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ABSTRACT 
 

This study investigates the volatility dynamics of five major global financial indices—FTSE 100, 
Hang Seng, NIKKEI 225, NSE 50, and S&P 500—using a range of GARCH models over a ten-year 
period from January 1, 2014, to December 31, 2023. The analysis involves preprocessing the data 
to ensure stationarity, calculating log returns, and conducting stationarity and ARCH effect LM tests. 
Various GARCH models, including GARCH (0,1), GARCH (1,1), GARCH (1,2), and GARCH (2,2), 
are applied to capture and forecast volatility. The study aims to determine the most effective model 
for accurately reflecting volatility dynamics while accounting for significant market events such as 
the COVID-19 pandemic. 
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The findings reveal that the GARCH (1,1) model generally provides a robust balance between 
model simplicity and statistical significance, effectively capturing the time-varying volatility of the 
indices. Despite some complex models offering better fit measures according to the Akaike 
Information Criterion (AIC) and Schwarz Criterion (SC), the GARCH (1,1) model consistently 
demonstrates significant parameter estimates and reliable predictive performance, as evidenced by 
consistent Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) values. This suggests 
that the GARCH (1,1) model is a preferred choice for volatility forecasting due to its effectiveness 
and parsimony, although future research might explore more advanced GARCH model variations 
for further refinement. 
 

 
Keywords: ARCH model; GARCH models; global stock indexes; volatility. 
 

1. INTRODUCTION 
 
The accurate prediction of financial market 
volatility is a cornerstone of modern financial 
economics, driven by its pivotal role in risk 
management, portfolio optimization, and strategic 
decision-making. Volatility, which quantifies the 
degree of variation in asset prices over time, 
serves as a critical indicator of market 
uncertainty and potential risk exposure. 
Consequently, understanding and forecasting 
this volatility is of paramount importance to 
investors, policymakers, and financial institutions. 
Among the various methods developed to model 
and predict volatility, the Generalized 
Autoregressive Conditional Heteroskedasticity 
(GARCH) model, introduced by Bollerslev in 
1986, stands out as a fundamental tool in 
capturing the intricate dynamics of time-varying 
volatility. The GARCH model, an extension of the 
Autoregressive Conditional Heteroskedasticity 
(ARCH) model proposed by Engle in 1982, has 
proven particularly effective in addressing the 
volatility clustering phenomenon frequently 
observed in financial time series data. 
 
Over the years, GARCH models have evolved 
into a versatile family of models, each designed 
to capture specific characteristics of financial 
markets. These include the Exponential GARCH 
(EGARCH) model by Nelson [1], which accounts 
for asymmetric effects of shocks on volatility, and 
the Threshold GARCH (TGARCH) model by 
Zakoian [2], which models threshold effects in 
volatility. Empirical research has demonstrated 
the robustness of these models across diverse 
financial markets and economic scenarios, from 
traditional stock and bond markets to more 
volatile environments such as cryptocurrency 
and commodity markets. For instance, studies 
have shown that GARCH models are particularly 
adept at capturing the effects of major global 
events, including financial crises and pandemics, 
on market behavior. This adaptability makes 

GARCH models invaluable tools for financial 
analysts seeking to navigate the complexities of 
modern financial systems. 
 
Each GARCH model offers unique 
characteristics tailored to specific aspects of 
volatility modelling. The basic GARCH (1,1) 
model is the most widely used due to its 
simplicity and ability to capture the essential 
features of financial time series, such as volatility 
clustering. It balances parsimony and 
effectiveness, making it ideal for general 
applications. The GARCH (1,2) and GARCH 
(2,2) models, with their additional lag terms, 
provide more flexibility in modelling complex 
volatility dynamics, potentially offering better fit 
for time series with longer memory effects or 
more intricate patterns of volatility persistence. 
These models can capture more subtle shifts in 
volatility over time, which might be critical for 
accurately modelling markets with more erratic 
behaviour. On the other hand, the GARCH (0,1) 
model, though less common, is sometimes used 
to model cases where only the moving average 
component of volatility is significant. Each of 
these models caters to different market 
conditions and data characteristics, allowing 
researchers to choose the model that best fits 
the specific volatility patterns of the asset or 
index under study. 
 
Need for this study lies in the critical role that 
accurate volatility forecasting plays in financial 
decision-making, risk management, and policy 
formulation. By rigorously evaluating the efficacy 
of various GARCH models across major global 
financial indices, this research provides valuable 
insights into the most effective tools for capturing 
the time-varying nature of market volatility. Such 
insights are essential for investors, financial 
institutions, and policymakers, especially in an 
era characterized by heightened uncertainty and 
frequent market disruptions, such as the COVID-
19 pandemic. The findings guide stakeholders in 



 
 
 
 

Marisetty; J. Econ. Manage. Trade, vol. 30, no. 9, pp. 16-33, 2024; Article no.JEMT.121191 
 
 

 
18 

 

selecting robust, statistically sound models that 
balance complexity and predictive accuracy, 
ultimately enhancing their ability to navigate and 
mitigate financial risks. 
 
This study contributes to the extensive literature 
on GARCH models by focusing on their 
application to major global financial indices, 
specifically the FTSE 100, Hang Seng, NIKKEI 
225, NSE 50, and S&P 500, over a ten-year 
period from 2014 to 2023. By systematically 
evaluating the performance of different GARCH 
models, including GARCH (0,1), GARCH (1,1), 
GARCH (1,2), and GARCH (2,2), this research 
aims to identify the most effective model for 
capturing and forecasting volatility in these 
indices. The findings are expected to provide 
crucial insights into the suitability of various 
GARCH models for different economic 
environments, thereby offering valuable guidance 
for both academic researchers and practitioners 
in the field of financial econometrics. 
 

2. LITERATURE REVIEW 
 
In the expansive realm of financial modelling, the 
GARCH (Generalized Autoregressive Conditional 
Heteroskedasticity) model and its variants have 
emerged as fundamental tools for analysing and 
forecasting volatility across diverse economic 
landscapes. This narrative synthesis explores a 
wealth of research studies, each elucidating the 
nuances and applications of GARCH models in 
various contexts, from stock markets to 
commodity prices, and from macroeconomic 
impacts to unique industry-specific challenges. 
 
The study of financial market volatility has been a 
cornerstone of financial econometrics, 
particularly through the development and 
application of various autoregressive conditional 
heteroskedasticity (ARCH) models. Bollerslev [3] 
pioneered this area by introducing the 
generalized autoregressive conditional 
heteroskedasticity (GARCH) model, extending 
the basic ARCH framework to incorporate past 
conditional variances. This model set the stage 
for a plethora of GARCH-type models that aim to 
capture the complex dynamics of financial time 
series data. Among the early extensions of the 
GARCH model, Nelson [1] introduced the 
exponential GARCH (EGARCH) model, which 
accommodates the asymmetric effects of shocks 
on volatility. The EGARCH model, along with 
others like the GJR model by Glosten et al. [4] 
and the NGARCH model by Bera and Higgins 
[5], have been instrumental in understanding 

financial volatility. These models address the 
need to capture volatility asymmetry, a common 
feature in financial markets where negative 
shocks often have a larger impact on volatility 
than positive ones. 
 
Further advancements include the Asymmetric 
Power GARCH model by Ding et al. [6] and the 
Threshold GARCH model by Zakoian [2], which 
refine the ability to model asymmetries and 
threshold effects in volatility. Bollerslev and 
Ghysels [7] introduced the periodic GARCH 
(PGARCH) model, which accounts for seasonal 
volatility patterns in high-frequency asset returns. 
These models have significantly improved our 
understanding of volatility dynamics, providing 
better tools for risk management and forecasting. 
Empirical studies across different markets and 
time periods have demonstrated the utility of 
these models. Rossetti et al. [8] examined fixed 
income market volatility in 11 countries, focusing 
on interbank interest rates from January 2000 to 
December 2011. Their study employed an array 
of models, with the EGARCH model emerging as 
particularly adept at capturing volatility influenced 
more by internal macroeconomic events than 
external shocks. Similarly, Chkili et al. [9] 
investigated Islamic stock market volatility from 
1999 to 2017, encompassing pivotal events like 
the 9/11 attacks and the 2008 financial crisis. 
They introduced a hybrid model combining 
FIAPARCH and artificial neural networks (ANN), 
which outperformed traditional models in 
forecasting accuracy. 
 
Paolella et al. [10] delved into the implications of 
carbon and sulphur dioxide emission allowances 
on global power and gas markets. Their focus on 
the U.S. Clean Air Act and the EU Emissions 
Trading Scheme highlighted the crucial role of 
understanding statistical distributions and 
forecast abilities of emission trading returns for 
optimal hedging and purchasing strategies. On a 
different note, Evgenidis et al. [11] explored the 
predictive power of the yield spread on real 
economic growth by examining its relationship 
with interest rate volatility through GARCH 
models and Markov regime switching. In the 
realm of reliability forecasting, Liang [12] 
introduced the GARCH model to analyze and 
forecast failure data for repairable systems, 
specifically electronic systems from Chrysler 
suppliers. This innovative application 
demonstrated the model's effectiveness in 
analysing failure data volatility and predicting 
future failures. Arthur et al. (1996) presented a 
theory of asset pricing based on heterogeneous 
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agents who adapt their expectations to market 
dynamics. Through computational experiments 
with an artificial stock market, they showcased 
how the evolution of traders' expectations leads 
to various market regimes. 
 
Banking sector studies by Elyasiani [13] utilized a 
multivariate GARCH model to analyze bank 
stock returns and their volatilities in response to 
short-term and long-term interest rates across 
three portfolios: money centre banks, large 
banks, and small banks. Yang et al. [14] 
evaluated financial market risk in the digital 
economy using a GARCH-VaR model tailored for 
big data, underscoring the increasing complexity 
of modern financial markets. Rehman et al. [15] 
examined the effects of the 2008 Global 
Financial Crisis and the COVID-19 pandemic on 
stock markets in six GCC economies using 
ARCH/GARCH models, revealing significant 
impacts on market behaviour. Bitcoin's potential 
as an alternative to fiat currencies was assessed 
by Cermak [16], who analysed its volatility using 
a GARCH(1,1) model in relation to 
macroeconomic variables. Handika et al. (2016) 
evaluated the accuracy of various volatility 
models through a Value-at-Risk (VaR) approach, 
examining their impact on investment 
performance in financialized commodity markets. 
Rastogi et al. [17] explored the volatility of 
agricultural commodity prices and their impact on 
inflation in India using BEKK GARCH and DCC 
GARCH models, highlighting the intricate 
interplay between commodity markets and 
macroeconomic indicators. 
 
Lim et al. [18] modelled the volatility of 
Malaysia's stock market using symmetric and 
asymmetric GARCH models, comparing their 
performance across different time frames from 
1990 to 2010. Arsalan et al. [19] analysed stock 
market volatility and mean reversion across 
various global stock exchanges using the 
GARCH(1,1) model, providing insights into 
international market dynamics. Onali [20] studied 
the impact of COVID-19 cases and deaths on the 
US stock market using a GARCH(1,1) model, 
highlighting the pandemic's profound effect on 
financial markets. In a comprehensive analysis, 
Mobin et al. [21] investigated the impact of 
COVID-19 on the risk dynamics of stock and 
bond markets in G7 countries using GARCH 
models, revealing shifts in market risk profiles. 
Liu et al. [22] developed a BTC trading prediction 
model by integrating DCC-GARCH and artificial 
neural networks (ANN), leveraging dynamic 
correlation and volatility data to enhance trading 

strategies. Abbas et al. [23] examined the 
interaction between macroeconomic uncertainty 
and stock market return and volatility in China 
and the USA using GARCH models and a 
multivariate VAR model. 
 
Guo [24] investigated the economic significance 
of predicting foreign exchange rate volatility 
using GARCH models versus implied volatility 
from currency options. Debasish [25] explored 
the impact of Nifty index futures on the volatility 
of Indian spot markets using econometric 
models, providing insights into derivative 
markets. Al-Rjoub et al. [26] examined stock 
returns and volatility during financial crises in 
Jordan using the GARCH-M model, shedding 
light on market behavior during turbulent periods. 
Mahmoud Sayed Agbo [27] forecasted prices of 
key Egyptian export crops using ARIMA and 
GARCH models, emphasizing the importance of 
volatility modelling in agricultural markets. Hartz 
et al. [28] demonstrated that using non-Gaussian 
innovation distributions in GARCH models is 
more effective for capturing volatility clustering 
and improving value-at-risk predictions compared 
to outlier removal. Badaye et al. [29] introduced a 
novel methodology using MC-GARCH and 
copula models to forecast intraday VaR and ES 
for foreign currency portfolios. 
 
Setiawan et al. [30] examined the impact of the 
COVID-19 pandemic on stock market returns 
and volatility in Indonesia and Hungary using a 
GARCH(1,1) model, highlighting the pandemic's 
disparate effects on emerging and developed 
economies. Lee et al. [31] proposed an 
orthogonal ARMA-GARCH approach for 
generating economic scenarios to manage risks 
in financial institutions, especially during 
turbulent periods like the COVID-19 pandemic. 
Rajvanshi et al. [32] evaluated the forecasting 
power of GARCH models for the Nifty 50 index's 
return volatility using realized volatility as a 
proxy. Dixit et al. [33] evaluated the informational 
efficiency of S&P CNX Nifty index options in 
India, providing insights into derivative market 
dynamics. 
 
Sreenu et al. [34] examined the impact of 
volatility on asset pricing and financial risk in the 
Indian stock market using GARCH-M and E-
GARCH-M models, highlighting the complex 
relationship between volatility and asset pricing. 
Duppati et al. [35] examined the ability of 
intraday data to predict long-term memory in 
volatility for Asian equity indices using GARCH-
based models and realized volatility approaches. 
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Flannery [36] estimated a GARCH model to 
analyze how daily equity returns and their 
volatility are influenced by macroeconomic 
variables, providing a comprehensive view of 
market dynamics. Ugurlu et al. [37] evaluated 
GARCH-type models for stock market volatility in 
European emerging countries and Turkey, using 
daily data to offer insights into regional market 
behaviour. Kinateder et al. [38] integrated long 
memory with a GARCH(1,1) model and fat-tailed 
innovations to forecast market risk over multiple 
periods, enhancing risk management strategies. 

 
Chen [39] investigated the changing risk-return 
relationship in Chinese stock markets, focusing 
on differences between Shanghai and 
Shenzhen, varying data frequencies, and 
comparing GARCH-M model specifications. 
Abrosimova et al. [40] tested weak-form 
efficiency in the Russian stock market using 
various data frequencies, providing insights into 
market efficiency. Naidoo et al. [41] examined 
how exchange rate volatility affects South 
Africa's stock and real estate markets using 
GARCH(1,1) models, highlighting the 
interconnectedness of financial markets. Handika 
et al. [42] examined the empirical performance of 
GARCH models in forecasting volatility across 
financialized commodity markets, demonstrating 
the model's robustness. Mușetescu et al. [43] 
used GARCH(1,1), GARCH-M(1,1), and 
EGARCH(1,1) models to estimate and predict 
Brent Crude Oil return volatility, emphasizing the 
importance of accurate volatility modelling in 
energy markets. Rastogi et al. [44] explored the 
volatility spillover effects of crude oil, gold, 
interest rates, and exchange rates on inflation in 
India using BEKK-GARCH and DCC-GARCH 
models. 

 
Amelot et al. (2020) evaluated time series 
models, artificial neural networks (ANNs), and 
statistical topologies to forecast foreign exchange 
rates, providing a comparative analysis of 
forecasting methodologies. Wang et al. [45] used 
a GARCH model with structural breaks to 
forecast stock volatility in the Chinese stock 
market, incorporating financial news sentiment 
analysis to enhance predictive accuracy. Wu [46] 
developed a threshold GARCH model to analyze 
and predict long-term volatility, highlighting the 
model's sensitivity to different volatility regimes. 
Xie et al. [47] used the MIDAS-GARCH model to 
integrate mixed-frequency investor sentiment into 
stock volatility forecasting, showcasing its 
superior explanatory power over traditional 
models. In conclusion, the vast array of studies 

utilizing GARCH models underscores their critical 
role in understanding and forecasting volatility 
across diverse financial contexts. From stock 
markets to commodity prices, and from 
macroeconomic impacts to specific industry 
challenges, GARCH models provide a robust 
framework for capturing the intricate dynamics of 
volatility. These models' adaptability and 
predictive power make them indispensable tools 
for financial analysts, economists, and 
policymakers seeking to navigate the 
complexities of modern financial markets. 

 
3. METHODOLOGY 
 
The study will utilize daily closing prices of the 
FTSE 100, Hang Seng, NIKKEI 225, NSE 50, 
and S&P 500 indexes. These indexes were 
selected due to their representation of major 
global economies and their significance in 
financial markets. The data will be obtained from 
reliable financial databases, specifically Yahoo 
Finance, covering a period of ten years, from 
January 1, 2014, to December 31, 2023. This 
extensive time span ensures a comprehensive 
analysis that includes various market conditions, 
such as bull and bear markets, periods of 
economic stability, and the effects of significant 
events like the COVID-19 pandemic. By 
capturing the full spectrum of volatility dynamics, 
this study aims to provide a nuanced 
understanding of the predictive capabilities of 
ARCH/GARCH models in the context of global 
financial indexes. 
 

Each GARCH model offers unique 
characteristics tailored to specific aspects of 
volatility modelling. The basic GARCH (1,1) 
model is the most widely used due to its 
simplicity and ability to capture the essential 
features of financial time series, such as volatility 
clustering. It balances parsimony and 
effectiveness, making it ideal for general 
applications. The GARCH (1,2) and GARCH 
(2,2) models, with their additional lag                     
terms, provide more flexibility in modelling 
complex volatility dynamics, potentially offering 
better fit for time series with longer memory 
effects or more intricate patterns of volatility 
persistence. These models can capture more 
subtle shifts in volatility over time, which might be 
critical for accurately modelling markets with 
more erratic behaviour. On the other hand, the 
GARCH (0,1) model, though less common, is 
sometimes used to model cases where only the 
moving average component of volatility is 
significant. Each of these models caters to 



 
 
 
 

Marisetty; J. Econ. Manage. Trade, vol. 30, no. 9, pp. 16-33, 2024; Article no.JEMT.121191 
 
 

 
21 

 

different market conditions and data 
characteristics, allowing researchers to                  
choose the model that best fits the specific 
volatility patterns of the asset or index under 
study. 

 
Before applying the GARCH models, it is 
essential to preprocess the collected data to 
ensure its suitability for analysis. This 
preprocessing involves several key steps: 

 

3.1 Log Returns Calculation  
 
To facilitate effective volatility modelling, daily log 
returns will be computed from the closing prices 
of the indexes. Log returns are preferred over 
simple returns because they tend to be more 
stationary, which is crucial for accurate volatility 
estimation. The log return is calculated using the 
following formula: 

 
rt = ln ( 𝑝𝑡

𝑝𝑡−1
), Where pt and pt-1 are the closing 

prices at time t and t-1 

 

3.2 Basic Descriptive Statistics  
 
Mean, standard deviation, skewness, and 
kurtosis—will be calculated to gain insights into 
the characteristics of the log returns. These 
statistics will help in understanding the central 
tendency, dispersion, and distribution shape of 
the data. 

 

3.3 Stationarity Check  
 
The stationarity of the log returns will be 
assessed using three tests: Augmented Dickey-
Fuller (ADF) Test: This test checks for the 
presence of a unit root in the time series. If the 
test statistic is less than the critical value at a 
given confidence level and the p-value is below 
the chosen significance level, the null hypothesis 
of a unit root can be rejected, indicating that the 
series is stationary. Augmented Dickey-Fuller 
Generalized Least Squares (ADF-GLS) Test: An 
enhancement of the ADF test, this test also 
evaluates the presence of a unit root but includes 
generalized least squares detrending to improve 
power. Kwiatkowski-Phillips-Schmidt-Shin 
(KPSS) Test: This test examines the null 
hypothesis of stationarity against the alternative 
hypothesis of non-stationarity. It determines 
whether the series is stationary around a trend 
(trend-stationary) or around a mean (level-
stationary). 

3.4 ARCH Effect  
 
The ARCH-LM (Autoregressive Conditional 
Heteroskedasticity - Lagrange Multiplier) test will 
be employed to detect the presence of 
autoregressive conditional heteroskedasticity 
(ARCH) effects in the time series. This test is 
crucial for identifying whether the variance of the 
residuals is dependent on past error terms, which 
is a typical feature in financial time series. The 
test statistic is compared with critical values from 
the chi-squared distribution; if the statistic 
exceeds the critical value, the null hypothesis of 
no ARCH effects is rejected. 
 

3.5 Visual Analysis  
 
Time series plots of the log returns will be 
generated to visually inspect the data for 
patterns, anomalies, and the presence of ARCH 
effects. This visual inspection helps in identifying 
trends, cycles, or irregularities that might not be 
apparent through statistical tests alone. 
 

3.6 Model Specification  
 
The study will utilize several GARCH models to 
forecast the volatility of the selected stock 
indexes, incorporating the normal distribution. 
The analysis will encompass symmetric model, 
including the GARCH (0,1), GARCH (1,1), 
GARCH (1,2) and GARCH (2,2). 

 

3.7 ARCH Model  
 
In traditional econometrics, it is commonly 
assumed that the variance of a random variable 
is constant over time. However, financial time 
series often display heteroscedasticity, where 
variance remains stable over the long term but 
fluctuates in the short term. To address this time-
varying volatility, Engle [48] developed the 
Autoregressive Conditional Heteroskedasticity 
(ARCH) model. This model is specifically 
designed to capture and model the evolving 
variance and mean of time series data. The 
general representation of the ARCH model is: 
 
yt = ϕ xt + μt                                                       (1) 

 
σt

2 = E(μt
2∣μt-1, μt-2…...) = α0 + α1𝜇𝑡−1

2  + ………… + 

αp𝜇𝑡−𝑝
2

 = ∑ α𝑖𝜇𝑡−𝑖
2𝑝

𝑖=1
                                           (2) 

 
In the ARCH model, ϕ is a non-zero parameter 
that needs to be estimated, xt  represents the 
independent variable observed at time t, and ut is 
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the random error term, which is typically 
assumed to follow a normal distribution in the 
standard model. The core idea of the ARCH 
model is that the variance of the residuals μt at 
time t depends on the squared error terms from 
previous periods. Specifically, the model asserts 
that the variance of the error term at time t is a 
linear function of the squared error terms from 
the preceding p periods. However, the ARCH 
model assumes that both positive and negative 
shocks impact volatility equally, making it less 
suitable for analysing time series data with 
asymmetric effects. 
 

3.8 GARCH Model  
 
Bollerslev [3] introduced an important refinement 
to the ARCH model known as the GARCH 
(Generalized Autoregressive Conditional 
Heteroskedasticity) model. This model is 
designed to better capture the volatility clustering 
commonly observed in financial time series. 
Unlike the ARCH model, the GARCH model 
incorporates the conditional variance as a 
GARCH process, allowing for more accurate 
estimation of time-varying volatility. The defining 
equations of the GARCH model are as follows: 
 

yt = ϕ xt + μt , μ~N(0, σt
2)                            (3) 

 
σt

2 = ω + ∑ α𝑖𝜇𝑡−𝑖
2𝑝

𝑖=1
 + ∑ β𝑖𝜎𝑡−𝑖

2𝑝
𝑖=1

               (4) 

 
In this model, 𝜇𝑡−𝑖

2   represents the ARCH 

parameter, while 𝜎𝑡−𝑖
2  is the GARCH parameter. 

The coefficients associated with the ARCH and 
GARCH terms are indicated by α and β, 
respectively, and p and q indicate the lag order of 
the model. Therefore, the ARCH model can be 
seen as a specific case within the broader 
GARCH framework. In this study, primarily utilize 
the GARCH(1,1) model, which includes one lag, 
to estimate the sample series. The strength of 
the GARCH model lies in its ability to reflect and 
interpret heteroscedasticity. However, it still falls 
short in capturing asymmetry in financial time 
series. 
 

3.9 Diagnostic Tests  
 

To evaluate the adequacy and predictability of 
the GARCH models used in this study, several 
diagnostic tests will be conducted. The Akaike 
Information Criterion (AIC) and the Schwarz 
Criterion (SC), also known as the Bayesian 
Information Criterion (BIC), are utilized to assess 

model fit while balancing complexity. The AIC 
helps in selecting models that achieve a good 
balance between fit and parsimony by penalizing 
excessive complexity. Similarly, the SC also 
accounts for the number of parameters but 
imposes a stricter penalty for model complexity 
as the sample size increases. Both criteria are 
instrumental in identifying models that are both 
accurate and efficient. Additionally, Root Mean 
Square Error (RMSE) and Mean Absolute Error 
(MAE) will be used to evaluate the predictive 
accuracy of the models. RMSE measures the 
average magnitude of prediction errors, providing 
insight into how well the model predicts the 
observed data. MAE, on the other hand, 
calculates the average absolute differences 
between observed and predicted values, offering 
a more robust measure of accuracy that is less 
influenced by outliers. Together, these diagnostic 
metrics will guide the selection of the most 
appropriate model for forecasting volatility, 
ensuring that the chosen model effectively 
captures the dynamics of the financial time series 
data [49-54]. 
 

4. RESULTS AND DISCUSSION  
 
The results analysis will focus on evaluating the 
performance of the various GARCH models in 
forecasting volatility for the selected stock 
indexes. By comparing the models' predictive 
accuracy and fit using metrics such as AIC, SC, 
RMSE, and MAE, the study aims to identify the 
most effective approach for capturing volatility 
dynamics. This analysis will provide insights into 
the relative strengths and weaknesses of each 
model, guiding future volatility forecasting 
strategies. 
 
Table 1 provides a comprehensive overview of 
the descriptive statistics for five major global 
indexes—FTSE 100, Hang Seng, NIKKEI 225, 
NSE 50, and S&P 500—over the period from 
2014 to 2023. The mean returns of these indexes 
vary, with the NSE 50 showing the highest 
average return at 0.05045, followed by the S&P 
500 and NIKKEI 225. In contrast, the Hang Seng 
index exhibits a negative mean return of -
0.012707. The median returns across the 
indexes are generally higher than their means, 
indicating skewness in the return distributions. 
For instance, the FTSE 100 and NSE 50 have 
medians of 0.056513 and 0.07675, respectively, 
compared to their mean returns, suggesting 
positive skewness in their return distributions. 
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Table 1. Descriptive statistics of five global indexes during 2014 to 2023 period 
 

Variable FTSE 100 HANGSENG NIKKE I225 NSE 50 S&P 500 
Mean 0.0053909 -0.012707 0.029454 0.05045 0.03768 
Median 0.056513 0.028185 0.075226 0.07675 0.05972 
Minimum -11.512 -6.5673 -8.2529 -13.904 -12.765 
Maximum 8.6668 8.6928 7.7314 8.4003 8.9683 
Std. Dev. 1.0004 1.3009 1.2585 1.0485 1.1212 
C.V. 185.56 102.38 42.727 20.783 29.757 
Skewness -0.86492 0.070791 -0.1421 -1.3743 -0.8079 
Ex. kurtosis 12.828 3.2598 4.2747 20.453 16.041 
5% Perc. -1.5223 -2.1453 -2.0566 -1.5115 -1.6827 
95% Perc. 1.4742 2.001 1.9493 1.5095 1.544 
IQ range 0.94588 1.3986 1.272 1.046 0.94678 

(Source: Statistical calculations) 
 

Table 2. Unit root test of selected international indices returns 
 

Indexes ADF Test (12 
lag) 

ADF GLS Test (12 
lag ) 

KPSS Test (8 
lag ) 

ARCH LM Test (5 
lag) 

FTSE 100 -15.2617* 
(0.0000) 

-11.1424* (0.0000) 0.022667* 
(>0.1000) 

429.598* (0.0000) 

HANG 
SENG 

-49.3353* 
(0.0000) 

-49.2632* (0.0000) 0.022667* 
(>0.1000) 

234.640* (0.0000) 

NIKKEI 
225 

-28.7549* 
(0.0000) 

-17.6862* (0.0000) 0.020862* 
(>0.1000) 

223.998* (0.0000) 

NIFTY 50 -13.5031* 
(0.0000) 

-10.8833* (0.0000) 0.037368* 
(>0.1000) 

431.221* (0.0000) 

S&P 500 -15.7598* 
(0.0000) 

-9.17740* (0.0000) 0.024392* 
(>0.1000) 

913.263* (0.0000) 

(Source: Statistical calculations)(* 5 percent level of significance) (Probabilities in parenthesis) 
 

The table also reveals significant variability in 
the indexes, with the Hang Seng index showing 
the highest standard deviation of 1.3009, 
indicating greater volatility compared to the 
other indexes. The coefficient of variation 
(C.V.), which reflects the relative dispersion of 
the returns, is notably high for the FTSE 100 at 
185.56, suggesting extreme variability in 
returns relative to its mean. The indexes exhibit 
varying degrees of skewness and excess 
kurtosis, with the FTSE 100 and NSE 50 
showing pronounced negative skewness and 
high excess kurtosis, indicating heavy tails and 
a higher likelihood of extreme return values. 
Overall, the descriptive statistics highlight the 
diverse volatility and return characteristics of 
these global indexes, underscoring the 
importance of tailored volatility modelling 
approaches for accurate forecasting. 
 

Table 2 presents the results of unit root and 
ARCH-LM tests conducted on the returns of 
selected international indices, including the 
FTSE 100, Hang Seng, NIKKEI 225, NSE 50, 
and S&P 500. The results from the Augmented 
Dickey-Fuller (ADF) and ADF GLS tests, with 

12 lags, show that all indices are stationary as 
indicated by their test statistics being 
significantly negative and their p-values being 
well below the 5 percent significance level. This 
confirms that the returns of these indices do not 
contain a unit root and are thus appropriate for 
further analysis. The Kwiatkowski-Phillips-
Schmidt-Shin (KPSS) test results also support 
stationarity for all indices, as the test statistics 
are below the critical value thresholds, 
confirming that the time series are stationary 
around a mean. 
 

The ARCH-LM test results reveal significant 
autoregressive conditional heteroskedasticity 
(ARCH) effects in the returns of all indices, with 
high test statistics and p-values well below 
0.05. This indicates that the volatility of these 
indices is not constant over time but instead 
depends on past squared returns, which aligns 
with the common observation of volatility 
clustering in financial time series. The large test 
statistics suggest that the variance of the 
returns is significantly influenced by past error 
terms, justifying the use of GARCH models to 
analyze, and forecast volatility for these 
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indices. The combination of results from these 
diagnostic tests confirms that the returns are 
stationary and exhibit ARCH effects, making 
them suitable for further volatility modelling 
using GARCH models. 
 

4.1 Time Series Plot 
 

The Chart 1 shows the daily returns of the 
FTSE 100 index from 2014 to 2023. The data 
exhibits significant volatility, with periods of 
higher fluctuations around 2016 and a notable 
spike in 2020, likely corresponding to the 
COVID-19 pandemic's market impact. Post-
2020, the volatility seems to stabilize but 
remains elevated compared to the earlier part 
of the period. This pattern highlights how major 
global events can significantly impact financial 
markets, causing sharp fluctuations in daily 
returns. The overall trend does not show a 
clear directional movement, indicating a mix of 
gains and losses throughout the period.  
 

The daily returns of the Hang Seng Index from 
2014 to 2023 (Chart 2) exhibit characteristics 
typical of ARCH (Autoregressive Conditional 
Heteroskedasticity) effects, where periods of 
high volatility are followed by more high 
volatility and periods of low volatility tend to 
follow low volatility. The spikes in volatility 
around 2016 and the significant increase in 
2020 highlight this clustering behavior. This 
clustering effect is indicative of the ARCH 
process, where the magnitude of returns tends 
to be auto-correlated. Specifically, the 
heightened volatility during the COVID-19 
pandemic in 2020 and the elevated levels post-
2020 demonstrate how past volatility can 
influence future volatility, resulting in persistent 
periods of high and low fluctuations. This visual 
effect underscores the importance of using 
ARCH or GARCH models to better understand 
and forecast future volatility based on past 
patterns in financial time series data like the 
Hang Seng Index returns. 

 

 

Chart 1. FTSE 100 daily returns from 2014 to 2023 
(Source: Statistical calculations) 

 
 

 

Chart 2. HANG SENG daily returns from 2014 to 2023 
(Source: Statistical calculations) 
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Chart 3. NIKKEI 225 daily returns from 2014 to 2023 
(Source: Statistical calculations) 

 
 

 

Chart 4. NSE 50 daily returns from 2014 to 2023 
(Source: Statistical calculations) 

 
 

 

Chart 5. S&P 500 daily returns from 2014 to 2023 
(Source: Statistical calculations) 

 
The Chart 3 depicts the daily returns of the 
Nikkei 225 index from 2014 to 2023, showcasing 
notable volatility patterns over the period. 
Observing the chart, there are periods of intense 
fluctuation around 2016 and a significant spike in 
2020, likely due to the global impact of the 

COVID-19 pandemic. Post-2020, the data shows 
a continuation of heightened volatility, although 
with some stabilization compared to the peak. 
The chart clearly exhibits ARCH (Autoregressive 
Conditional Heteroskedasticity) effects, where 
clusters of high volatility follow previous high 
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volatility periods, and similarly, clusters of low 
volatility follow low volatility periods. This visual 
clustering suggests that past volatility has a 
predictive influence on future volatility, making 
ARCH models particularly useful for analyzing 
and forecasting the volatility patterns seen in the 
Nikkei 225 daily returns. 
 
The daily returns (Chart 4) of the NSE 50 Index 
from 2014 to 2023 display typical characteristics 
of ARCH (Autoregressive Conditional 
Heteroskedasticity) effects, where high volatility 
periods are followed by more high volatility, and 
low volatility periods follow low volatility. Notable 
spikes in volatility around 2016 and the 
significant surge in 2020 highlight this clustering 
behavior. This pattern is indicative of the ARCH 
process, where the magnitude of returns tends to 
be auto-correlated. The heightened volatility 
during the COVID-19 pandemic in 2020 and the 
elevated levels of volatility post-2020 
demonstrate how past volatility influences future 
volatility, resulting in persistent periods of 
fluctuation. This visual effect emphasizes the 
importance of using ARCH or GARCH models to 
better understand and forecast future volatility 
based on past patterns in financial time series 
data like the NSE 50 Index returns. 
 
The daily returns of the S&P 500 Index from 
2014 to 2023 (Chart 5) exhibit characteristics 
typical of ARCH (Autoregressive Conditional 
Heteroskedasticity) effects, where periods of high 
volatility are followed by more high volatility and 
periods of low volatility tend to follow low 
volatility. The spikes in volatility around 2016 and 
the significant increase in 2020 highlight this 
clustering behavior. This clustering effect is 
indicative of the ARCH process, where the 
magnitude of returns tends to be auto-correlated. 
Specifically, the heightened volatility during the 
COVID-19 pandemic in 2020 and the elevated 
levels post-2020 demonstrate how past volatility 
can influence future volatility, resulting in 
persistent periods of high and low fluctuations. 
This visual effect underscores the importance of 
using ARCH or GARCH models to better 
understand and forecast future volatility based on 
past patterns in financial time series data like the 
S&P 500 Index returns. 
 
The analysis of the daily returns for five major 
indexes from 2014 to 2023—FTSE 100, Hang 
Seng, Nikkei 225, NSE 50, and S&P 500—
reveals common patterns of volatility influenced 
by global events, particularly the COVID-19 

pandemic in 2020. All five indexes exhibit 
significant volatility spikes around 2016 and a 
pronounced surge in 2020, highlighting the 
impact of global crises on financial markets. 
Post-2020, while some stabilization is observed, 
volatility remains elevated compared to the 
earlier part of the period across all indexes. This 
persistent volatility underscores the presence of 
ARCH (Autoregressive Conditional 
Heteroskedasticity) effects, where periods of high 
volatility follow high volatility and low volatility 
follows low volatility, indicating that past volatility 
influences future fluctuations. This clustering 
behaviour is evident in the Hang Seng, Nikkei 
225, NSE 50, and S&P 500 indexes, with notable 
periods of heightened volatility during and after 
the COVID-19 pandemic. The FTSE 100 also 
shows significant volatility but without a clear 
directional trend, reflecting a mix of gains and 
losses. These observations underscore the 
importance of using ARCH or GARCH models to 
analyze and forecast future volatility, as they 
account for the auto-correlated nature of return 
magnitudes in financial time series data. 
Understanding these patterns helps in better risk 
management and strategic decision-making in 
financial markets. 
 
The Table 3 presents the parameters and 
performance metrics for various GARCH models 
applied to the daily returns of five major indices: 
FTSE 100, Hang Seng (HS), Nikkei 225, NIFTY 
50, and S&P 500. For each index, different 
GARCH models (including GARCH (1,1), 
GARCH (1,2), and GARCH (2,2)) are evaluated, 
with specific attention to constants, alpha, and 
beta coefficients, as well as information criteria 
and error metrics. The significance of the 
parameters is indicated by asterisks, denoting 
statistical significance. For the FTSE 100 index, 
the GARCH (1,1), GARCH (1,2), and GARCH 
(2,2) models show varied parameter values. The 
GARCH (1,1) model has a constant of 0.0268, 
with significant alpha (0.0553) and beta (0.7857) 
coefficients. The (1,2) and (2,2) models present 
more complex structures with additional 
parameters, leading to slightly different Akaike 
Information Criterion (AIC) and Schwarz Criterion 
(SC) values. Notably, the GARCH (2,2) model, 
despite its complexity, has the lowest AIC 
(6360.16), indicating it might provide the best fit 
among the models tested for FTSE 100. The 
Root Mean Square Error (RMSE) and Mean 
Absolute Error (MAE) values are consistent 
across models, indicating similar forecasting 
accuracy. 
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Table 3. Various GARCH model parameters of global stock index returns 
 

S. No Index GARCH 
Model 

Constant  α0  α1  α2  β1  β2 AIC SC RMSE MAE 

1 FTSE 100 (1,1) 0.0268 
(0.0783) 

0.0553* 
(0.0000) 

0.1532* 
(0.0230) 

  0.7857* 
(0.0000) 

  6364.97 6394.14 1.0004 0.6769 

(1,2) 0.0455* 
(0.0029) 

0.0647* 
(0.0000) 

0.1674* 
(0.0000) 

0.0000 
(1.0000) 

0.7625* 
(0.0000) 

  6369.31 6404.31 1.0010 0.6765 

(2,2) 0.0294 
(0.0518) 

0.0698* 
(0.0000) 

0.2277* 
(0.0000) 

0.0000 
(1.0000) 

0.3091* 
(0.0216) 

0.3959* 
(0.0000) 

6360.16 6401.00 1.0004 0.6768 

2 HS (0,1) −0.0086 
(0.7302 ) 

1.4177* 
(0.0000) 

0.1486* 
(0.0000) 

      8179.53 8202.76 1.3007 0.9435 

(1,1) 0.0244 
(0.2717) 

0.0225* 
(0.0000) 

0.0619* 
(0.0000) 

  0.9253* 
(0.0000) 

  7898.15 7927.19 1.3012 0.9429 

(1,2) 0.0254 
(0.2489) 

0.0278* 
(0.0029) 

0.0376* 
(0.0350) 

0.0360 
(0.1489) 

0.9108* 
(0.0000) 

  7898.13 7932.98 1.3012 0.9429 

3 NIKKEI 
225 

(1,1) 0.0653* 
(0.0021) 

0.0790* 
(0.0000) 

0.1257* 
(0.0000) 

  0.8248* 
(0.0000) 

  7629.27 7658.28 1.2587 0.8939 

(1,2) 0.0734* 
(0.0006) 

0.0824* 
(0.0002) 

0.1310* 
(0.0000) 

0.0000 
(1.0000) 

0.8195* 
(0.0000) 

  7631.58 7666.39 1.2590 0.8938 

(2,2) 0.0660* 
(0.0018) 

0.1446* 
(0.0000) 

0.1042* 
(0.0000) 

0.1333* 
(0.0000) 

0.0000 
(1.0000) 

0.6722* 
(0.0000) 

7627.54 7668.15 1.2587 0.8939 

4 NIFTY 50 (1,1) 0.0813* 
(0.0000) 

0.0208* 
(0.0000) 

0.0916* 
(0.0000) 

  0.8879* 
(0.0000) 

  6364.72 6393.74 1.0488 0.7092 

(1,2) 0.0812* 
(0.0000) 

 0.0211* 
(0.0002) 

0.0865* 
(0.0004) 

0.0062 
(0.8154) 

0.8864* 
(0.0000) 

  6366.66 6401.49 1.0488 0.7092 

(2,2) 0.0803* 
(0.0000) 

0.0383* 
(0.0002) 

0.0729* 
(0.0000) 

0.0912* 
(0.0000) 

0.1377 
(0.4096) 

0.6601* 
(0.0000) 

6366.43 6407.07 1.0488 0.7092 

5 S&P 500 (1,1) 0.0771* 
(0.0000) 

0.0386* 
(0.0000) 

0.1988* 
(0.0000) 

  0.7728* 
(0.0000) 

  6396.70 6425.85 1.1217 0.7245 

(1,2) 0.0771* 
(0.0000) 

0.0387* 
(0.0000) 

0.1981* 
(0.0000) 

 0.0015 
(0.9653) 

 0.7720* 
(0.0000) 

  6398.70 6433.68 1.1217 0.7245 

(2,2) 0.0753* 
(0.0000) 

0.0688* 
(0.0000) 

0.1843* 
(0.0000) 

 0.1690* 
(0.0000) 

0.0000 
(1.0000) 

0.5958* 
(0.0000) 

6399.84 6440.66 1.1216 0.7245 

(Source: Statistical calculations) 
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For the Hang Seng index, the GARCH (0,1), 
GARCH (1,1), and GARCH (1,2) models show 
distinct parameter estimates and model fits. The 
GARCH (0,1) model has a negative constant, 
which is not statistically significant, and high 
alpha (1.4177) and beta (0.1486) coefficients. 
The GARCH (1,1) model shows improved 
parameter significance and fit, with an AIC of 
7898.15, significantly lower than the (0,1) 
model’s AIC. Both the (1,1) and (1,2) models 
have nearly identical AIC and SC values, 
indicating that adding another beta parameter (in 
(1,2)) does not significantly improve the model fit. 
The RMSE and MAE values are also similar 
across these models, indicating consistent 
predictive performance. The Nikkei 225 index 
models also show significant parameter 
estimates for all tested GARCH structures. The 
GARCH (1,1) model has a constant of 0.0653, 
with alpha (0.0790) and beta (0.8248) being 
highly significant. The GARCH (2,2) model, 
despite its complexity, provides the lowest AIC 
(7627.54) and SC values, suggesting a better 
model fit. The consistency of RMSE and MAE 
values across the models indicates reliable 
prediction accuracy. This consistency supports 
the robustness of the GARCH models in 
capturing the volatility dynamics of the Nikkei 225 
index. 

 
For the NIFTY 50 index, all tested GARCH 
models show statistically significant parameters. 
The GARCH (1,1) model, with an AIC of 
6364.72, shows good model fit with alpha 
(0.0208) and beta (0.8879) being highly 
significant. The GARCH (2,2) model offers the 
lowest AIC and SC values (6366.43 and 
6407.07, respectively), suggesting it captures the 
volatility dynamics better than simpler models. 
RMSE and MAE values are consistent across 
models, indicating similar predictive power. The 
presence of significant parameters in all models 
underscores the need to consider multiple lags in 
volatility modelling for accurate predictions. The 
S&P 500 index models indicate significant 
parameter estimates across all GARCH 
structures. The GARCH (1,1) model has an AIC 
of 6396.70, with highly significant alpha (0.0386) 
and beta (0.7728) coefficients. The GARCH (2,2) 
model has the lowest AIC (6399.84) and SC 
values, suggesting a marginally better fit than the 
simpler models. RMSE and MAE values remain 
consistent, reflecting reliable predictive 
performance. The significant parameters across 
all models highlight the persistent nature of 
volatility in the S&P 500 index, making GARCH 

models essential for capturing and forecasting 
these dynamics accurately. 
 

Indeed, the GARCH (1,1) model often features 
more statistically significant parameters 
compared to its more complex counterparts, like 
the GARCH (1,2) or GARCH (2,2) models, while 
still providing a good fit for the data. Here's a 
refined comparison emphasizing the significance 
of parameters: The comparison across the five 
indices—FTSE 100, Hang Seng, Nikkei 225, 
NIFTY 50, and S&P 500—reveals that the 
GARCH (1,1) model generally provides a 
balance between simplicity and statistical 
significance. For the FTSE 100 index, while the 
GARCH (2,2) model shows the lowest AIC, the 
GARCH (1,1) model has highly significant 
parameters (α0, α1, β1) and provides a 
comparable fit with fewer parameters. The Hang 
Seng index also benefits from the GARCH (1,1) 
model, which shows significant α0 and β1 
coefficients, improving model fit significantly over 
the simpler GARCH (0,1) model. For the Nikkei 
225, the GARCH (1,1) model again displays 
significant parameters with an AIC close to that 
of the more complex models. Similarly, the 
NIFTY 50 index shows that the GARCH (1,1) 
model’s parameters are highly significant, with a 
relatively low AIC. Finally, the S&P 500 index 
demonstrates that the GARCH (1,1) model 
effectively captures volatility dynamics with 
significant coefficients and a good fit, evidenced 
by a low AIC. 
 

Across all indices, the GARCH (1,1) model 
strikes an optimal balance by having more 
statistically significant parameters while 
maintaining a relatively simple structure. This 
model captures the essential dynamics of 
volatility without overfitting, as indicated by 
comparable RMSE and MAE values across more 
complex models. Therefore, despite slightly 
higher AIC values in some cases, the GARCH 
(1,1) model is generally preferred for its 
parsimony and statistical robustness. 
 

The study's results largely align with existing 
research on GARCH models, particularly in 
confirming the GARCH (1,1) model's 
effectiveness in balancing simplicity and 
statistical significance across various indices. For 
instance, the study's findings on the FTSE 100 
index align with Bollerslev's [3] assertion that the 
GARCH (1,1) model is robust in capturing 
volatility clustering. The GARCH (2,2) model's 
slightly better fit, as indicated by a lower AIC, is 
consistent with the literature that suggests more 
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complex models may offer improved fit but at the 
cost of increased complexity (e.g., Nelson, [1]; 
Ding et al. [6]). In the case of the Hang Seng 
index, the results align with studies like Chkili et 
al. [9], where GARCH models effectively capture 
market volatility during significant events. The 
similarity in AIC and SC values between the 
GARCH (1,1) and GARCH (1,2) models 
suggests, as supported by previous research, 
that adding more parameters does not always 
significantly improve model fit [8]. 
 
For the Nikkei 225 and NIFTY 50 indices, the 
study's results support the findings of Elyasiani 
[13] and Liu et al. [22] that GARCH models, 
particularly the GARCH (1,1) model, are highly 
effective in capturing volatility dynamics with 
significant parameter estimates. The lower AIC 
values in the GARCH (2,2) model for these 
indices confirm that while more complex models 
may offer better fit, they do not necessarily 
translate to better predictive performance, a 
conclusion also drawn by Setiawan et al. [30] in 
their analysis of the COVID-19 pandemic's 
impact on stock market volatility. Finally, for the 
S&P 500 index, the study's results are consistent 
with Onali [20] and Mobin et al. [21], who found 
that GARCH models are essential for accurately 
capturing and forecasting market volatility, 
particularly during periods of market stress. The 
study reinforces the idea that the GARCH (1,1) 
model's simplicity and effectiveness make it a 
preferred choice, even when more complex 
models show marginally better fit according to 
information criteria. Overall, the study's findings 
contribute to the broader literature by confirming 
the robustness of GARCH models across 
different indices while highlighting the trade-offs 
between model complexity and statistical 
significance. 
 

5. LIMITATIONS AND FURTHER SCOPE 
FOR RESEARCH 

 
While the study provides valuable insights into 
the effectiveness of various GARCH models in 
capturing and forecasting volatility across major 
global indices, it is not without limitations. One of 
the primary limitations is the study's reliance on a 
limited set of GARCH models (GARCH (1,1), 
GARCH (1,2), and GARCH (2,2)). Although 
these models are widely used and provide a 
good balance between complexity and accuracy, 
they may not fully capture the nuances of 
volatility dynamics in all market conditions. More 
advanced models, such as asymmetric GARCH 
models (e.g., EGARCH, GJR-GARCH) or models 

incorporating structural breaks, could potentially 
offer a more nuanced understanding of volatility, 
particularly in markets with significant 
asymmetries or shifts in volatility regimes. 
Another limitation is the study's focus on 
historical data without considering the potential 
impact of external shocks or changes in market 
conditions that could affect the future 
performance of the models. For instance, events 
such as financial crises, pandemics, or significant 
geopolitical developments could alter market 
dynamics in ways that the tested models may not 
adequately capture. Additionally, the study does 
not account for potential long-memory effects or 
the influence of high-frequency trading, which 
could be significant in certain markets. 
 
Further research could address these limitations 
by exploring a broader range of GARCH models, 
including those that account for asymmetries, 
long-memory effects, and structural breaks. 
Additionally, incorporating macroeconomic 
variables or sentiment indicators into the models 
could enhance their predictive power, particularly 
during periods of market stress. Comparative 
studies across different time horizons, including 
high-frequency data, could also provide deeper 
insights into the models' performance in various 
market conditions. Lastly, applying these models 
to other asset classes, such as commodities or 
cryptocurrencies, could help generalize the 
findings and offer a more comprehensive 
understanding of volatility dynamics across 
different financial markets. 
 

6. CONCLUSION 
 
In conclusion, this study provides a 
comprehensive analysis of volatility dynamics 
across five major global financial indices—FTSE 
100, Hang Seng, NIKKEI 225, NSE 50, and S&P 
500—using a range of GARCH models over a 
decade-long period. The rigorous data 
preparation process, including stationarity testing 
and the identification of significant ARCH effects, 
ensured that the time series data were well-
suited for accurate volatility modelling. The 
GARCH (1,1) model emerged as particularly 
effective, offering a robust balance between 
simplicity and statistical significance. While more 
complex models like GARCH (1,2) and GARCH 
(2,2) occasionally provided slightly better fit 
measures, the GARCH (1,1) model consistently 
demonstrated reliable predictive accuracy, as 
evidenced by its consistent RMSE and MAE 
values across all indices. This suggests that the 
GARCH (1,1) model is well-equipped to capture 
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time-varying volatility, even in the face of 
significant market events such as the COVID-19 
pandemic. 

 
The study's findings contribute significantly to the 
ongoing debate in financial econometrics 
regarding the trade-off between model 
complexity and forecasting accuracy. By 
highlighting the GARCH (1,1) model's ability to 
effectively capture volatility dynamics while 
maintaining model parsimony, the research 
challenges the assumption that more complex 
models are always superior. The GARCH (1,1) 
model's consistent performance across diverse 
economic environments underscores its 
suitability as a preferred tool for volatility 
forecasting. As such, this study not only reaffirms 
the importance of model simplicity in financial 
analysis but also lays the groundwork for future 
research to explore advanced GARCH variations 
that could further enhance volatility prediction, 
particularly in the context of rapidly evolving 
global financial markets. 
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