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ABSTRACT 
 

Wheat (Triticum aestivum L.), a vital cereal crop in the Poaceae family, plays a crucial role in global 
agriculture. It contributes approximately 30% of the world's grain production and constitutes half of 
the grain traded internationally. Serving as a staple food in over 40 countries, wheat provides 
essential calories to 85% of the global population and protein to 82%. With the global population 
expected to reach 9.1 billion by 2050, the Food and Agriculture Organization (FAO) projects that 
nearly one billion additional tons of cereal will be needed annually to meet increasing demand. 
Enhancing wheat productivity and production is thus essential. Wheat is cultivated in tropical and 
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subtropical regions, where it faces various abiotic stresses that significantly impact yield, with heat 
and drought being the most critical challenges. Global climate models predict a potential increase 
in mean ambient temperature by up to 6°C by the end of the century. Wheat is highly sensitive to 
heat stress; even a 1°C rise in temperature can reduce global wheat production by 6%. Heat stress 
affects wheat's physiological, biological, and biochemical processes, including seed germination, 
grain filling duration, grain number, Rubisco enzyme activity, photosynthetic capacity, assimilate 
translocation rate, leaf senescence, chlorophyll content, and overall yield. To combat heat stress, 
wheat has developed diverse tolerance mechanisms. These include the induction of heat shock 
proteins (HSPs) that assist in proper protein folding and the activation of an antioxidative defense 
system to detoxify reactive oxygen species (ROS). Traits like Stay Green (SG), chlorophyll 
fluorescence, and canopy temperature are closely linked to heat tolerance. Understanding and 
improving these mechanisms are imperative to sustain and enhance wheat production to meet 
future food demands amidst global climate changes. This review provides a comprehensive 
analysis of the effects of heat stress on wheat morphology, physiology, and biochemistry. It also 
discusses the mechanisms of heat tolerance, emphasizing the importance of developing crop 
varieties capable of withstanding future climatic conditions. Understanding these mechanisms at 
physiological, biochemical, and morphological levels is crucial for ensuring future food security. 
 

 

Keywords: Heat stress; HSPs; oxidative stress; ROS; biochemical; productivity; stay green. 
 

1. INTRODUCTION 
 
Wheat (Triticum spp.), a key cereal crop in the 
Poaceae family, holds a crucial position in global 
agriculture, accounting for around 30% of the 
world's grain production and half of the grain 
traded internationally [1]. It is a staple food in 
more than 40 countries, supplying essential 
calories to 85% of the global population and 
protein to 82% [2-3]. As the global population is 
expected to reach 9.1 billion by 2050, the Food 
and Agriculture Organization (FAO) predicts a 
need for nearly one billion additional tons of 
cereal production annually to satisfy the 
increasing demand [4]. Therefore, boosting crop 
productivity and production is critical in the 21st 
century. Wheat is cultivated in tropical and 
subtropical regions, where it encounters various 
abiotic stresses that significantly impact yield [5]. 
These stresses include heat, drought [96], 
salinity [97], cold, chemical exposure [98], and 
excessive water [6]. Among these, heat and 
drought are the primary challenges affecting 
wheat production globally [7-8]. Climate models 
predict a potential 6°C increase in mean ambient 
temperature by the end of the century [8]. 
Addressing these challenges is crucial to sustain 
and enhance wheat production to meet future 
food demands. 
 
Wheat exhibits a high sensitivity to heat stress, 
with studies indicating that a 1°C rise in 
temperature can cause a 6% reduction in global 
wheat production [9]. A 1°C increase above the 
average temperature during the reproductive 
stage can lead to significant grain yield losses 

[10-11]. Elevated temperatures adversely affect 
various physiological, biological, and biochemical 
processes in wheat [12]. Heat stress impacts 
seed germination, grain filling duration, grain 
number, Rubisco enzyme activity, photosynthetic 
capacity, assimilate translocation rate, leaf 
senescence, chlorophyll content, and overall 
yield [13,21]. Moreover, heat stress influences 
the starch and protein content in grains by 
inducing the production of reactive oxygen 
species (ROS), which affect membrane stability, 
lipid peroxidation, protein oxidation, and nucleic 
acid damage [22-23]. Wheat has developed 
diverse tolerance mechanisms to counteract heat 
stress, including the induction of heat shock 
proteins (HSPs) to ensure proper protein folding, 
refolding, synthesis, and degradation of protein 
aggregates [2,24-25]. The antioxidative defense 
system detoxifies accumulated ROS through 
enzymatic and non-enzymatic antioxidants [26]. 
Traits such as Stay Green (SG), chlorophyll 
fluorescence, and canopy temperature are 
closely linked to heat tolerance in wheat [20]. 
The challenge of climate change necessitates a 
deep understanding of these tolerance 
mechanisms. Wheat's ability to withstand heat 
stress through physiological, biochemical, and 
morphological adaptations is critical for 
developing resilient crop varieties. Enhancing 
these traits will be vital for ensuring sustainable 
wheat production and meeting the global food 
demand in the face of increasing temperatures. 
This review delves into the comprehensive 
analysis of heat stress impacts on wheat and 
discusses advanced strategies for improving 
heat tolerance to secure future food supplies. 
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2. EFFECTS OF HEAT STRESS ON 
WHEAT 

 
High temperature stress affects various growth 
and development stages of wheat, leading to 
substantial yield reductions. The impact of heat 
stress on plants depends on both the duration of 
heat exposure and the specific growth stage at 
which the stress occurs [27-28]. Heat stress 
results in negative outcomes such as poor 
germination, reduced leaf area, premature leaf 
senescence, and damage to the photosynthetic 
apparatus, all contributing to a decline in wheat 
photosynthesis [12,29-30]. The effects of heat 
stress on wheat are evident through changes in 
morphology, physiology, and biochemistry. 
During germination, high temperatures can inhibit 
seedling establishment, resulting in poor 
germination rates and weak seedlings. This early 
stage stress can set back the crop's 
development, reducing overall plant vigor and 
yield potential. As wheat progresses to the 
vegetative stage, heat stress can limit leaf 
expansion, reduce leaf area, and accelerate leaf 
aging, which diminishes the plant's 
photosynthetic capacity [12]. Premature leaf 
senescence, triggered by heat, further 
compounds this issue by shortening the duration 
of active photosynthesis, thus reducing the 
overall energy available for growth and grain 
filling [29]. Fig. 1 illustrated various Impacts and 
responses of plants to heat stress. 
 
At the biochemical level, heat stress affects 
several critical processes in wheat. It disrupts the 
activity of key enzymes such as Rubisco, which 
plays a vital role in carbon fixation during 
photosynthesis. This disruption reduces the 
plant's photosynthetic efficiency and carbon 
assimilation rate, leading to lower biomass 
accumulation and grain yield. Heat stress also 
induces the production of reactive oxygen 
species (ROS), which cause oxidative damage to 
cellular components, including lipids, proteins, 
and nucleic acids [22-23]. This oxidative stress 
can impair cellular functions and lead to cell 
death if not mitigated by the plant's antioxidative 
defense mechanisms [26]. Furthermore, heat 
stress affects the reproductive stage by reducing 
pollen viability, affecting fertilization, and leading 
to a lower number of grains per spike. High 
temperatures during grain filling can shorten the 
grain filling period, reduce grain size, and alter 
the starch and protein composition of the grains, 
impacting both yield and quality [13,21]. To 
combat these adverse effects, wheat has 
evolved various tolerance mechanisms. 

Additionally, traits such as Stay Green (SG), 
chlorophyll fluorescence, and canopy 
temperature are closely linked to heat tolerance 
and are being explored for breeding heat-
resistant wheat varieties [20]. In summary, 
understanding the multifaceted impact of high 
temperature stress on wheat's growth, 
development, and biochemical processes is 
essential for developing strategies to enhance 
heat tolerance. This knowledge is crucial for 
ensuring sustainable wheat production in the 
face of rising global temperatures and securing 
future food supplies. 
 

2.1 Effect on Wheat Morphology 
 
High temperature stress poses significant 
challenges to crop growth and productivity, 
particularly impacting seed germination and plant 
establishment across various crops, including 
wheat [13]. Elevated temperatures, reaching up 
to 45°C, can adversely affect embryonic cells, 
leading to poor germination and emergence, 
thereby reducing crop stand and early growth 
[31]. Furthermore, high temperatures contribute 
to decreased survivability of productive tillers in 
wheat, resulting in diminished grain yield and 
tiller numbers by 53.57% and 15.38%, 
respectively [21]. The inhibition of root growth 
under heat stress further exacerbates these 
effects, affecting overall crop production 
capabilities [32]. The reproductive phase of 
wheat is particularly vulnerable to the detrimental 
effects of high temperature stress [33]. Even 
slight increases in average temperatures during 
this critical phase, such as 1°C, can significantly 
reduce grain yield [10,11]. For optimal flowering 
and grain filling in wheat and similar crops, 
temperatures ideally range between 12°C and 
22°C [2]. Heat stress during early stages of 
gametogenesis, such as meiosis, can disrupt 
microspore and pollen development, crucial for 
successful floral initiation and subsequent grain 
formation [34,35]. 
 
The impact of high temperature stress extends to 
the grain development stage, affecting both the 
rate and duration of grain filling [36-37]. Wheat's 
lifecycle is accelerated under high temperatures 
compared to normal conditions, with a rise of 1°C 
to 2°C shortening seed filling duration and 
reducing seed weight [38,39]. Even brief 
episodes of heat stress during grain filling can 
lead to substantial yield losses of up to 23% [40]. 
Moreover, high temperature stress negatively 
affects grain number and quality, contributing to a 
reduced harvest index due to decreased 
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Fig. 1. Impacts and responses of plants to heat stress [94] 
 
assimilate production and remobilization 
[14,15,41]. The overall productivity of wheat is 
significantly impaired by exposure to high 
temperatures throughout its growth stages [42]. 
Short-term exposure to ambient temperatures 
exceeding 35°C can cause severe reductions in 
grain yield, highlighting the sensitivity of wheat to 
heat stress episodes [43]. Ensuring wheat 
resilience to high temperature stress is crucial for 
sustainable agriculture, necessitating continued 
research into breeding heat-tolerant varieties and 
implementing adaptive agricultural practices. 
Addressing these challenges is essential to 
safeguarding global food security in the face of 
climate change. 
 

2.2 Effect on Wheat Physiology 
 

Photosynthesis, a fundamental physiological 
process in plants, plays a critical role in plant 
growth and development but is significantly 
influenced by elevated temperatures. In wheat 
plants, the impact of heat stress on 
photosynthesis is profound, particularly affecting 
the stroma and thylakoid lamellae, which are 
sensitive to thermal fluctuations [30]. Exposure to 
temperatures nearing 40°C can induce 
irreversible changes in key enzymes such as 
RuBisCO, Rubisco Activase, and Photosystem II, 
essential for carbon fixation and energy transfer 
[44]. Notably, the deactivation of RuBisCO 

occurs swiftly, within a week of high-temperature 
exposure, impairing carbon assimilation [16]. 
Additionally, the breakdown of Rubisco activase 
under heat stress further diminishes the plant's 
photosynthetic capacity [17]. High temperatures 
also disrupt the thylakoid membrane fluidity, 
causing dissociation between light harvesting 
complex II and Photosystem II, crucial for 
efficient light energy conversion [45]. 
 
In response to heat stress, plants must 
redistribute photosynthetic products to support 
various growth processes throughout different 
parts of the plant. However, the rate of assimilate 
translocation is hampered by reduced membrane 
stability under high temperatures, impacting 
overall plant productivity [18]. Effective 
mobilization of water-soluble carbohydrates to 
reproductive sinks becomes crucial to support 
grain development under stress conditions [46]. 
Limitations in either source (photosynthetic 
capacity) or sink (demand for assimilates) can 
lead to reduced seed set and impaired grain 
filling [47]. Plants facing source limitation due to 
heat stress must adapt by alternative 
mechanisms to ensure efficient transport of 
photosynthates to developing grains [1]. 
Particularly, carbohydrate remobilization from 
stems to developing grains increases during pre-
anthesis heat stress, facilitating grain starch 
accumulation under post-anthesis heat stress 
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conditions [48]. The physiological impacts of high 
temperatures extend beyond photosynthetic 
efficiency to include increased photorespiration 
due to elevated oxygen concentrations and 
altered gas solubility in wheat flag leaves [49]. 
Moreover, plant senescence, characterized by 
vacuolar collapse, membrane deterioration, and 
disruption of cellular homeostasis, progresses 
differently under moderate prolonged heat stress 
compared to intense short-term heat stress 
[24,50]. Accelerated leaf senescence and 
reduced chlorophyll biosynthesis are evident 
under heat stress conditions above 34°C during 
maturity, further complicating plant responses 
[19,20]. Heat stress also affects plant water 
relations by reducing osmotic potential, leading 
to cellular dehydration and impacting 
physiological processes like stomatal 
conductance and transpiration rates [51]. 
Monitoring canopy temperature becomes crucial 
as it influences leaf water content and provides 
insights into plant stress responses, aiding in the 
selection of heat-tolerant genotypes [2,20]. Traits 
such as chlorophyll fluorescence, which 
correlates closely with yield, and canopy 
temperature are pivotal in identifying and 
breeding for heat-tolerant plant varieties [20,52]. 
 

Studies on wheat genotypes have shown varying 
responses to heat stress, with heat-sensitive 
genotypes exhibiting decreased chlorophyll 
content and leaf area index under late sown 
conditions, while heat-tolerant genotypes show 
higher proline content, indicative of stress 
tolerance [53]. Furthermore, under heat stress 
conditions, plants accumulate Reactive Oxygen 
Species (ROS), which disrupt cellular integrity by 
affecting lipids, proteins, and DNA. This oxidative 
damage leads to a significant reduction in 
membrane stability and increased cell membrane 
permeability, exacerbating stress effects [54,55]. 
In summary, understanding the intricate 
responses of plants to heat stress is crucial for 
developing strategies to enhance heat tolerance 
in crops. The multifaceted impacts on 
photosynthesis, plant water relations, 
senescence, and cellular integrity underscore the 
complexity of plant responses to environmental 
stressors like high temperatures. Continued 
research into these mechanisms will be vital for 
sustaining agricultural productivity in the face of 
climate change challenges. 
 

2.3 Effect on Wheat Biochemistry 
 

Starch, a pivotal component of wheat grain, 
consists of amylose and amylopectin, whose 
proportions determine starch quality. High 

temperatures have been associated with 
alterations in amylose content and the amylose 
to amylopectin ratio, affecting starch 
characteristics [56]. The enzymes ADP-Glucose 
Pyrophosphorylase (AGPase) and starch 
synthase play crucial roles in starch biosynthesis, 
encompassing forms like Soluble Starch 
Synthase and Granule-bound starch synthase 
[2]. However, elevated temperatures can 
diminish starch content in wheat grain by as 
much as one-third due to reduced efficiency of 
these biosynthetic enzymes [57].Specifically, the 
activity of soluble starch synthase declines 
notably at temperatures around 40°C, leading to 
smaller grain size and decreased starch 
accumulation [58]. Up to 30°C, reduced activity 
of Soluble Starch Synthase affects starch 
composition without significant impact on overall 
starch deposition. Moreover, they noted that 
granule-bound starch synthase activity in wheat 
remains largely unaffected by high temperatures 
[59]. Decline in starch biosynthesis in wheat 
grain under heat stress conditions, concurrent 
with increased levels of total soluble sugars and 
proteins [60]. 
 
Protein content and composition are critical 
determinants of wheat grain quality. Lizana and 
Calderini found no substantial changes in protein 
concentration under high temperature conditions 
[41]. In contrast, Iqbal et al. reported an increase 
in grain protein content, essential amino acids, 
leaf nitrogen content, and sedimentation index in 
wheat exposed to high temperatures, highlighting 
varied responses in protein synthesis under 
different heat stress regimes [4]. In conclusion, 
understanding the intricate interactions between 
high temperatures and biochemical processes 
like starch and protein synthesis in wheat is 
crucial for developing strategies to mitigate the 
impacts of climate change on crop productivity 
and grain quality. Continued research into the 
molecular mechanisms governing these 
processes will be essential for enhancing heat 
tolerance and ensuring food security in the face 
of changing environmental conditions. 
 

3. HEAT TOLERANCE MECHANISM IN 
WHEAT 

 
Plants employ diverse adaptation strategies to 
thrive amidst high temperature conditions. These 
strategies encompass Avoidance, Escape, and 
Tolerance, each playing crucial roles in enabling 
plants to not only endure but also flourish in 
challenging environments. Heat tolerance, a 
pivotal aspect of these adaptations, denotes a 
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plant's capacity not just to survive but also to 
sustain growth and achieve economic yield under 
conditions of elevated temperature stress.  
 

In wheat, several key mechanisms contribute to 
enhancing heat tolerance. Firstly, plants activate 
robust antioxidant defenses to counteract 
oxidative stress, a common consequence of high 
temperatures that can damage cellular structures 
and impair physiological functions. Additionally, 
the induction of Heat Shock Proteins (HSPs) 
serves as a protective mechanism, assisting in 
protein folding, stabilization, and cellular repair 
under heat stress conditions. Moreover, the 
retention of green foliage amidst high 
temperatures supports sustained photosynthetic 
activity, crucial for maintaining energy production 
and biomass accumulation despite 
environmental challenges.  These adaptive 
responses highlight the complex interplay of 
biochemical, physiological, and morphological 
adjustments that enable plants, including wheat, 
to thrive in high temperature environments. 
Understanding these mechanisms is essential for 
developing strategies to enhance crop resilience 
and productivity in the face of climate change 
and evolving environmental conditions. 
Continued research into these adaptation 
strategies will be pivotal in ensuring global food 
security and agricultural sustainability in the 
future. 
 

3.1 Heat Shock Proteins 
 

Protein function hinges significantly on the 
processes of synthesis and folding, crucial for 
proper cellular operations. Misfolding of proteins 
can severely disrupt these functions, impacting 
essential cellular processes. High temperature 
(HS) conditions exacerbate this issue by 
destabilizing protein folding and synthesis [2], 
leading to the accumulation of stress-inducing 
agents within the cell. These agents promptly 
interfere with key metabolic processes, DNA 
functions such as replication and transcription, as 
well as mRNA transport and translation, until 
cellular homeostasis is restored [61]. To mitigate 
the detrimental effects of HS, plants employ a 
defense mechanism involving the accelerated 
production of Heat Shock Proteins (HSPs) [62]. 
HSPs are classified into distinct families based 
on their size, amino acid sequences, and 
functional roles [63], including HSP100, HSP90, 
HSP70, HSP60, and small HSPs. Each family of 
HSPs serves specific protective functions under 
HS conditions. Initially inactive in the cytoplasm, 
Heat Stress transcription factors (Hsfs) act as 
regulatory proteins in the transcription of genes 

encoding HSPs. Upon HS induction, these Hsfs 
become transcriptional activators [64]. Several 
mechanisms orchestrate the expression of genes 
encoding HSPs, involving temperature sensing, 
signal transduction pathways leading to Hsfs 
activation, and the binding of Hsfs to heat shock 
elements (HSE) in DNA to initiate gene 
expression [65]. During HS, HSPs function as 
molecular chaperones, crucial for preventing 
protein denaturation and aggregation, thereby 
preserving cellular function and integrity [24,66]. 
In summary, the induction of HSPs represents a 
critical adaptive response of plants to high 
temperature stress, safeguarding protein 
functionality and cellular viability. Understanding 
these mechanisms provides insights into 
enhancing crop resilience against environmental 
challenges, crucial for sustainable agriculture in a 
changing climate. 
 

3.2 Reactive Oxygen Species and 
Antioxidative Defense Mechanism 

 

High salinity (HS) imposes significant stress on 
plants by triggering the generation of reactive 
oxygen species (ROS) such as singlet oxygen, 
superoxide, and hydroxyl radical [67,68]. 
Normally, cells maintain a balance between ROS 
production and elimination, known as redox 
homeostasis [69]. When ROS production 
exceeds the cell's antioxidant capacity, oxidative 
stress occurs, leading to damage in lipids, 
proteins, nucleic acids, disruption of enzyme 
function, and potential initiation of programmed 
cell death [22,23,72]. Heat stress exacerbates 
ROS production, causing membrane 
depolarization, lipid peroxidation, protein 
oxidation, and nucleic acid damage [22,23,72]. 
This stimulates the activation of antioxidative 
defense mechanisms to counteract oxidative 
damage [73]. Plants possess a sophisticated 
antioxidative defense system comprising 
enzymatic and non-enzymatic antioxidants [74]. 
Enzymatic antioxidants include superoxide 
dismutase (SOD), ascorbate peroxidase (APX), 
catalase (CAT), glutathione peroxidase (GPX), 
glutathione reductase (GR), and peroxidase 
(POX). Non-enzymatic antioxidants encompass 
substances such as ascorbic acid, glutathione, 
tocopherols, carotenoids, and phenolic 
compounds, all of which play vital roles in 
scavenging ROS [69-70,75]. 
 

Under heat stress conditions, there is an 
increase in the activity levels of antioxidative 
enzymes such as SOD, CAT, and POX [63,76]. 
Certain cultivars exhibiting resilience to heat 
stress show heightened activity of glutathione S-
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transferase (GST), APX, and CAT [77]. Electron 
leakage from cellular organelles like 
mitochondria and chloroplasts generates ROS 
when leaked electrons react with oxygen 
molecules [78,79]. Superoxide radicals are 
converted into hydrogen peroxide either 
spontaneously or enzymatically by SOD or metal 
ions like Fe3+ and Cu2+. Hydrogen peroxide can 
further react to form highly reactive hydroxyl 
radicals (•OH) through the Fenton reaction, 
which poses a significant threat due to its high 
reactivity and lack of specific enzymatic 
detoxification mechanisms [26,80]. However, 
peroxidase enzymes such as guaiacol 
peroxidase, APX, and CAT can scavenge 
hydrogen peroxide, thereby indirectly reducing 
•OH levels [81]. Despite their damaging potential, 
ROS also function as signaling molecules under 
various abiotic stress conditions, aiding plants in 
adapting and developing tolerance mechanisms. 
Therefore, maintaining optimal ROS levels is 
crucial for balancing stress responses and 
minimizing oxidative damage without 
compromising signaling functions that promote 
stress tolerance [26]. In summary, understanding 
the intricate dynamics of ROS production and 
antioxidative defense mechanisms is essential 
for developing strategies to enhance plant 
resilience to environmental stresses like heat and 
salinity, ultimately ensuring sustainable 
agricultural productivity in challenging climates. 
 

3.3 Stay Green 
 
The Stay Green (SG) genotype plays a pivotal 
role in enhancing heat stress tolerance in wheat 
by delaying the onset of senescence-related 
gene expression, thereby sustaining 
photosynthesis and grain filling under high 
temperature (HS) conditions [82]. This genotype 
preserves the photosynthetic area and facilitates 
efficient nitrogen transfer to developing grains, 
crucial for maintaining yield potential [81]. In HS 
environments, wheat ovaries experience rapid 
starch depletion, while sugar accumulation 
declines due to reduced photosynthetic activity, 
potentially leading to seed abortion [82]. SG 
genotypes counteract this by maintaining 
heightened photosynthetic activity, ensuring a 
steady supply of sugars to developing anthers 
and pollen, thereby promoting pollen and ovule 
viability [83]. Research has explored the 
association between SG traits and canopy 
temperature depression (CTD), a measure of 
plant cooling under HS conditions [84]. SG 
genotypes have been observed to exhibit greater 
CTD, indicating lower canopy temperatures 

relative to ambient air temperatures. This 
correlation underscores the potential of SG as a 
valuable selection criterion for wheat genotypes 
under heat stress, aiding in the identification and 
breeding of heat-tolerant varieties [32]. In 
summary, the SG genotype in wheat represents 
a significant adaptation strategy against HS, 
facilitating sustained photosynthesis, efficient 
nutrient allocation, and improved reproductive 
success. Incorporating SG traits into breeding 
programs could enhance wheat resilience to 
increasingly challenging climatic conditions, 
ensuring stable agricultural productivity in the 
face of climate change [85]. An increase in leaf 
area, rate and duration of grain filling and 
photosynthetic competence, water use efficiency, 
leaf anatomy, have been found to be a 
characteristic for the SG trait (Fig. 3) [95]. 
 

4. CAUSES OF HEAT STRESS 
 
Heat stress in agriculture arises primarily from 
climatic variations characterized by sustained 
increases in air and soil temperatures beyond 
critical thresholds. Projections indicate a potential 
rise in average global temperatures by as much 
as 1 to 6 degrees Celsius by the end of the 
twenty-first century, posing substantial risks to 
cereal crop cultivation worldwide [90,91]. This 
escalation not only exacerbates heat stress but 
also amplifies challenges related to drought, 
salinity, waterlogging, and mineral toxicity, all of 
which contribute to reduced agricultural 
productivity [92,93]. 
 
Late sowing practices further exacerbate heat 
stress impacts on crops, particularly evident 
during the grain filling phase of cereals like 
wheat. Studies emphasize that delaying planting 
increases the likelihood of encountering terminal 
heat stress, significantly diminishing grain yields 
[94,95]. For instance, each day of delay in 
sowing after optimal dates in regions like the 
Indo-Gangetic Plain results in observable 
reductions in crop productivity [95]. Such delays 
expose crops to elevated temperatures during 
critical growth stages, accelerating maturation 
and potentially compromising final yield and grain 
quality [96,97]. Understanding these climatic and 
agronomic factors is crucial for implementing 
effective agricultural management practices and 
breeding strategies aimed at enhancing crop 
resilience to heat stress. Addressing these 
challenges requires proactive measures to 
mitigate the impacts of climate change and 
ensure sustainable food production in a rapidly 
evolving environment [86-87]. 
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Fig. 2. The physiological features of the stay-green plants including photosynthesis, transport 
of photosynthates and source-sink relationship [95] 

 

4.1 Climatic Variation 
 
Anticipated temperature fluctuations indicate a 
projected increase of approximately 20 degrees 
Celsius in average global temperatures over the 
next five decades, impacting cereal cultivation 
across diverse geographical locations [90]. By 
the end of the twenty-first century, it is 
anticipated that ambient temperatures could rise 
by 1 to 6 degrees Celsius [91]. This global 
temperature escalation poses a significant threat 
to agricultural productivity, exacerbated by the 
adverse impacts of high temperatures, drought, 
salinity, waterlogging, and mineral toxicity 
associated with heat stress. Heat stress occurs 
when sustained increases in air temperature 
surpass critical thresholds, causing severe or 
irreversible damage to crops used in agriculture 
[92]. Furthermore, elevated soil temperatures 
resulting from higher air temperatures and 
reduced soil moisture levels intensify heat stress, 
posing a substantial risk to crop success [93]. 

4.2 Late Sowing 
 
Numerous studies have highlighted that delaying 
the planting process increases the risk of 
encountering terminal heat stress during the 
critical grain filling phase, which consequently 
leads to a notable decline in grain yield. To 
mitigate these risks, it is recommended to sow 
seeds between the 15th and 25th of November 
to minimize the impact of high temperatures on 
wheat cultivation in the Indo-Gangetic Plain (IGP) 
region [94]. Each day of postponement beyond 
this optimal window presents escalating 
challenges, with documented reductions in crop 
productivity amounting to 36 kg/ha per day                 
for wheat sown after the 30th of November [95]. 
Generally, late seeding exposes wheat               
varieties to prolonged periods of elevated 
temperatures, resulting in shortened                  
periods for heading and maturation, thereby 
compromising the final yield and quality of grains 
[96,97]. 



 
 
 
 

Maity and Shrivastav; J. Adv. Biol. Biotechnol., vol. 27, no. 7, pp. 1196-1211, 2024; Article no.JABB.119331 
 
 

 
1204 

 

 

4.3 Factors Affecting wheat Growth 
 
Wheat, classified within the Poaceae family and 
specifically belonging to the tribe Triticeae and 
genus Triticum, is a self-pollinating annual plant 
that thrives under long-day conditions [99]. 
Globally, wheat holds a paramount position as 
the most vital food crop, occupying a larger 
cultivated area than any other crop on Earth [98]. 
Essential qualities determining wheat's suitability 
for flour production include its protein content, 
milling yield, and rheological properties crucial for 
bread-making [100]. These traits are largely 
influenced by genetic factors and the intricate 
interactions between genotype and environment, 
which can significantly impact the size and 
overall performance of wheat varieties [101]. 
Understanding these genotype-environment 
interactions is pivotal for optimizing agricultural 
practices. Factors such as soil quality, 
atmospheric conditions, and specific plant 
habitats play significant roles in wheat cultivation 
[88]. The selection of wheat cultivars is critical for 
sustainable agricultural management and 
effective economic planning. Crop yield is subject 
to various uncontrollable factors, with climate 
conditions being among the most critical. 
Meteorological parameters such as cloud cover, 
diurnal temperature fluctuations, precipitation 
patterns, average temperatures, and humidity 
levels are pivotal considerations [89]. Wheat 
cultivation is not continuous throughout the               
year in any country, and seasonal and                   
regional variations must be carefully                 
considered, particularly in regions like Pakistan 
where agricultural practices are sensitive                    
to climate changes. Adapting to evolving                     
climate factors is essential for                              
maintaining and enhancing wheat production 
efficiency amidst changing environmental 
conditions. 
 

5. FUTURE ASPECTS OF HEAT STRESS 
AND TOLERANCE MECHANISMS IN 
WHEAT 

 
Understanding and mitigating the impacts of heat 
stress on wheat (Triticum spp.) remains a critical 
challenge in agriculture, particularly in the 
context of climate change. As temperatures rise 
globally, the frequency and intensity of heat 
stress events are projected to increase, posing 
significant threats to wheat production worldwide. 
This review explores current research on heat 
stress and tolerance mechanisms in wheat and 
outlines future directions for research and 

application to ensure food security in a changing 
climate. 
 

5.1 Genetic and Breeding Strategies 
 
Genetic diversity plays a crucial role in 
determining the heat tolerance of wheat varieties. 
Future research should focus on identifying and 
harnessing genetic markers associated with heat 
tolerance traits such as stay-green phenotypes, 
enhanced antioxidant capacity, and efficient 
photosynthesis under high temperatures. 
Advanced genomic technologies, including 
genome-wide association studies (GWAS) and 
marker-assisted selection (MAS), offer promising 
avenues to accelerate the breeding of heat-
tolerant wheat varieties [71]. Integration of 
genomic information with phenotypic data from 
field trials under heat stress conditions will 
enable breeders to develop wheat cultivars that 
maintain high yields and quality under 
challenging environments. Furthermore, 
exploring wild relatives of wheat for novel heat 
tolerance genes and traits could expand the 
genetic base of cultivated wheat and enhance 
resilience to future climate scenarios. 
 

5.2 Physiological and Molecular 
Mechanisms 

 
Elucidating the physiological and molecular 
mechanisms underlying heat stress tolerance in 
wheat is essential for targeted breeding efforts. 
Key mechanisms include the regulation of heat 
shock proteins (HSPs), antioxidants, and 
osmoprotectants to mitigate oxidative stress and 
protein denaturation under high temperatures 
[72]. Future research should focus on 
understanding the interplay between these 
mechanisms and their integration into metabolic 
pathways that support growth and reproduction 
under heat stress. Advances in omics 
technologies, such as transcriptomics, 
proteomics, and metabolomics, provide powerful 
tools to unravel complex gene networks and 
metabolic pathways involved in heat stress 
response. Integrative analyses of multi-omics 
data will enhance our understanding of wheat's 
adaptive responses to heat stress and facilitate 
the identification of molecular targets for genetic 
improvement. 
 

5.3 Climate-Smart Agricultural Practices 
 
Adopting climate-smart agricultural practices is 
crucial for mitigating the impacts of heat stress 
on wheat production. Future research should 
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emphasize the development and adoption of 
agronomic strategies that enhance soil health 
[103], water-use efficiency, and resilience to 
extreme weather events [102]. Practices such as 
conservation agriculture, precision irrigation, and 
crop diversification can help buffer wheat                 
crops against heat stress while promoting 
sustainable intensification of agricultural 
systems. Furthermore, leveraging digital 
agriculture technologies, including remote 
sensing, unmanned aerial vehicles (UAVs), and 
predictive modeling, can provide real-time                  
data on crop health and environmental 
conditions. Integrating these technologies                   
with decision support systems will                           
enable farmers to make informed                   
management decisions, optimize resource 
allocation, and mitigate the risks associated with 
heat stress. 
 

5.4 Climate-Resilient Crop Management 
 
Effective crop management practices tailored to 
specific agro-ecological zones and climatic 
conditions are essential for enhancing wheat 
resilience to heat stress. Future research should 
focus on optimizing planting dates, cultivar 
selection, and nutrient management strategies to 
minimize heat stress impacts on crop 
development and yield [104]. Implementing heat-
tolerant cultivars in combination with adaptive 
management practices can enhance the 
resilience of wheat production systems to climate 
variability. Additionally, exploring alternative 
cropping systems, such as relay cropping and 
intercropping, that enhance resource use 
efficiency and reduce temperature extremes can 
contribute to sustainable wheat production under 
changing climatic conditions. Integrated pest and 
disease management strategies should also be 
integrated into climate-resilient crop 
management plans to mitigate secondary 
stresses that exacerbate the impacts of heat 
stress on wheat [106]. 
 

5.5 Policy and Socioeconomic 
Considerations 

 
Addressing the challenges posed by heat stress 
in wheat production requires coordinated efforts 
across multiple stakeholders, including 
policymakers, researchers, farmers, and 
consumers. Future research should prioritize 
socioeconomic assessments of climate change 
impacts on wheat production systems, including 
economic modeling of yield losses, market 
dynamics, and food security implications [105]. 

Policy interventions that support investment in 
climate-resilient agriculture, research and 
development, infrastructure development, and 
capacity building are essential for fostering 
adaptive capacity and enhancing the                 
resilience of wheat farmers to climate change. 
Promoting inclusive agricultural policies that 
prioritize smallholder farmers and vulnerable 
communities will be critical for ensuring equitable 
access to technologies and resources that 
enhance heat stress resilience in wheat 
production [107-108]. 
 
In conclusion, addressing heat stress in wheat 
requires a multidisciplinary approach that 
integrates genetics, physiology, agronomy, and 
socioeconomics. Future research should focus 
on advancing genetic and breeding strategies, 
elucidating physiological and molecular 
mechanisms, promoting climate-smart 
agricultural practices, optimizing crop 
management strategies, and advocating for 
supportive policies. By leveraging technological 
innovations and collaborative partnerships,               
we can enhance the resilience of                         
wheat production systems to heat stress and 
ensure global food security in a changing 
climate. 

 

6. CONCLUSION 
 
Wheat plays a crucial role in global agriculture by 
serving as a primary food source for a significant 
portion of the world's population. However, the 
escalating challenge of heat stress, exacerbated 
by global climate change, poses a serious threat 
to wheat productivity. Heat stress adversely 
affects wheat across various growth stages, 
impacting its morphology, physiology, and 
biochemistry. This results in decreased seed 
germination, shortened grain filling periods, and 
ultimately reduced yields, endangering food 
security. Wheat's high sensitivity to temperature 
fluctuations underscores the urgent need for 
effective strategies to enhance heat tolerance. 
Recent advancements in understanding the 
molecular and physiological responses to heat 
stress have identified key mechanisms that 
confer tolerance. Heat shock proteins (HSPs) 
play a critical role in maintaining protein integrity 
under stressful conditions. Furthermore, the 
antioxidative defense system counters oxidative 
damage induced by reactive oxygen species 
(ROS), thereby safeguarding cellular functions. 
Traits such as Stay Green (SG), chlorophyll 
fluorescence, and canopy temperature serve as 
vital indicators of heat tolerance and are 
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instrumental in breeding programs aimed at 
developing resilient wheat varieties. To meet the 
future food demands of a growing global 
population, it is imperative to translate these 
scientific insights into practical agricultural 
strategies. This includes breeding heat-tolerant 
wheat varieties, optimizing planting schedules, 
and implementing agronomic practices that 
mitigate heat stress. Collaborative efforts 
involving researchers, policymakers, and farmers 
are crucial for developing sustainable solutions 
that bolster wheat resilience to heat stress. By 
addressing these challenges, stable wheat 
production can be ensured, thereby contributing 
significantly to global food security amidst climate 
change. Looking ahead, the prevalence of heat 
stress in wheat is expected to increase on a 
global scale due to ongoing global warming 
trends. Heat stress profoundly affects various 
aspects of wheat production, influencing grain 
development, duration, rate, quality, and 
ultimately yield. These effects are genotype-
specific and are influenced by the severity, 
timing, and duration of the stress. Consequently, 
cultivating heat-tolerant wheat varieties is 
indispensable for mitigating the detrimental 
impacts of heat stress. Plants respond to heat 
stress by synthesizing various metabolites, 
including antioxidants and heat shock proteins 
(HSPs). Investigating these metabolites at the 
molecular level is pivotal for comprehending the 
underlying mechanisms governing stress 
tolerance in plants. This research provides 
essential insights for developing effective 
strategies to enhance wheat resilience to heat 
stress, thereby ensuring sustainable agricultural 
productivity in a changing climate. 
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