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ABSTRACT 
 

Geospatial technologies like Remote Sensing (RS) and Geographic Information Systems (GIS) 
provide a platform for swiftly evaluating terrestrial Carbon Stock (CS) across extensive regions. 
Employing an integrated RS-GIS method for estimating Above-Ground Biomass (AGB) and precise 
carbon management emerges as a timely and economical strategy for implementing effective 
management plans on a localized and regional level. This study reviews different RS-related 
techniques utilized in CS assessment, particularly in arid lands, shedding light on the challenges, 
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opportunities, and future trends associated with the process. As global warming poses adverse 
impacts on major ecosystems through temperature and precipitation changes, professionals have a 
call to develop evidence-based interventions to mitigate them. Carbon sequestration involves 
harnessing and storing carbon stocks from the atmosphere to minimize the adverse effects of 
climate change. The review explores the effectiveness of integrating remote sensing and GIS 
methodologies in quantifying carbon sequestration within agroforestry landscapes. In addition, this 
review also assesses the traditional methods, including their limitations, and deeply delves into 
recent techniques, emphasizing key remote sensing (RS) variables for biophysical predictions. This 
study showcases the efficacy of geospatial technologies in evaluating terrestrial carbon stock, 
particularly in arid regions. The study reviews diverse techniques and sensors, like optical Radio 
Detection and Ranging (RADAR), and Light Detection and Ranging (LiDAR), extensively employed 
for above-ground biomass (AGB) estimation and carbon stock assessment with RS data, 
introducing and discussing new methods. Existing literature was examined to present knowledge 
and evidence on the effectiveness of these technologies in carbon sequestration. The key findings 
of this review will inform future research and integration of technology, policy formulation, and 
carbon sequestration management to mitigate the impacts of climate change. 
 

 

Keywords: Remote sensing; geospatial technologies; carbon sequestration; agroforestry landscape; 
carbon stock assessment. 

 

1. INTRODUCTION 
 

1.1 Background and Context  
 

Carbon sequestration is capturing, harnessing, 
and storing carbon dioxide from the atmosphere 
to reduce its contribution to global warming [1]. In 
the wake of climate change and the severe 
effects on world temperature and water 
resources, experts can employ natural and 
artificial techniques such as afforestation and 
carbon capture technologies to support carbon 
sequestration [2]. Quantifying carbon 
sequestration is an exciting technology that 
attracts research to ensure sustainable climate 
change mitigation and land resource 
management [3]. According to Hammad et al. [4], 
agricultural landscapes successfully remove 
considerable greenhouse gases from the 
surrounding environment by combining croplands 
and bushes for carbon absorption. 
 

Satellite imagery collects information on plants, 
land coverage, and other surface                          
operations on Earth using drones and aerial 
photography [5,6,7]. So, the information is 
analyzed and interpreted using Geographic 
Information System (GIS) technology to enable 
well-informed decision-making [8]. Because of 
their superior ecological study skills, 
professionals use remote sensors and GIS to 
evaluate and measure carbon retention in 
agricultural ecosystems [9]. Plant types, 
nutritional status, and geographical                
distribution are all determined using satellite 
photography [10]. 
 

Carbon sequestration assessments are more 
accurate and efficient when remote sensing is 
used with Geographic Information System (GIS) 
techniques [11]. Researchers can calculate and 
visualize the carbon dynamics within agroforestry 
systems thanks to this approach, which also 
helps quantify biomass and estimate carbon 
stocks in soil and trees [12]. GIS also considers 
ecological features such as geography and 
climate to comprehend factors affecting carbon 
sequestration rates. Informed decisions about 
sustainable land use are also made easier by 
this integration for policymakers and land 
managers [13]. 
 

Monitoring of temporal changes in carbon 
sequestration, deforestation, vegetation growth, 
and afforestation activities is made possible by 
the integration of remote sensing and 
Geographic Information System (GIS) techniques 
[14]. By evaluating the long-term viability of 
agroforestry techniques and offering spatial data 
for ideal placements and carbon sequestration, 
GIS is essential to the mitigation of climate 
change [15]. For climate change resilience and 
mitigation decisions, this integration improves 
adaptive environmental management strategies 
and real-time monitoring. 
 

In this review we present some of the latest 
technologies in carbon assessment in agricultural 
landscapes. The introductory part focuses on 
contextualizing the research within the scope of 
climate change mitigation by underscoring the 
significance of carbon sequestration. It also 
analyzes agroforestry landscapes as the                 
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primary contributors to carbon sequestration                   
in the context of sensing and GIS methodologies. 
  
1.2 Statement of the Problem 
 

With the ever-rising global temperatures and 
adverse weather patterns, Climate change, is 
causing severe humanitarian and ecological 
consequences due to the emissions of carbon 
and toxic gases into the atmosphere. There must 
be sufficient research and knowledge on the 
subject matter to inform evidence-based 
interventions toward mitigating climate change 
effects. There needs to be more knowledge 
between what we know and what we ought to 
know, raising more curiosity on the need for 
continuous research. Through that lens, this 
study seeks to address the critical gap in current 
research concerning the quantification of carbon 
sequestration within agroforestry landscapes. 
Existing studies in this area need more precision 
and spatial analysis on carbon sequestration. 
Hence, they fail to capture the dynamics of 
carbon stocking and storage between crops, 
trees, and soil. Moreover, the need to integrate 
new technologies such as remote sensing and 
GIS approaches also hinders the development of 
evidence-based frameworks for efficient and 
accurate assessment of carbon sequestration 
within the agroforestry landscapes.  Presenting 
evidence in this area will also help experts, 
professionals, and policymakers understand 
carbon sequestration dynamics in agroforestry 
landscapes and make informed land-use 
decisions on bridging the gaps to mitigate the 
impacts of climate change. 
 

2. PURPOSE OF THE REVIEW 
 

This study proposes to investigate, evaluate, and 
report on the role of remote sensing and GIS 
approaches in quantifying carbon sequestration 
within agroforestry landscape settings. However, 
using remote sensing and GIS technology, the 
project seeks to improve the accuracy and 
efficiency of carbon sequestration processes in 
agroforestry landscapes [16]. This will support 
land-use planning and sustainable mitigation of 
climate change. Informed decisions about land 
use and environmental compliance are facilitated 
by the study's support for the development of 
scientific data on the integration of remote 
sensing and GIS in managing carbon 
sequestration in agroforestry landscapes. 
Materials and Methods. 
 

To show a strong structure, the study employed 
systematic literature review approaches [17]. 
Initially, a study topic was chosen, and then 

relevant materials, including research papers, 
critiques, short remarks, discussions, and 
reviews, were retrieved by searching academic 
databases such as Google Scholar, Scopus 
Index Journals, Emerald, Elsevier Science 
Direct, Springer, and Web of Science. From a 
total of 200 articles, only 40 were selected based 
on their relevance and significance to the topic of 
this review. 
 

To enhance the caliber and openness of 
systematic review and meta-analysis reporting, 
articles are screened using the Preferred 
Reporting Items for Systematic Reviews and 
Meta-Analyses (PRISMA) framework, which was 
developed in 2009 and revised in 2020 [18]. 
Hence, it helps raise the bar for reporting 
standards in a variety of fields by providing 
authors with an organized framework for 
communicating and duplicating systematic 
reviews. 
 

Despite its early phases, the research effort did 
not apply strict criteria for exclusion, enabling a 
thorough examination free from regional 
differences [19]. It featured works with a variety 
of approaches, such as books, student theses, 
and empirical works like original investigations. 
Newspaper and magazine articles, which are 
non-empirical sources, were not included. 
Undergraduate theses were added to counteract 
publication bias because peer-reviewed 
publications typically give preference to research 
with quantitatively relevant outcomes. 
 

To guarantee the most recent data, the study 
only included English-language publications that 
had been published in the previous year. The 
Joanna Briggs Institute's Critical Appraisal 
Checklist for Analytical Cross-Sectional Studies, 
the Critical Appraisal Skills Program's Qualitative 
Checklist, and the Mixed Methods Appraisal Tool 
(MMAT) for quantitative, qualitative, and mixed-
methods studies were among the checklists 
examined by various scholars and used for 
quality evaluation because they were specific to 
the study layout. 
 

3. RESULTS 
 

The efficiency of carbon sequestration 
technologies is discussed in this part, along with 
an emphasis on the main features and parts of 
the systems and how artificial intelligence (AI) 
can be used to improve their performance, 
optimize operational parameters, and enhance 
real-time monitoring and control for better 
adaptability and reduced environmental impact.  
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3.1 Technologies Used in Quantifying 
Carbon Sequestration  

 
Remote sensing: To assess carbon 
sequestration, Vilar et al. [20] emphasize the use 
of remote sensing technologies such as satellite 
photography and aerial surveys. These 
technologies offer up-to-date data on variations 
in land cover, biomass, and vegetation health 
[21]. Nonetheless, experts may track and gauge 
carbon stocks in expansive agroforestry systems 
and forest landscapes thanks to satellite-based 
remote sensing [22]. LiDAR, or light                    
detection and ranging, is a useful cutting-edge 
technology that improves measurement 
precision. 
 
Satellite photography, aerial surveys, and LiDAR 
provide crucial land cover, biomass, and 
vegetation health data for carbon sequestration 
assessment. These technologies have 
drawbacks include expensive setup and 
operating expenses, especially with high-
resolution sensors and complex systems like 
LiDAR. Cloud cover and other atmospheric 
factors may obscure satellite and aerial images, 
causing data collecting delays or gaps. Satellites' 
short return durations may restrict these 
technologies' temporal resolution for monitoring 
fast environmental changes [23]. 
 
Remote sensing data is complicated and needs 
sophisticated processing and analysis, which 
may be difficult in locations with limited 
technological resources. Spatial resolution limits 
may limit the data's value for comprehensive 
local analysis, and reliance on sunlight for 
lighting may alter data collection time and 
consistency. Remote sensing's wide advantages 
in environmental monitoring frequently                  
exceed its downsides, especially when      
combined with other data collection methods 
[24]. 
 
Geographic information system (GIS): GIS 
technology is a crucial tool for quantifying carbon 
sequestration, as it integrates diverse spatial 
datasets like climate patterns, topography, and 
land cover, according to Ambaw et al. [25]. 
Hence, Lourenço et al. [22] say it helps scientists 
assess land use effects on carbon dynamics and 
identify optimal locations for afforestation or 
reforestation initiatives, enhancing the reliability 
and accuracy of carbon sequestration efforts. 
GIS technology plays a crucial role in measuring 
carbon sequestration by combining various 
geographical information and enhancing the 

precision of evaluating the impact of land use on 
carbon dynamics. However, it does possess 
significant drawbacks. A major constraint is its 
reliance on the quality and accessibility of input 
data; flaws in the source data might result in 
errors in the output, which can impact decision-
making procedures. In addition, Geographic 
Information Systems (GIS) need significant 
computing resources and technical proficiency to 
efficiently handle and analyze extensive 
information. The intricate nature of this may 
provide difficulties in terms of accessibility, 
especially in settings with low resources, which 
might impede the general acceptance and 
efficient use of global carbon management 
measures [26]. 
 
Eddy covariance towers: The Eddy Covariance 
method, pivotal in atmospheric sciences for 
measuring gas exchanges between ecosystems 
and the atmosphere, began taking shape in the 
early 20th century, rooted in the theoretical work 
on turbulent diffusion by Sir Geoffrey Ingram 
Taylor in 1915 [27]. It advanced significantly in 
the mid-20th century with the development of 
instruments like sonic anemometers, which could 
accurately measure atmospheric turbulence. The 
practical application of these theories and tools 
led to the widespread use of Eddy Covariance 
Towers by the late 20th century [28]. These 
towers, equipped with various sensors, have 
become essential in global networks for studying 
climate change, carbon cycles, and ecosystem 
dynamics, continuing to evolve with technological 
advances in sensors and data analytics. Berg et 
al. [29] and Sun et al. [27] have highlighted the 
use of eddy covariance towers, sensor-equipped 
ground-based equipment, for measuring gas 
exchanges, including carbon dioxide, and their 
potential for carbon sequestration [29]. These 
towers are strategically placed in agriculture 
fields and woodlands to deliver accurate, real-
time carbon fluxes, enabling scientists to 
compute net carbon content and seasonal 
ecosystem fluctuations [27]. The accuracy in 
carbon fluxes and seasonal changes helps 
professionals plan and respond to environmental 
changes [28]. However, Eddy Covariance 
Towers may face limitations due to their high 
cost of operation and technological intricacy, 
necessitating ongoing maintenance and 
calibration to ensure precise measurements. 
Furthermore, the efficacy of these devices relies 
on consistent meteorological conditions, since 
significant fluctuations in wind and the absence 
of turbulence may undermine the accuracy of the 
gathered data [30].  
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Carbon monitoring systems and models: 
Currently, carbon monitoring systems are 
computational technologies and AI algorithms-
driven [31]. These technologies help simulate 
and project carbon stocks and variations in 
various landscapes to mitigate the impact of 
climate change. Burba [28] confirms that 
dynamic global vegetation models (DGVMs) are 
among the most sophisticated ecosystem tools 
for simulating responses to changing 
environmental conditions and human activities. 
Scientists employ DGVMs to explore various 
environmental scenarios and predict the impact 
of different variables on carbon sequestration 
[27]. Experts can create more efficient mitigation 
measures for climate change by having a better 
awareness of the other factors that impact 
carbon capture and storage. 
 

Optimizing carbon sequestration with remote 
sensing and GIS: Wang et al. [32] discovered 
that by leveraging cutting-edge technology, 
including satellite imaging and aerial data, 
remote sensing and GIS may maximize carbon 
sequestration [16]. By precisely identifying the 
best sites for planting trees or regeneration 
activities to optimize carbon sequestration 
possibilities, this improves the efficacy and 
precision of carbon evaluations [33].   
 

3.2 Case Studies for Successful 
Implementation of Remote Sensing 
and GIS 

 

GIS and remote sensing technologies were 
successfully used by the Brazilian Amazon 
Rainforest Land Use Changes monitoring project 
to track and assess land use changes                      
(see Fig. 1). Over time, high-resolution images 
were gathered using Landsat Sentinel satellite 
imagery [34]. Different land use classifications, 
such as agricultural land, deforested areas, and 
protected reserves, were also classified using 
GIS tools, satellite data analysis, and land cover 
classification algorithms. 
 

GIS and remote sensing technologies were 
effectively employed by Singapore's Urban 
Planning and Infrastructure Development team to 
enhance infrastructure design and promote 
equitable urban development. However, they 
improved the effectiveness and precision of 
urban development activities by using high-
resolution LiDAR and aerial photography to 
construct precise three-dimensional models of 
the urban terrain. Urban areas became more 
robust and livable because of this strategy. 

Land cover changes were identified by using 
remote sensing methods to track conservation 
initiatives and deforestation trends [35].                 
Analysis of data and representation using GIS 
techniques revealed areas susceptible to land-
use changes and rapid deforestation. The 
purpose of this material was to promote global 
cooperation and increase public                         
awareness about the preservation of the Amazon 
rainforest. 
 
Challenges faced in adopting remote sensing 
and GIS: The difficulties of implementing GIS 
and remote sensing in carbon sequestration 
projects are emphasized by Qiu et al. [1]. These 
difficulties include the expensive starting point, 
high skill, experience, and training needs, as well 
as the need to address interoperability and 
improve data accuracy. Due to the need to 
balance computing needs with high-                   
resolution data, these problems can be 
especially difficult for smaller groups or areas 
with low funding. 
 

3.3 Climate Change Impacts and 
Mitigation Strategies 

 
Climate change effects on carbon stocks: By 
upsetting the equilibrium between carbon 
sources and sinks, climate change severely 
depletes ecosystems' carbon reserves [32]. 
Degradation rates, vegetation development, and 
the structure of soil carbon are significantly 
impacted by extreme weather patterns, variations 
in precipitation, and humidity [35]. Warmer 
temperatures, for instance, stimulate the growth 
of bacteria and quicken the organic matter's 
breakdown, releasing stored carbon into the sky. 
The spatial distribution and health of the 
vegetation are also impacted by these changes, 
which shape the capability for sequestering 
carbon. 
 
Role of carbon sequestration in climate 
change mitigation: Carbon sequestration is the 
process of taking carbon dioxide out of the 
atmosphere and storing it in soil and forest 
reservoirs, according to Xaverius et al. [9]. Forest 
loss and forestry combined with environmentally 
friendly land use improve carbon sequestration 
and the net decrease in carbon dioxide 
emissions by an equal amount [32]. These 
sequestration activities mitigate the adverse 
effects of climate change by lowering 
atmospheric carbon concentrations, a critical 
trigger of global warming. 
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Fig. 1. tracking land use and deforestation in the Brazilian Amazon [34] 
 

4. DISCUSSION 
 
The study critically examines the integration of 
advanced remote sensing and GIS technologies 
in carbon sequestration in agroforestry 
landscapes. It intends to assess detailed 
information on spatial distribution, vegetation 
health, and land cover by leveraging GIS and 
remote sensing using aerial data and satellite 
imagery. It is essential to highlight the synergies 
between remote sensing, GIS, and other 
technologies to enhance understanding of 
significant variables around carbon sequestration 
in soil and trees in the agroforestry 
landscapes. The second significant aspect 
forming the backbone of this study is the goal of 
contributing to climate change mitigation through 
sustainable land-use planning. Integrating 
modern technologies such as remote sensing 
and GIS is critical to more clarity in climate 
change mitigation strategies and decision-
making [2]. Still, conducting a detailed spatial 
analysis of carbon sequestration puts the study 
in a position to inform environmental 
professionals, policymakers, and land managers 
to make informed decisions on optimizing 
agroforestry practices [3].   
 
Overview of traditional carbon sequestration 
approaches: Based on the assertions of Seitz et 
al. [36], traditional carbon sequestration has 
been centered around enhancing the role of 
natural and artificial forests through afforestation 
and cover cropping activities. Afforestation has 
significantly sequestrated carbon dioxide by 
capturing and storing carbon dioxide from the 
atmosphere [4]. Due to their vast biomass, it is 
imperative to note that forests have a high 

capacity to store carbon in trees, crops, and soil 
for a long time [37]. In that context, 
environmental experts have prioritized 
afforestation activities by preserving forests and 
planting new trees to enhance high-carbon 
storage. In that regard, afforestation is the most 
prioritized traditional way of sequestrating and 
sinking carbon by increasing biomass. These 
traditional activities have been instrumental in 
controlling the effects of climate change since 
they reduce carbon emissions.  
 
Apart from forestry, cover cropping, and no-till 
farming in have been used as traditional ways of 
soil carbon sequestration because they help 
maintain ground cover by minimizing soil 
degradation [16]. By minimizing soil disturbance, 
cover cropping and no-till farming foster 
favorable conditions for carbon accumulation 
[33]. 
 
Challenges of traditional carbon 
sequestration methods: Due to their restricted 
spatial resolution and emphasis on certain 
ecosystems, traditional carbon sequestration 
techniques, although helpful in reducing the 
effects of climate change, have drawbacks [38]. 
Since these traditional carbon storage 
approaches could only be used to sequestrate 
carbon in specific areas, they exude gaps in 
understanding carbon storage dynamics across 
various landscapes. As human activities escalate 
is evident that traditional carbon storage methods 
cannot combat the effects of climate change 
efficiently and effectively [39]. Since emerging 
technologies like remote sensing and GIS can 
gather data in real time and produce current 
results for well-informed environmental 
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decisions, research on these technologies is 
essential to increasing the accuracy and 
scalability of carbon sequestration estimates [40]. 
 
According to Hou et al. [41], obstacles to 
afforestation, the process of planting new trees in 
formerly unforested areas, include competition 
from agriculture and a shortage of land due to 
urban expansion. Water shortage, biodiversity 
loss, and soil nutrient loss can result from 
improper tree selection [42]. Pests, erratic 
weather patterns, and wildfires are some of the 
climate change disturbances that reduce its 
efficiency in sequestering carbon [43]. 
 
Growing crop varieties during non-planting 
seasons to prevent nutrient loss and improve soil 
is known as "cover cropping," a classic way of 
storing carbon in the soil. Its reliance on crop 
types, selection, and climate patterns, however, 
has constraints [44]. The viability could need to 
be improved in regions with limited water 
supplies, and illnesses and pests could make it 
less successful [45]. According to Huang et al. 
[46], cover crops have a limited ability to 
sequester carbon because the carbon they store 
escapes into the atmosphere during 
decomposition. 
 
Smart carbon sequestration methods: 
Precision farming is one example of a smart 
carbon sequestration strategy that uses cutting-
edge technology to maximize carbon capture and 
storage [25]. Drones, sensors, and satellite 
photography are used in these techniques to 
measure and control carbon in agricultural 
landscapes, supporting efforts to mitigate climate 
change [47]. To help farmers maximize 
fertilization and cover cropping, they also track 
vegetation growth, soil health, and carbon flux 
[48]. Precision agriculture driven by data 
maximizes the potential for sequestering carbon 
while improving the efficiency of carbon storage 
and supporting sustainable farming practices 
[49]. 
 
A clever method of sequestering energy from 
biomass, such as plant matter and agricultural 
leftovers, is carbon capture and storage 
(BECCS) [37]. According to Lizzaga et al. [10], 
BECCS is a renewable energy source that aids 
in removing carbon dioxide from the 
environment. This approach complements 
broader ecological strategies; programs for 
afforestation and reforestation can regulate 
carbon stocks by utilizing GIS mapping and 
machine learning technology [32].  Enhancing 

carbon sequestration for sustainable land use 
and mitigating climate change can be achieved 
by combining these technologies with ecological 
concepts [35]. 
 
Gaps and opportunities in current research: 
Technology-driven strategies to enhance land 
use decision-making and mitigate the effects of 
climate change are the main focus of research 
on carbon sequestration and climate change. 
Research emphasizes how trees act as carbon 
sinks and how to balance the rates of 
afforestation and deforestation [11]. Additionally, 
they look at how well various forest types can 
sequester carbon and how susceptible 
ecosystems are to climate change, especially in 
light of shifting patterns of temperature and 
rainfall. 
 
To improve carbon sequestration and agrarian 
efficiency, studies are looking into carbon 
sequestration in grasslands, wetlands, and 
agricultural areas. These studies concentrate on 
sustainable land management techniques 
including cover crops and agroforestry [20]. 
Standardizing carbon sequestration approaches 
across diverse ecosystems is essential to 
building a knowledge base for reliability and 
comparability assessments in agroforestry 
landscapes. 
 
A thorough examination of the many agroforestry 
interacting techniques related to carbon 
dynamics is lacking in the current studies. 
Despite some individual studies investigating 
alley cropping, afforestation, or silvopastoral 
systems, there still needs to be a gap in 
reconciling research to assess the combined 
impact of various agroforestry practices on 
carbon sequestration [22]. 
 
Since studies frequently concentrate on localized 
initiatives, leaving a vacuum in scalability for 
bigger regions, experts must investigate the 
capacity for expansion of remote sensing and 
GIS approaches for carbon sequestration 
evaluations in agroforestry ecosystems [8]. 
 
GIS and remote sensing technologies are used 
in the carbon sequestration project to improve 
scientific knowledge about sustainable land 
management techniques. Professionals now 
have the chance to create and improve cutting-
edge technology (UAVs) [13]. To assess carbon 
sequestration techniques, researchers might 
establish multidisciplinary partnerships and 
collaborative efforts that integrate ecological 
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research with economics, social sciences, and 
policy studies. This will assist in developing 
economically and environmentally sound 
practices for farmers and landowners [14]. 
Longitudinal studies that concentrate on 
alterations in carbon stock patterns, ecological 
services, and ecological diversity can be used to 
investigate the long-term effects of carbon 
stocking techniques in agroforestry landscapes 
[50]. This will enhance comprehension of the 
durability and long-term viability of agricultural 
forests as carbon sinks and assess the efficacy 
of policies and incentives. 
 

5. CONCLUSIONS 
 
Climate change poses severe challenges to all 
ecosystems due to changes in world 
temperature, precipitation patterns, and 
unpredictable climate events. Major human 
activities such as cutting down forests, 
industrialization, and burning fossil fuels 
contribute to excessive carbon emissions into the 
atmosphere. Traditional methods such as cover 
cropping and afforestation have been 
implemented to reduce carbon stocks and 
mitigate the effects of climate change. However, 
serious gaps have yet to be discovered in these 
approaches. Hence, it calls for technology-driven 
approaches to ensure precise, accurate, and 
real-time decision-making. Due to climate 
change impacts on agroforestry and other 
ecosystems, remote sensing and GIS 
technologies enhance carbon sequestration 
processes by ensuring real-time data collection 
and decision-making. Professionals must 
strengthen research in this area to present more 
efficiency in the effective use of technology to 
enhance carbon sequestration activities in the 
agroforestry landscape. 
 

6. FUTURE DIRECTIONS AND 
RECOMMENDATIONS 

 
To increase precision and effectiveness, the 
study of carbon sequestration in agricultural 
landscapes must incorporate Artificial 
Intelligence (AI) and Machine Learning (ML). 
Combining AI and ML technologies will support 
the automation of data analysis, improve remote 
sensing data interpretation, and refine predictive 
models. Incorporating machine learning 
algorithms will also help researchers develop 
more sophisticated tools for mapping and 
monitoring carbon stocks, leading to more 
nuanced insights into the dynamics of 
agroforestry systems. 

Dynamic modeling of carbon flux: Future 
carbon management research should also 
emphasize creating and integrating dynamic 
models to account for temporal variations in 
carbon fluxes within agroforestry landscapes. 
Dynamic modeling of carbon fluxes will increase 
efficiency by enhancing real-time data from 
climate variables, remote sensing technologies, 
and land-use changes. In turn, this will improve 
the accuracy of carbon sequestration. These 
modeling techniques enhance understanding of 
the long-term effects of carbon stocks and short-
term disturbances to create adaptive and resilient 
land management strategies. 
 

Qualification of Co-benefits of Trade-offs: 
Focusing on co-benefits and trade-offs is another 
critical aspect of future research because it will 
highlight major carbon sequestration practices in 
agroforestry landscapes. Professionals must 
channel their focus on practices that influence 
carbon stocks and other ecosystem services, 
such as socioeconomic welfare and agricultural 
productivity. Presenting knowledge and evidence 
will influence decision-making by highlighting the 
benefits and trade-offs in various carbon 
sequestration strategies. 
 

Development of decision support tools: 
Future research must also be directed towards 
creating user-friendly decision support tools, 
especially by integrating GIS and remote sensing 
for policymakers, land managers, and 
practitioners. Modern tools are critical for 
actionable insights and informed decision-making 
by stakeholders toward optimizing carbon 
sequestration land-use practices. At the same 
time, decision-making support tools could 
incorporate scenario analysis, allowing users to 
explore the potential outcomes of different 
management strategies under varying climate 
and land-use scenarios. 
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