− j+1]
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u← k ·C[ j− i+1]/dt
M[i, j]← u M[n+1− j,n+1− i]← u
u← k ·A[ j− i+1]/dt
M[ j, i]← u; M[n+1− i,n+1− j]← u

end do

l← n− i+1

k← (−1)i+1.L[i].L[n− l +1]

u← k.C[l− i+1]/dt; M[i, l]← u

u← k.A[l− i+1]/dt; M[l, i]← u

end do

7. if n mod 2 = 1 then

i← m+1

u← (L[i].L[i])/dt

M[i, i]← u

end if

8. return(M)

(Bini and Pan, 1994)

3 Concluding Remark
The determinant of the tridiagonal Toeplitz matrix can be determined recursively and explicitly for a given size. Both types
of determinants are presented in Theorem 1 and Theorem 2. Theorem 2 represents a simplified form of Lemma 1 as written
by Aryani and Corazon.

In determining the inverse of the tridiagonal Toeplitz matrix,based on the recursive determinant is also presented in Theorem
3. This subset of determinants is used to determine the entries of the inverse matrix based on established rules. Finally,
we develop an algorithm to find inverse of the tridiagonal Toeplitz matrix utilizing the recursive method in determinant
computation.

Disclaimer (Artificial Intelligence)

Author(s) hereby declare that generative AI technologies such as Large Language Models, etc have been used during
writing or editing of manuscripts. This explanation will include the name, version, model, and source of the generative AI
technology and as well as all input prompts provided to the generative AI technology.

Details of the AI usage are given below:
1.Name and Version: ChatGPT
2.Usage: Used to check and refine the syntax of Python code for calculating the determinant and inverse of tridiagonal Toeplitz
matrix.
3.Input Prompts: Check the syntax and correctness of this Python code for finding the determinant of a tridiagonal Toeplitz
matrix.[The code can be seen on algorithms 1 and 2]
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