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Abstract 

 
This study mainly investigates the dynamical analysis of the FitzHugh-Nagumo (FHN) neuron model. Firstly, 

it analyzes the equilibrium stability of the system in the absence of network diffusion. Then, it considers two 

types of network topologies: random networks and higher-order networks. The paper analyzes the Turing 

instability phenomenon in the presence of network diffusion, identifies the critical diffusion coefficient in the 

FHN model that leads to Turing instability, and plots the eigenvalue distribution diagram, known as the 

Turing pattern. The research findings indicate that networks with higher-order connections, as opposed to 

random networks, display a more intricate interplay among neurons. This heightened interconnection 

intensifies the Turing instability phenomenon, amplifying its significance within the system. The stability of 

the dynamical system can be associated with the onset of neurological disorders such as epilepsy, caused by 

abnormal neuronal firing. This analogy facilitates the transfer of content related to the instability of control 

systems to the regulation of neurological disorders. 
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1 Introduction 
 

The FitzHugh-Nagumo neuron model was proposed by FitzHugh [1] and Nagumo et al. [2] which is a 

simplified model capturing the neural excitability of the original Hodgkin-Huxley equation. This model is 

commonly referred to as the FHN model. In recent years, many researchers have explored the dynamics using 

the FHN model [3-6]. Turing theory, originally proposed by Alan Turing for chemical systems, has been applied 

in various fields such as ecology [7-8], physics [9] and others [10-15]. Nakao et al. [10] studied the Turing 

instability of activators and inhibitors in network diffusion, providing a theoretical foundation for subsequent 

research. Hens et al. [11] investigated the propagation of signals in complex networks. Zheng et al. [12,14] 

explored the Turing instability phenomenon in the FHN model and its relevance to short-term memory [15]. 

Parker et al. [16] studied synaptic learning in the FHN model. 
 

The study of the dynamic behavior of a single neuron model can no longer fully explain some of the phenomena 

encountered in biomathematics. Therefore, scholars have shifted their attention to studying the model within a 

network framework. The interconnection between nodes in the network signifies the transfer of information 

between neurons, which is more conducive to studying the dynamic analysis of the model. In recent years, 

higher-order networks have emerged, considering the interaction of three or even more nodes based on the 

original interactions between two nodes. This approach is more beneficial for exploring neurological diseases 

caused by abnormal electrical firing of neurons. Bianconi et al. explored the relevance of higher-order networks 

in [17-18], while review [19] provides a detailed introduction to higher-order network. Gao et al. [20] adopted a 

combination of three models to study Turing instability in a simplicial complex. Indeed, there are higher-order 

relationships beyond two nodes, and group interactions commonly occur in the neurobiology [21], ecology [22]. 

In [23-25], the authors investigated the correlation between epileptic seizures and kinetic behaviors. 
 

In this paper, the dynamical phenomena of the FHN model are examined in random networks and higher-order 

networks. In section 2, the FHN model is analyzed theoretically, including the analysis of origin without 

network diffusion and the analysis of Turing instability in network diffusion. The theoretical results are 

simulated in section 3. Finally, section 4 concludes and offers prospects for further research. 
 

2 Analysis with FitzHugh-Nagumo Neuron Model 
 

2.1 Dynamic analysis with FHN model without diffusive network  
 

In this paper, we investigate the Fitzhugh-Nagumo (FHN) model, characterized by the following equations[1]: 
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= −
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We assume that the parameters , ,a b c  are positive. Here, u  represents the voltage of the membrane, while v  

denotes the recovery variable. Equation (1) implies that the equilibrium point is represented by ( *, *)u v , where 
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We have the Jacobian matrix in the equilibrium point: 
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Hence, the characteristic equation for Equation (1) is obtained as follows: 

 
2 det 0.trJ J − + =             (2) 

 

And  

 
2

2

3 * 2(1 ) *,

det (3 * 2(1 ) * ) .

trJ a c u a u

J c u a u a b

= − − + −

= − − − +
 

 

By applying the Routh-Hurwitz criterion and the stability theorem, we can determine the range within which the 

equilibrium point of the system exhibits asymptotic stability. Initially, we study the FHN model without a 

diffusive network. 

 

Through analyzing the Jacobian matrix corresponding to the equilibrium point in the system, we can obtain the 

stability analysis of the neuron model: 

 

Theorem 1. When we have b ac , the ( )3 0,0E = is saddle node. 

 

Proof:  By substituting the equilibrium point value into the Jacobian matrix, we derive the following expression.  

 

3

1
E

a
J

b c

− 
=  

− 
 

 

And we have the 𝐸3  is saddle node when we have 
3

det 0EJ b ac= −  , consequently, theorem 1 has been 

satisfied. □ 

 

The stable states of the other two equilibrium points can then be calculated. 

 

2.2 Dynamic analysis with FHN model in diffusive network 
 

Neural networks are thought to be necessary for information transmission and integration. In this section, we 

give the instability analysis of network systems. In Eq (3), the expression of ( , )f u v  and ( , )g u v  equals to Eq(1), 

1d  and 
2d  represent the dfiffusion coefficient of u  and v , respectively. 
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L  is the Laplacian matrix in the network, the matrix element is computed as: 
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,
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A  is the adjacent matrix in the network, ik is the degree of node i . ij  represent the Kronecker product, once 

node i  and node j  are connected, we have 1ij = . The characteristic equation for the Laplace matrix is: 
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Where ( )  is the Laplacian eigenvector and  is the eigenvalue. Therefore, we have the characteristic 

equation of Eq (3) is: 
 

2 ( ) ( ) 0.P Q    −   +  =            (5) 

 

And 
 

1 2

2

1 2 1 2

( ) ( ),

( ) ( ) ( ).

u v

v u u v v u

P f g d d

Q d d d g d f f g f g

 

  

 = + +  +

 =  + + + −
 

 

The solution to this Eq (5) is 
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There is a critical value when Turing bifurcation occurs in the neuronal model: ( ) 0Q  = , Turing instability 

occurs when the following conditions are satisfied: ( )1 2, .       And we have 
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Therefore, we have the following theorem. 
 

Theorem 2. The diffusion coefficient 
2 1k d d= critical condition of Turing bifurcation is: 

 

2 ( ).u ukf c k b cf− = −             (6) 

 

And 23 * 2(1 ) * .uf u a u a= − + − +  

 

Proof: When Turing bifurcation is happened, we have Re 0  , saddle-node bifurcation occurs in the system, 

as ( ) 0Q   . When we take 1 2
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So, we have min( ) 0Q    in the Eq (5), which simplifies to Eq (6). □ 
 

3 Simulation 
 

In this part, we simulate the FHN model in a certain parameter. We set 0.8, 0.5, 0.7a b c= = =  in the Eq (1), we 

have 1 (0.4094,0.2924)E = , 2 ( 0.2094, 0.0558)E = − − , 3 (0,0)E = .  When we take the initial value 

(u,v)=(0.01,0.01). In Fig 1, we show the diagram of the equilibrium point of the Eq (1), the curve containing an 

arrow in the image represents a vector field. Therefore, Fig. 1 shows that this is a bistable system, 3E  is an 

unstable equilibrium point, 1E  and 2E are stable equilibrium point. 
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Then, we show phase diagram and time series diagram of the Eq (1) in the Fig 2, as time goes by, u and v tend 

to stabilize and remain unchanged after a small oscillation amplitude. The equilibrium point remains stable       

in 
1E . 

 

 
 

Fig. 1. Equilibrium point state of Eq (1) 

 

  
(a) (b) 

 

Fig. 2. (a) The phase diagram in Eq (1). (b) The time series diagram of u and v 
 

  
(a) (b) 

 

Fig. 3. Two types of network structure diagram 
(a) Random network. (b) Higher-order network 
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(a) (b) 

 

Fig. 4. The eigenvalues distribution of system (1). (a) and (b) represent the eigenvalues distribution of 

system (1) in the random network and higher-order network, respectively 

 

In Fig. 3, we show the topology of random networks and higher-order networks. The Fig. 3 (a) represent the 

random network with N=10, which indicates that nodes are randomly connected with a certain probability. The 

Fig. 3(b) shows the higher-order network with N=5, which means the interconnection between multiple nodes. 

In the higher-order network, a node is a 0-simplex, a link is a 1-simplex, a triangle is a 2-simplex[17], therefore, 

we have five 0-simplies(nodes), six links(1-simplices) and two triangles(2-simplices)[17] in the Fig. 3 (b).  

 

During the simulation, networks with N=100 nodes were set up, with the interconnections between the nodes 

resembling the structure depicted in Fig. 3. The average degree of nodes in the random network is 1.98, while 

the average degree of the higher-order network is 3.94. The average distance between the two networks is 5.86 

and 3.49, respectively. Figs. 4(a) and 4(b) represent the eigenvalue distribution of system (1) in the random 

network and higher-order network, respectively. The curves in the figure represents the eigenvalue distribution 

of system (1), while the scatter points represent the eigenvalues in the constructed network. The zero axis is 

utilized to distinguish whether Turing instability occurs. Scatter points situated above the zero axis indicate the 

occurrence of Turing instability, whereas the curve below the zero axis indicates that the system is stable. By 

comparing Fig. 4(a) and Fig. 4(b), it can be observed that the phenomenon of Turing instability is more obvious 

in the higher-order network than in the random network. 

 

4 Conclusion 
 

In this paper, we discuss the dynamics analysis of the FHN model, considering the phase diagram and time 

series diagram of a single neuron model, and also considering the Turing instability of the system in the 

presence of network diffusion. 

 

When b ac , theorem 1 gives the condition that (0,0) satisfies the saddle point. Fig. 1 visualizes the 

equilibrium point and its stability in the FHN model. Theorem 2 provides the critical value of Turing instability 

in the FHN model for network diffusion, and Fig. 4 presents simulation results to validate the theory's accuracy. 

 

In conclusion, we explored changes in equilibrium point stability, analyzing the network topology structure. By 

comparing the two network structures depicted in Fig. 3, it becomes evident that the connections between 

neurons in the higher-order network are closer, resulting in relatively denser clusters formed by neurons. The 

disparity in network structure leads to a higher number of nodes experiencing Turing instability in the higher-

order network. The research indicates that the Turing instability phenomenon becomes more pronounced as the 

network's topology becomes more complex and the connections between nodes become more compact. 

 

In [25], the authors point out that the diffusion of epilepsy undergoes phase transition, leading to cognitive 

impairment. They emphasize that studying the factors affecting this diffusion is of great value for the 

development of new treatments. This paper analyzes the dynamic stability of the network and examines 

diffusion-induced Turing instability, comparing differences between two network structures. These findings can 
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be combined with specific data in future studies. The transmission of information in the neuronal model is not 

only related to the time delay, but also to the electromagnetic field stimulus and synapse. Therefore, in future 

research, we will further study the dynamic behavior of the external stimulus and its impact on the network 

model. 
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