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Abstract: The success of artificial intelligence and machine learning is an incentive to develop new
algorithms to increase the rapidity and reliability of medical diagnosis. Here we compared different
strategies aimed at processing microscope images used to detect anti-neutrophil cytoplasmic anti-
bodies, an important vasculitis marker: (i) basic classifier methods (logistic regression, k-nearest
neighbors and decision tree) were used to process custom-made indices derived from immunoflu-
orescence images yielded by 137 sera. (ii) These methods were combined with dimensional reduc-
tion to analyze 1733 individual cell images. (iii) More complex models based on neural networks
were used to analyze the same dataset. The efficiency of discriminating between positive and nega-
tive samples and different fluorescence patterns was quantified with Rand-type accuracy index,
kappa index and ROC curve. It is concluded that basic models trained on a limited dataset allowed
for positive/negative discrimination with an efficiency comparable to that obtained by conventional
analysis performed by humans (0.84 kappa score). More extensive datasets and more sophisticated
models may be required for efficient discrimination between fluorescence patterns generated by
different auto-antibody species.

Keywords: artificial intelligence; ANCA; immunofluorescence; vasculitis; image analysis;
myeloperoxdase; proteinase 3

1. Introduction

Potential of artificial intelligence to improve medical practice. The steady growth of the
diversity, power and cost of therapeutic tools is an incentive to attempt to increase the
precision of diagnosis without a parallel increase of expenses. The spectacular progress of
computer-based methods, referred to as artificial intelligence (AI) or machine learning
(ML), may be of considerable help in this respect by allowing for the extraction of maximal
information from biological data with optimal rapidity and minimal recourse to biological
experts. Despite initial disappointment several decades ago along this line [1], the tremen-
dous progress of machine learning algorithms has resulted in a steady development of
the use of Al in medicine [2], whether to process large datasets generated by multi-omic
methods in order to elaborate general prediction algorithms [3], to identify new markers
of clinical interest [4] or to analyze the output of standard biological tests performed on
individual patients in order to achieve more rapid, more reliable and less costly diagnoses

[5].
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A representative example: use of fluorescence microscopy for autoimmunity diagnosis. Indi-
rect immunofluorescence has long been considered an important tool, and even a so-
called gold standard, to detect anti-nuclear antibodies (ANAs) associated to severe condi-
tions such as systemic lupus erythematosus [6,7], or anti-neutrophil cytoplasmic antibod-
ies (ANCAs), which are associated with a number of vasculitis-involving syndromes [8].
The basic principle consists of exposing fixed cells to patients’ sera and looking for the
presence of auto-antibodies by microscopical observation of slides labelled with fluores-
cent anti-immunoglobulin antibodies. ANAs are usually detected on Hep-2 cells, and AN-
CAs on polymorphonuclear leukocytes. An experienced pathologist is required to recog-
nize specific patterns revealing the presence of suspected antibodies. Thus, the examina-
tion of fluorescence patterns on ethanol-fixed leukocytes may reveal so-called cellular-
type ANCAs (C-ANCAs), with a cytoplasmic pattern usually associated with anti-pro-
teinase 3 antibodies, or perinuclear-type ANCAs (P-ANCAs), usually associated with
anti-myeloperoxidase antibodies [9]. Other patterns may be due to ANAs or antibodies of
other specificities that may be indicative of different pathological situations with different
therapeutic implications [10,11]. The well-recognized finding [12-14] that inconsistencies
may occur between different laboratories is a strong incentive to attempt to standardize
the processing of immunofluorescence images [15].

Computer-assisted image classification. Two main strategies may be considered. The ear-
liest approach consisted of defining, measuring and processing numerous so-called hand-
crafted texture parameters [16,17]. Classification could then be performed by processing
these parameters, also called attributes or features, with well-established ML algorithms
such as k-nearest neighbors (KNN), support vector machines (SVM) or random forest [18].
Classification efficiency was essentially dependent on the quality of image parameters
[19], and reported models might include more than one thousand parameters [16] and
make use of advanced mathematical concepts [20]. More recently, the outstanding pro-
gress of Al has made it an attractive prospect to use more potent algorithms, such as neural
networks, to perform both feature extraction and classification. This so-called deep learn-
ing approach has indeed met with impressive success in important domains such as text
or facial recognition [21,22]. Further, the availability of these algorithms is strongly in-
creased by the development of open access platforms, such as scikit-learn (http://scikit-
learn.org accessed on 10th march 2022) or tensor flow (https://www.tensorflow.org/ ac-
cessed on 15th october 2023), that include exhaustive online documentation and the use
of which is facilitated by excellent written tutorials [23-25]. Accordingly, these platforms
are currently used in state-of-the-art research projects [26,27].

Quantification of the efficiency of image classification. An essential requirement to foster
progress is to make use of objective tools for measuring the efficiency of different classifi-
cation methods. The fraction of accurate predictions, which may be designated “predic-
tive accuracy” (pa), is a widely used and fairly intuitive reporter of the efficiency of binary
classification [12]. However, it may provide a less appropriate measure of the efficiency of
multiclass data partition, which may be more precisely represented by parameters such
as Rand index [28]. Also, a calculated classification accuracy may be deceptive. Indeed, if
an algorithm is used to detect positive samples in a batch of sera that are mostly negative —
a quite common situation—a very high accuracy may be obtained by classifying all sam-
ples as negative! A widely used correction [29] consists of calculating the accuracy increase
provided by a model as compared to random agreement following a simple equation,
yielding the so-called Cohen kappa index.

ka = (pa — random pa)/(maximum pa - random pa) €))]

where ka is for kappa index, random pa is the precision accuracy corresponding to a ran-
dom choice, and maximum pa is the precision provided by a fully exact model. This index
has been used in numerous reports of diagnostic accuracy [13,30,31]. It was suggested that
that the agreement be considered either moderate, substantial or perfect when kappa index
is, respectively, higher than 0.4, 0.6 or 0.8 [29]. It must be kept in mind that this index is
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dependent on diagnostic criteria as well as the specific features of the sample population
used to perform the comparison between a given model and the gold standard. It may
thus be appropriate to mention “kappa-type measures” [29] and give details on the exact
algorithm used to calculate kappa index. Further, a more exhaustive account of the effi-
ciency of a method is provided by plotting sensitivity (i.e. the fraction of positive samples
that are classified as positive) versus one minus specificity (where specificity is the fraction
of negative samples that are classified as negative). This is called the receiver—operator-
characteristic (ROC) curve [32], and the model efficiency is expressed as the area under
the curve (auc) that is expected to be between 0.5 (corresponding to a random classifica-
tion) and 1 (corresponding to a perfect classification). It is important to recall that this
curve is dependent on the population used to perform the comparison. In a recent meta-
analysis of 56 reports [33], the minimal auc value required for a test to be considered good
or very good ranged between 0.75 and about 0.95. Also, it may be useful to use an index
suited to both binary and multilabel classification. A Rand-type index corrected for ran-
dom agreement elaborated by the scikit-learn team was found convenient in a recent
study [34]. This index will be designated here as corrected predictive accuracy (cpa). As
shown below, this was found to be tightly related to pa, kappa index and auc (see Section
4.1).

Current status of automated microscopic-based autoimmunity diagnosis. The recourse to
human analysis for ANA or ANCA detection is well known to raise several difficulties,
such as discrepancies between different readers or difficulty with standardizing tests for
certification of medical laboratories [15,35]. Automatic methods based on hand-crafted pa-
rameters have long been elaborated to address this problem [16,36]. This allows for the
development of commercially available systems that reliably perform simple tasks such
as discrimination between positive and negative samples [37]. Thus, a simple algorithm
elaborated in our laboratory allowed for safe discrimination between ANA-positive and -
negative samples with a kappa coefficient of 0.92 [31], and a comparison of 6 commercial
systems yielded an auc of order 0.95 for this task [37]. However, the recognition of specific
patterns appeared more challenging, with a recognition efficiency of commercial systems
varying between about 40% and 85% [37]. More recently, a combination of numerical fea-
ture engineering and ML allowed ANAs to be partitioned into 5 classes with an auc of 0.95
[20]. Positive/negative discrimination of ANCAs was achieved by a commercial system
with pa of 0.86 [13]. However, deep learning based methods displayed impressive pro-
gress and, as recently reviewed [12], numerous reports have described the application of
neural networks to the recognition of ANA patterns, and these have been recently found
to outperform traditional methods. Thus, traditional texture-based methods were found
to yield 0.93 pa as compared to 0.95 found with InceptionResnetV2, a recently described
convolutional network [18,38]. In another study, the capacity of 6 public convolutional
networks to classify ANAs was studied: comparison with experienced readers yielded
kappa indices between 0.63 and 0.82 (1985 samples). Interestingly, kappa index was only
0.528 when experienced and beginner users were compared [17].

However, ANCA detection may be considered more demanding, since neutrophils
display more complex nucleus shapes than Hep-2, which is used for ANA detection
[30,35]. Also, while immunofluorescence studies performed for ANA detection are carried
out with the Hep-2 cell line, neutrophils used for ANCA detection may display substantial
heterogeneity (see Section 4.2).

Purpose of the present report. Our aim was to present a detailed description of the po-
tential of basic machine learning tools to classify immunofluorescence images used for
ANCA detection. We first built a dataset including 1733 cell images obtained by pro-
cessing 137 sera. Two strategies were followed. First, microscopic images were used to
extract four features suggested by biological experience and assess the classification effi-
ciency of simpler machine learning tools including logistic regression, k nearest neighbors
classifier and decision tree. Secondly, cell images (50 x 50 pixels) were subjected to indi-
vidual analysis with aforementioned models and more complex neural networks. It was
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concluded that kappa scores higher than 0.8 could be obtained for discrimination between
positive and negative samples with a limited dataset and fairly simple tools. However,
our preliminary attempts suggest that achieving efficient pattern classification will require
a more extensive dataset in order to select and to train more recent and sophisticated mod-
els. Currently available and promising strategies are described in the discussion.

2. Results

Representative cell images are shown in Figure 1.

Figure 1. Representative microscopic images. Ethanol-fixed neutrophils were processed for immu-
nofluorescence with a serum positive for C-ANCA (A,B) or P-ANCA (C,D) and DAPI (A-C) or FITC
(C,D) were revealed by fluorescence microscopy. Bar =10 pm.

2.1. Combination of Biologically Inspired Indices and Machine Learning

Data were first used to perform a binary classification between ANCA-positive and -
negative samples. Secondly, we tried to discriminate between immunofluorescence pat-
terns.

2.1.1. Discrimination between Positive and Negative Samples with Full Image-Related
Indices

First, full images (encompassing entire microscopic fields) generated with individual
sera were processed to derive four quantitative indices that were felt to have a possible
relevance to ANCAs, as explained in Section 4.4.1. This yielded a dataset comprising 137
samples that were classified as negative (102/137) or positive (35/137) by conventional
analysis. This dataset was randomly split 100 times into a training set (102 samples) and a
testing set (35 samples). As suggested by a previous comparison of the efficiency of eight
standard algorithms used to analyze limited datasets [34], we selected three fairly simple
algorithms: logistic regression (LR), k-nearest neighbors (KNN) and decision trees (DT).
The prediction accuracy (pa), corrected prediction accuracy (cpa) and area under ROC
curve (auc) obtained on training and testing sets after training on training sets are shown
in Table 1.

Table 1. Discrimination between ANCA-positive and -negative sera by processing a 4-parameter
dataset.

Analytic Tool

Prediction Accuracy Corrected Prediction = Area under ROC

Dataset (pa) Accuracy (cpa) Curve (auc)

Logistic regression

train 0.92 +/-0.002 0.68 +/—0.006 0.95 +/-0.001
test 0.91 +/- 0.004 0.64 +/-0.014 0.95 +/- 0.004
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Nearest neighbors training 0.93 +/- 0.002 0.73 +/- 0.007 0.88 +/-0.003
(3 neighbors) testing 0.89 +/- 0.005 0.56 +/- 0.015 0.81 +/-0.007
Decision tree training 0.96+/-0.002 0.83 +/-0.006 0.94 +/-0.003

(maximum depth: 3) testing 0.89 +/-0.005 0.56 +/-0.016 0.84 +/- 0.007
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With indirect immunofluorescence, 137 sera were assayed for ANCAs and classified as nega-
tive (102/137) or positive (35/137) after conventional reading by an experienced biologist. Digitized
images of microscopic fields were processed with a computerized algorithm yielding 4 quantitative
parameters. The obtained dataset was then randomly split 100 times between a training set (102
images) and a testing set (35 images). The classification efficiency of three standard classifiers was
then assayed on the training and testing sets after training on the training set. Mean results of accu-
racy indices are shown +/- standard error of the mean.

Representative ROC curves are shown in Figure 2.
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Figure 2. ROC curves. With indirect immunofluorescence, 137 sera were assayed for ANCAs and
classified as negative (102/137) or positive (35/137) after conventional reading by an experienced
biologist. Digitized images of microscopic fields were processed with a computerized algorithm
yielding 4 quantitative parameters. The obtained dataset was then randomly split between a training
set (102 images) and a testing set (35 images). ROC auc parameters were, respectively, 0.856 (A),

0.875 (B) and 0.838 (C).

While classification efficiency might be considered fairly good as compared to other
studies, efficiency parameters were significantly lower than one. Also, LR significantly
outperformed KNN and DT (p = 0.00013). It was important to explore different means of
improving this situation.

1.  We tried a simple neural network (multilayer perceptron) as a more elaborate model:
classification efficiency was not improved (testing cpa = 0.59, test auc = 0.83), in ac-
cordance with our earlier conclusion that simpler ML models were better suited to

processing limited datasets [34].

2. Since ML is considered fairly “data hungry” [39], it was of interest to ask whether an
insufficient dataset size (137 samples) might be an important cause of prediction er-
rors. This question was addressed by measuring the dependence of LR classification
efficiency on sample number. As shown in Figure 3, index-based classification effi-
ciency was only weakly dependent on the dataset size.
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Figure 3. Dependence of index-based classification efficiency on dataset size. A dataset of 137 serum sam-
ples was randomly reduced to 20, 40, 60, 80, 100 or 120 samples, and the efficiency of positive/neg-
ative discrimination by LR was calculated. This process was repeated 100 times for each sample
number, and mean cpa is shown. Vertical bar length is twice the SEM.

3.

The behavior of ML algorithms is dependent on so-called hyperparameters that are
often ignored, since default values are usually satisfactory. It was checked that the
classification efficiency of LR could not be improved by changing LR regularization
parameter C . As expected, the default value (C = 1) was found satisfactory. Reducing
regularization resulted in significant increase of training cpa, with a decrease of test-
ing cpa, which was indicative of overfitting. Increasing regularization resulted in con-
comitant decrease of cpa on training and testing datasets .

Aforementioned results strongly suggested that classification efficiency was limited
by the intrinsic capacity of indices used to quantify images, in line with conventional
wisdom [19]. Since the first index was derived from our experience of automatic de-
tection of anti-nuclear antibodies [15,31], we tested the discrimination provided by
this sole index, based on empirical determination of a threshold value separating pos-
itive from negative samples. Our dataset was randomly split 100 times between a
training set (102 samples) and a testing set (35 samples). The average cpa parameters
obtained on the training and testing sets were, respectively, 0.705 +/- 0.004 SE and
0.701 +/- 0.013 SE, which were slightly but significantly (p = 0.0016) higher than effi-
ciency parameters shown in Table 1. This supports the well-known fact that addition
of improper features may hamper LR efficiency.

2.1.2. Automatic Discrimination between Several Fluorescence Patterns

It was felt to be of interest to determine whether ML could help us discriminate be-

tween different fluorescence patterns. We investigated the possibility of automatic
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discrimination between the 9 C-ANCA-positive and 26 P~ ANCA- or ANA-positive images
yielded by the 35 positive sera included in our dataset. Interestingly, a preliminary study
revealed that none of the four aforementioned indices individually allowed for any dis-
crimination between both groups: indeed, the efficiency parameter cpa obtained by sepa-
rating both groups was, respectively, 0.0447 +/-0.1530 SD, 0.0545 +/- 0.2101 SD, 0.0300 +/-
0.2127 SD and 0.0252 +/- 0.1542 SD with indices il to i4. However, when the four-param-
eter dataset was processed with three ML algorithms, a poor but significant discrimination
between C-ANCA and P-ANCA was obtained. LR and KNN displayed comparable cpa
and significantly (p = 0.00027) outperformed DT. Results are displayed in Table 2.

Table 2. Discrimination by ML processing of 4 indices between cytoplasmic and nuclear patterns.

Analytic Tool Dataset Prediction Accuracy = Corrected Accuracy Area under ROC
Curve (auc)

Logistic regression training 0.84 +/-0.006 0.32 +/-0.024 0.79 +/- 0.006
testing 0.77 +/-0.013 0.17 +/- 0.030 0.78 +/—0.030
Nearest neighbors training 0.85 +/—0.004 0.39 +/-0.016 0.71 +/- 0.008
(3 neighbors) testing 0.79 +/-0.011 0.23 +/-0.028 0.66 +/-0.015
Decision tree training 0.94 +/- 0.004 0.73 +/-0.016 0.91 +/- 0.006
(maximum depth: 3) testing 0.68 +/-0.014 0.04 +/-0.018 0.57 +/-0.017

Thirty-five ANCA-positive sera were concluded to yield a cytoplasmic (9/35) or perinuclear/nuclear
(26/35) pattern after conventional reading by an experienced biologist. Digitized images of micro-
scopic fields were processed with a computerized algorithm yielding 4 quantitative parameters. The
obtained dataset was then randomly split 100 times between a training set (26/35) and a testing set
(9/35). The classification efficiency of three standard classifiers was then assayed. Mean results of
accuracy indices are shown +/- standard error of the mean.

Finally, ML was used to process the whole 137 sample dataset in order to try and
discriminate between four groups of interest: negative (102/137), C-ANCA (9/137), P-
ANCA (21/137) or atypical patterns due to ANAs (5/137). As shown in Table 3, a substan-
tial discrimination was observed, and LR significantly outperformed KNN (p = 0.007) and
DT (p = 024) as found by comparing testing cpa.

Table 3. Discrimination between four fluorescence patterns by processing a 4-parameter dataset.

Prediction Accuracy

Analytic Tool Dataset (pa) Corrected Prediction Accuracy (cpa)
Logistic regression training 0.87 +/-0.002 0.66 +/-0.005
testing 0.82 +/- 0.005 0.61 +/-0.012
Nearest neighbors training 0.90 +/- 0.002 0.75 +/- 0.006
(3 neighbors) testing 0.81 +/-0.006 0.56 +/- 0.014
Decision tree training 0.90 +/- 0.002 0.80 +/-0.005
(maximum depth: 3) testing 0.79 +/-0.007 0.57 +/-0.013

A total of 137 sera were assayed for ANCAs with indirect immunofluorescence and catego-
rized as negative (102/137), C-ANCA (9/137), P-ANCA (21/137) or anti-nuclear (5/137) after conven-
tional reading by an experienced biologist. Digitized images of microscopic fields were processed
with a computerized algorithm yielding 4 quantitative parameters. The obtained dataset was then
randomly split 100 times between a training set (102 images) and a testing set (35 images). The clas-
sification efficiency of three standard classifiers was then assayed on the train and testing sets after
training on the training set. Mean results of accuracy indices are shown +/- standard error of the
mean.

The relatively small difference between performance parameters obtained with three
different algorithms and impossibility to improve agreement with hyperparameter adap-
tation suggested that the limitation was essentially due to an insufficient discriminative
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power of the four-feature description used to account for image properties. However,
these results were consistent with the widespread hypothesis that a simple strategy for
achieving automatic classification of ANCA-related images might consist of adding an
increasing number of texture parameters and automatically combining them with simple
ML algorithms. Indeed, ANA pattern analysis was performed with a commercial system
involving 1400 object-describing parameters [40]. However, recent progress of Al was an
incentive to look for a fully autonomous way of analyzing immunofluorescence images.
Results obtained along this line are shown below.

2.2. Use of Al for Autonomous Analysis of Fluorescence Images

Two strategies were considered: (i) combining data reduction with fairly simple ML
algorithms. (ii) using neural networks for complete analysis.

2.2.1. Use of Data Reduction to Process Individual Cell Images

The description of analyzed microscope fields with only four global parameters was
replaced with the use of a 2500-parameter set (50 x 50 pixel intensities) to account for each
cell image contained in a given microscope field. Fifty-one sera were used to build a da-
taset of 1733 individual cell images (513 negative, 309 C-ANCA, 789 P-ANCA and 122
atypical patterns that could be ascribed to ANAs).

In the first step, the capacity of aforementioned three standard ML algorithms to an-
alyze these images without any data reduction was studied. As shown in Table 4, param-
eter cpa obtained for positive/negative discrimination was fairly low. Since the important
difference between training and testing cpa was indicative of overfitting that might be as-
cribed to an excessive number of features as compared to the sample number, we used
principal component analysis as a standard way of reducing the number of parameters.
As shown in Table 4, this resulted in a significant increase of efficiency parameters, since
the highest testing auc was raised from 0.86 to 0.92, and the highest testing cpa was in-
creased from 0.35 to 0.46 (p < 10-). Representative ROC curves are shown in Figure 4.
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Figure 4. Pos/Neg discrimination of 2500-pixel images with logistic regression. A set of 1733 cell images
(1200 positive, 533 negative) was randomly split into a training set and a testing set for pos/neg
discrimination. Principal component analysis was used for data reduction by retaining 20, 5 or 2
components. ROC curves obtained with LR are shown ((A): 2500 parameters, (B): 20 components,
(C): 5 components, (D): 2 components).

Table 4. Discrimination between ANCA-positive and -negative sera by processing 2500-pixel im-

ages.
Number of Parameters Discrimination Param- Logistic Regression Nearest Neighbors Decision Tree (Maxi-
eter (3 Neighbors/Scaling) mum Depth 3)
cpa training 1.0 +/-0.0 0.65 +/-0.019 0.64 +/-0.030
2500 (no pca) cpa testing 0.31 +/-0.038 0.35 +/-0.046 0.35 +/-0.047
auc testing 0.86 +/-0.014 0.76 +/- 0.025 0.78 +/-0.030
cpa training 0.48 +/- 0.015 0.68 +/—0.019 0.58 +/- 0.018
20 cpa testing 0.45+/-0.043 0.42 +/- 0.045 0.38 +/-0.047
auc testing 0.92 +/-0.011 0.80 +/-0.021 0.80 +/- 0.025
cpa training 0.46 +/-0.015 0.66 +/-0.018 0.54 +/- 0.024
5 cpa testing 0.45 +/- 0.044 0.39 +/- 0.041 0.40 +/- 0.050
auc testing 0.92 +/-0.001 0.79 +/-0.020 0.81 +/-0.031
cpa training 0.43 +/-0.016 0.60 +/-0.017 0.49 +/-0.018
2 cpa testing 0.43 +/-0.043 0.35 +/- 0.039 0.38 +/—0.0045
auc testing 0.91 +/-0.012 0.77 +/-0.021 0.80 +/- 0.0027

A total of 1733 images from 51 microscope fields were assayed for ANCAs with indirect im-
munofluorescence and categorized as negative (513/1733) or positive (1220/1733) after conventional
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reading by an experienced biologist. Digitized images of microscopic fields (50 x 50 pixels) were
analyzed as 2500-parameter objects or preprocessed with principal component analysis for retaining
the main 20, 5 or 2 components. Datasets were then randomly split 100 times between a training set
(1299 images) and a testing set (434 images). Three simple algorithms were then trained and assayed
for discriminative efficiency. Mean values of corrected predictive accuracy (cpa) for training and
testing datasets and area under ROC curve (auc) for testing datasets are shown +/- standard devia-
tion.

The possibility of discriminating between nuclear/perinuclear and cytoplasmic fluo-
rescence was also studied. As shown in Table 5, standard algorithms displayed a poor
capacity to discriminate between both patterns, since the maximum cpa value was 0.11
when the algorithms were used on full images or on the first 20 principal components.
KNN significantly outperformed LR and DT (p < 1079).

Table 5. Discriminating between cytoplasmic and nuclear patterns by processing 2500-pixel cell
images.

ML Algorithm

Prediction Accuracy Corrected Accuracy Area under ROC

Dataset

(pa)

(cpa) Curve (auc)

Logistic regression

Nearest neighbors

(3 neighbors, scaling)

Decision tree

(maximum depth: 5)

training full
testing full
training 20c
testing 20c
training full
testing full
training 20c
testing 20c
training full
testing full
training 20c
testing 20c

1.00 +/- 0.00 SD
0.67 +/-0.024 SD
0.76 +/-0.008 SD
0.75 +/-0.020 SD
0.84 +/-0.006 SD
0.71+/-0.022 SD
0.85 +/-0.007 SD
0.73 +/-0.019 SD
0.83 +/-0.015 SD
0.73 +/-0.023 SD
0.81 +/-0.013 SD
0.55 +/-0.023 SD

1.00 +/- 0.00 SD
0.04 +/- 0.022 SD
0.06 +/- 0.0185D
0.03 +/- 0.021 SD
0.40 +/- 0.017 SD
0.08 +/- 0.034 SD
0.42 +/- 0.023 SD
0.11 +/~ 0.033 SD
0.34 +/- 0.032 SD
0.09 +/- 0.038 SD
0.28 +/- 0.048 SD
0.07 +/- 0.036 SD

1.00 +/- 0.00 SD
0.54 +/- 0.019 SD
0.53 +/- 0.009 SD
0.52 +/- 0.011 SD
0.74 +/- 0.011 SD
0.55 +/-0.025 SD
0.74 +/- 0.012 SD
0.58 +/-0.022 SD
0.68 +/-0.33 SD
0.56 +/-0.023 SD
0.65 +/- 0.036 SD
0.55 +/-0.023 SD

A total of 1220 cell images classified as C-ANCA (309/1220) or with a nuclear/perinuclear pat-
tern (911/1220) after conventional reading by an experienced biologist were processed with three
standard ML algorithms. The obtained dataset was then randomly split 100 times between a training
set (915/1220) and a testing set (305/1220). The classification efficiency of three standard classifiers
was then calculated either on full sets of pixel intensities (2500 pixels per image) or using the first 20
components yielded by principal component analysis. Mean results of accuracy indices are shown
+/- standard deviation.

Since images were expected to include the information required to discriminate be-
tween C-ANCA and P-ANCA, it was of obvious interest to try and determine why stand-
ard ML algorithms were unable to select the relevant information. A likely possibility
might be that each serum generated a particular fluorescence pattern in addition to a “gen-
eral” cellular or nuclear localization. Training would thus result in a capacity of an ML
model to recognize patterns specific to the particular antibody set of each tested serum.
This possibility was addressed by visualization of the first two principal components of
images displayed by six sera (3 cANCA, 3 pANCA), as shown in Figure 5. A clearcut sep-
aration could be observed between images generated by different sera of similar (either
C-ANCA or P-ANCA) specificity.
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Figure 5. PCA visualization of the clustering of cell images labelled with the same serum. Six microscope
images generated with 6 sera (3 C-ANCA, 3 P-ANCA) yielded 190 individual cell images. Pixel in-
tensities were subjected to principal component analysis, and the first two components are dis-
played. Clearly, C-ANCA (blue) and P-ANCA (red) displayed marked overlap, but images corre-
sponding to the same serum displayed significant separation.

This supported the need for a more refined ML algorithm allowing for precise selec-
tion of desired features. In view of the remarkable success obtained with neural networks
in the field of image analysis, it was deemed appropriate to use a number of neural net-
works to analyze our dataset.

2.2.2. Analysis of Full Images with Neural Networks

While recent successes met by neural networks in the field of image analysis were an
incentive to explore the potential of this model class, a major problem is that a neural
network may involve a high number of hyperparameters. First, we used multilayer per-
ceptron as relatively simple models, and the importance of three major hyperparameters

(hidden layer number, hidden layer size and regularization parameter) is shown in Figure
6.
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Figure 6. Dependence of MLLP efficiency on model settings. A series of neural networks with varying
number and size of hidden layers and regularization parameters were used to discriminate between
positive (533) and negative (1200) samples in a set of 1733 images. For each hyperparameter combi-
nation, this set was randomly split between 10 and 40 times into a training and testing set. In another
series of calculations, PCA was used for data reduction. Mean values of efficiency parameters are
shown. Vertical bar line is twice the standard error.

The following conclusions were suggested:

1.  Efficiency parameters displayed limited change in response to fairly extensive varia-
tion of hyperparameters, suggesting a moderate dependence of classification effi-
ciency on the model settings.

2. Parameter cpa calculated on testing sets varied between a minimum value of 0.38 and
a maximum of 0.51 (with kappa score and auc, respectively, equal to 0.67 and 0.85).
Neural network performance was thus better than that achieved with standard ML
models (shown in Table 4).

3. Plots displayed in Figure 6C,D clearly confirmed the risk of overfitting as a conse-
quence of insufficient regularization (C) or excessive number of features (D) as com-
pared to the number of samples, leading to a high cpa training/cpa testing ratio.

These results were an incentive to investigate the capacity of MLP to discriminate
between different fluorescent patterns. When a dataset of 1220 images with cellular (309)
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or nuclear/perinuclear (911) fluorescence localization was studied with a wide range of
hyperparameter settings, the testing cpa ranged between 0 and 0.11, suggesting that this
dataset was insufficient to allow for proper model training, as was also found with simpler
models (Table 5).

An important point is that high cpa values for positive/negative and pattern discrim-
ination of the images of training sets were obtained, since the highest values were, respec-
tively, 0.99 and 0.92. These results suggested the conclusion that ML models were suffi-
ciently versatile to efficiently discriminate between all images, but the classification crite-
ria obtained with autonomous training did not match the biologically significant classifi-
cation, resulting in marked overfitting.

It was important to know whether the fairly modest classification efficiencies dis-
played in Tables 4 and 5 were due to an insufficient size of our dataset. In order to address
this point, we studied the sample number dependence of the classification efficiency of
KNN and MLP. It was considered interesting to know whether our dataset displayed a
specific behavior when compared to others. Therefore, we subjected another dataset to the
same study: we used the public fashion-MNIST database [41], which includes 10 series of
28 x 28 pixel images representing cloth styles. Two classes were selected (T-shirts and
trousers), and varying numbers of random combinations of these two types were pro-
cessed for binary classification. Results are shown in Figure 7, suggesting the following
conclusions: (i) increasing the sample number resulted in a steady increase of testing cpa
under all studied conditions. (ii) Cell image classification was much less efficient than that
of the fashion-MNIST images, suggesting the need for much higher sample numbers. (iii)
A remarkable behavior was displayed by MLP classification of ANCA images subjected
to dimensional reduction: while testing cpa displayed steady increase when sample num-
ber was increased, train scpa first decreased then decreased (Figure 7B), illustrating the
aforementioned possibility that individual samples could be identified on features unre-
lated to pos/neg classification when the sample number was low.

A - Mnist
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Figure 7. Dependence of binary classification on sample number. Two ML models, KNN (3 neighbors)
and MLP (two 50-node hidden layers), were used to process two datasets for binary classification.
(A)—12,000 images (784 pixels each) representing two fashion items (T-shirts or trousers) were ex-
tracted from the fashion-MNIST public database. (B)—1733 images (2500 pixels) representing cells
(positive or negative) immunolabelled for ANCA detection were processed (i) with all pixel
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intensities or (ii) with twenty major components as obtained with principal component analysis.
Both datasets were randomly split one hundred times between a training and a testing set, and mean
values of corrected prediction accuracy (cpa) obtained on train and test data are shown.

A possible reason for the limitation of MLP efficiency is that the localization of indi-
vidual pixels might not be sufficiently apparent in parameter sets organized as 1-dimen-
sional arrays. Indeed, convolutional neural networks may be considered better suited than
networks including only so-called dense layers to detect specific image patterns when
they are trained with 2-dimensional arrays. Thus, we tentatively assayed the capacity of a
series of convolutional neural networks to perform positive/negative classification of 1733
images datasets. Test cpa values of 0.52, comparable with those obtained with MLP, were
obtained. Also, no significant improvement of pattern classification was obtained with the
aforementioned 1200 image dataset.

A possible explanation for neural network limitation might be that differences be-
tween individual sera and cells might generate fluorescence variations overlapping with
the effects of antibody specificity. A simple way of testing this possibility consisted of per-
forming controlled splitting of image sets by ensuring that all images generated by a given
serum were in the same (training or testing) set. Results obtained with this strategy are
shown below.

2.2.3. Combination of Controlled Splitting of Training and Testing Datasets and Serum
Rather than Image Classification

The following two modifications of processing were performed: (i) it was ensured
that all images generated from the same serum fell into the same (training or testing) da-
taset; (ii) after training models on 2500-pixel images as indicated above, sera belonging to
testing datasets were classified as positive or negative according to the highest number of
individual cell images classified as positive or negative.

As shown in Table 6, controlled splitting did not improve individual cell classifica-
tion, but the modified procedure resulted in highly significant improvement of serum
classification, since testing cpa was 0.74 with MLP (the corresponding kappa score was
0.84).

Table 6. Discrimination between ANCA-positive and -negative sera by processing of individual
cell images.

Controlled Cell Prediction Accuracy Corrected Accuracy Cohen Kappa

Model Feature Number ..
Splitting (pa) (cpa) Score
9500 No 0.77 +/- 0.01 SE 0.28 +/- 0.03 SE 0.45 +/- 0.02 SE
KNN Yes 0.77 +/- 0.02 SE 0.28 +/-0.05 SE 0.44 +/- 0.05 SE
20 No 0.79 +/- 0.01 SE 0.32 +/-0.02 SE 0.49 +/- 0.02 SE
Yes 0.89 +/- 0.02 SE 0.57 +/- 05 SE 0.71 +/- 0.04 SE
2500 No 082 +/- 0.01 SE 0.39 +/- 0.03 SE 0.54 +/- 0.03 SE
MLP Yes 0.91 +/- 0.02 SE 0.67 +/- 0.06 SE 0.79 +/- 0.04 SE
20 No 0.82 +/-0.01 SE 0.39 +/-0.02 SE 0.58 +/- 0.02 SE
Yes 0.94 +/- 0.01 SE 0.74 +/-0.05 SE 0.84 +/-0.03 SE

Fifty-one (35 positive, 16 negative) sera were tested for ANCA detection with immunofluores-
cence: 1733 cell images were processed with two machine learning algorithms, k-nearest neighbors
(KNN, n = 3 neighbors) and multilayer perceptron (MLP, one 40-neuron hidden layer), for posi-
tive/negative discrimination. The image dataset was randomly split either without any restriction
(no control) or while ensuring that all images generated with a given sera were gathered in the same
(training or testing) group. This process was repeated 25-fold, and mean values of efficiency param-
eters are displayed together with standard error of the mean (SE). The prediction accuracy was cal-
culated either for each cell (no control group) or for each serum, by classifying each serum as the
most frequent classification of corresponding cell images.
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It was investigated whether this controlled splitting might improve pattern classifi-
cation. However, classification efficiency was not improved —and was in fact significantly
decreased —when this controlled splitting was performed .

3. Discussion

The main purpose of this work was to investigate a fairly simple and well-defined
problem of current medical interest to explore the possibility of autonomous building of
ML models with sufficient reliability to assist and possibly replace biological experts in
analyzing microscopic images. It was hoped that this endeavor might help in identifying
general guidelines, limitations and possible strategies for future progress.

A first conclusion is that currently available ML algorithms autonomously trained on
a fairly restricted dataset were able to perform positive/negative discrimination matching
experienced human analysis, with a kappa score of 0.84, which is considered very good
[17,29]. This simple finding is of actual clinical interest: first, automatic positive/negative
discrimination would be most useful by decreasing current delays in delivering a negative
diagnosis or performing ELISA assays to check positivity. Secondly, experienced readers
could spend more time studying positive samples if they were not asked to analyze neg-
ative ones that usually represent the majority of tested sera.

It must be emphasized that the estimated values of achieved efficiency parameters
may be considered fairly reliable despite the lack of a fully independent validation dataset.
Indeed, average values of efficiency indices were estimated after repeated —up to 100-
fold —splitting of the full dataset, and results shown in Figure 5 and other tests performed
on basic classifiers suggest that these efficiency parameters were not strongly dependent
on model hyperparameters, thus making less likely the possibility that calculated effi-
ciency indices might be artefactually high due to a strong influence of the dataset on pa-
rameter choice. However, as was recently emphasized, there is a need to perform addi-
tional validation tests. Indeed, patients’” demographic properties might exhibit temporal
or local [42,43] changes, thereby hampering model validity through a so-called dataset
shift. Thus, the validity of our results should be checked by studying sera tested in our
laboratory during different periods of time and by organizing multicenter trial.

The second conclusion is that our simple approach did not succeed in safely discrimi-
nating between different fluorescence patterns. Many non-exclusive strategies may be
considered to improve this situation:

Quantitative and qualitative dataset improvement.

1. Our results (e.g., Figure 7) strongly suggest that a quantitative expansion of our data
base is needed to achieve reliable pattern classification. This is in line with the com-
mon opinion that the success of ML is largely due to the mining of large amounts of
data [19,25] (p. 27) [44].

2. The information provided by individual serum samples might be enhanced by per-
forming additional fixation or staining procedures. Indeed, it has long been reported
that the localization of ANCA-related fluorescence is not the same on ethanol- and
paraformaldehyde-fixed cells [9], and it might be more informative to use datasets
including two fluorescence images. Also, nuclear localization provided by DAPI la-
belling could also be inserted in an additional channel. CNNs would be well suited
to analyzing image stacks associated to individual cells, and DAPI staining was used
in recent attempts at ANA classification with ML [17]. Also, it might not be warranted
to increase the complexity and cost of immunofluorescence testing if this did not re-
sult in a very substantial increase of information content.

3. Different image preprocessing procedures might be considered, such as filtering to re-
move noise or replacing image resizing by embedding into larger areas to retain in-
formation relevant to absolute distances.

4. A common way of increasing ML power consists of increasing feature diversity
[45,46]. Thus, it might be rewarding to combine images with other patients’ features.
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However, the need for additional parameters that might not be immediately available
in hospital laboratories would delay computer-assisted analysis, thus hampering
ML-generated rapidity gain. Therefore, specific clinical trials would be needed to val-
idate feature extension.

5. Training a model with a restricted dataset might be improved with data augmentation,
which consists of creating “realistic” data with suitable algorithms. As an example,
the classification of macrophages from microscopic images with simple geometrical
features such as area or circularity was reported to display an accuracy increase from
0.3 to 0.93 when the dataset size was increased one hundred-fold with a custom-made
image generator [47].

3.1. Model Choice

As indicated in the introduction, two main strategies may be considered when ana-
lyzing a given dataset. Processing hand-crafted features with a ML model, or performing
both feature extraction and classification with ML.

1. As shown in the first part of this report (Table 1), the use of biologically inspired
indices is an attractive way of combining biological expertise and Al Indeed, many
commercially available systems successfully use ML algorithms to process extensive
sets of texture parameters. However, the development and continuous improvement
of an algorithm involving more than 1000 parameters [40] may be more difficult to
perform than the autonomous building of ML models. Accordingly, recent compari-
sons between deep learning and a combination of hand-crafted features and simple
ML models such as SVM or random forests supported the superiority of neural net-
works [18,20]. However, it would be an attractive prospect to use ML to improve the
power of selected parameters. While neural networks are often compared to “black
boxes”, theoretical effort is currently underway regarding “interpreting” their behav-
ior [48]. These endeavors might in the future help improve biological intuition and
thereby allow for substantial improvement of so-called hand-crafted features.

2. Results presented in this report revealed a significant but insufficient efficiency of a
combination of data reduction with PCA and simple ML methods to classify 50 x 50
pixel images. Indeed, neural networks may now be considered the gold standard for
image analysis [12], and they are currently the basis of many current reports on ML
classification for medical purposes [49]. However, while more and more powerful
network architectures are continually being reported and tested [17,18,50], model set-
ting and training quality are essential determinants of final performance. Available
strategies will be rapidly listed below.

3.2. Hyperparameter Setting

As exemplified in this report, the performance of a given ML model is dependent on
the choice of hyperparameters. Unfortunately, there is currently no general tool allowing
for the prediction of the best set of models and hyperparameters to solve a given problem,
and the search for such tools is indeed an active field of study [51]. Thus, an empirical search
is needed. This may be performed either by systematic testing on a grid (Figure 7) or by
random attempts. However, an exhaustive study may not be feasible if hundreds of com-
binations have to be tested and the training time is fairly high. As an example, several tens
of hours have been reported to be needed to train complex CNNs, even when a graphic
card was used to increase computing speed [17].

However, hyperparameter choice may be facilitated by some empirical rules, such as
the setting of regularization parameters to provide sufficient versatility to fit training data
without generating overfitting.
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3.3. Improving the Training Process

1. A common means of reducing overfitting consists of stopping the training phase as
soon as the validation error reaches a minimum. While this early stopping procedure
is widely used and intuitively considered reasonable, the identification of an optimal
training duration may warrant further studies [52,53].

2. Another procedure facilitating the training of very complex models, dubbed transfer
learning, consists of using a pretrained model and training only the outer layers to fit
a specific dataset. This method permits the use of highly successful models trained
on public image datasets such as ImageNet [54] with a reasonable computing load
for ANA classification with Hep-2 cells [50,55].

3. An attractive prospect might consist of driving the development of a complex model
through what might be dubbed smart training and yield unexpected performance.
Thus, the development of a convolutional structure in a fully connected network was
achieved by training this network with translation-invariant data [56]. Also, a neural
network was claimed to acquire increased capacity through a special learning
method dubbed meta-learning [57].

Thus, recent successes have led to the conclusion that modern deep neural networks
for image classification have achieved superhuman performance [53], leading to the con-
clusion that the failure in dealing with a given image analysis classification problem might
result from the incapacity to test a sufficient fraction of the overwhelming amount of mod-
els and setting procedures currently available.

An important point that does not fit into the scope of the present study is that in the
near future, Al alone or in combination with human expertise should improve the relia-
bility of diagnosis and medical decision. This might result in an improvement of medical
practice, provided future clinical trials are performed to validate better “gold standards”.
However, due to the possibility of checking immunofluorescence data with ELISA, the
main interest of ML should first be restricted to a gain of rapidity.

4. Materials and Methods
4.1. Patients

This retrospective study was performed on 137 sera sent by clinical departments and
processed in the immunology laboratory of Marseilles public hospitals for the detection
of antineutrophil cytoplasmic antibodies (ANCAs). All samples received within a fixed
period of time were kept without any selection. Serum samples were part of the Marseilles
Biobank (registered as DC 2012_1704), and the study was approved by the medical eval-
uation board and health data committee of Assistance Publique-Hopitaux de Marseille,
Marseille, France and fulfilled local requirements in terms of data collection and protec-
tion (GDPR 2019-133). The laboratory is accredited by the French Cofrac for immunolog-
ical tests (certificate 8-1739).

4.2. Immunofluorescence

ANCAs and their staining patterns (perinuclear, cytoplasmic) were detected by IF on
ethanol-fixed human neutrophil slides (Immuno Concepts, Sacramento, CA, USA) accord-
ing to the supplier’s recommendations, except for the following extended labeling proto-
col : Serum samples diluted in phosphate-buffered saline were added for 30 min at room
temperature (RT). After washing, bound antibodies were labelled by incubation with flu-
orescein isothiocyanate (FITC)-conjugated sheep anti-human immunoglobulin (Immuno
Concepts, CA, USA) for 30 min at RT. Slides were then washed and embedded with a 4,6-
diaminophenylindol (DAPI)-containing medium (Vectashield, Vector laboratories Inc.,
Burlingame, CA, USA) for nuclear staining.

For each patient, two images of the same central microscopic field were automatically
captured with 20x objective at two different excitation wavelengths: 480 nm for FITC stain
and 360 nm for DAPI stain. We used a fully robotized fluorescence microscope (Axio
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Imager M2, Carl Zeiss, Jena, Germany) equipped with an automated 200-slide handling
system (SlideExpress, Marzhduser, Wetzlar, Germany) and with 360-nm and 480-nm
LEDs for excitation (Colibri-2 LED illumination system, Carl Zeiss, Jena Germany). Im-
ages with 1360 x 1024 pixel resolution were captured using a monochrome CCD camera
(ProgRes® MF Cool camera, Jenoptik, Germany) with a pixel size of 6.45 pm 2. Exposure
times for FITC and DAPI captures were 70 ms and 200 ms, respectively. All captured gray-
scale images had an 8-bit-depth and were saved in tagged image file format (TIFF) as pre-
viously described [15].

Images were examined by an experienced biologist and ELISA testing was performed
for diagnosis confirmation when they were classified as positive.

4.3. ELISA Testing

Following standard practice [8], the specificity of samples classified as positive was
checked by looking for anti-myeloperoxidase or anti-proteinase-3 antibodies via enzyme-
linked immunoassay (ELISA, Euroimmune, Liibeck, Germany), according to the sup-
plier’s specifications.

4.4. Image Processing
4.4.1. Calculation of Overall Quantitative Indices

Images were first processed with a previously described system performing auto-
mated image recording and positive/negative ANA classification (ICARE) [31] which was
written in Java as a plugin to Image ] V1.53 [58]. ICARE was supplemented with a specific
custom-made plugin for automatic determination of four quantitative indices that were
felt relevant to the presence of ANCAs. Briefly, the DAPI image was used to define cell
surface as the set of pixels with an intensity at least four times higher than the first peak
on the intensity histogram. Unexpectedly, while this matched the nucleus on Hep-2 cells
(used for ANA detection), it filled whole neutrophil surfaces, likely due to the contorted
nucleus shape and possibly particular cytoplasmic staining properties or this cell popula-
tion. This was used as a basis for the determination of the following four indices:

- Index il is the ratio between the mean intensity on FITC images of pixels classified as
“inside” and “outside”. This was expected to permit discrimination between positive
and negative samples.

- Index 12 is the ratio between the mean FITC intensity of pixels defined as “inside” and
the first peak intensity of the histogram of FITC image.

- Index i3 is similar to i2, but “inside” is defined on DAPI histograms as pixels with an
intensity 16 times higher than that of the first background peak. It was expected that
this region might be closer to actual nuclear regions.

- Index i4 is the correlation between FITC and DAPI pixel intensities in regions defined
as “inside” on DAPI images. It might be hoped that the correlation would be highest
with ANA, lowest with C-ANCA and intermediate with P-ANCA.

Images were simultaneously classified by an experienced pathologist as negative (0),
C-ANCA (1), P-ANCA (2) or atypical/ANA type (3) and processed by ICARE [31]. A file
including 137 samples with 4 indices each was thus prepared for ML processing. This
provided a dataset consisting of 137 samples (102 negative, 9 C-ANCA, 21 P-ANCA, 5
atypical/ANA).

4.4.2. Building Individual Cell Images

Individual cell images were built out of whole microscopic fields according to the
following two-step procedure:

First, cell boundaries were determined on DAPI images with a threshold-based algo-
rithm that has been used for decades in our laboratory [59] and used as a Java plugin for
Image J. The same threshold (60/256) was found to be convenient for all 137 images.
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Secondly, rectangular areas enclosing cell boundaries were resized to 2500 = 50 x 50-
pixel images by plain homothety with a custom-made Python program and stored as CSV
files for further treatment. This allowed for the building of a dataset of 1733 individual
cell images (513 negative, 309 C-ANCA, 789 P-ANCA, 122 atypical/ANA) out of 51 sera,
including all 35 positive sera and 16 negative sera randomly selected from the 102 negative
samples.

4.5. Machine Learning
4.5.1. Classification Based on “Hand-Crafted” Parameters

The 137-sample CSV file was processed as a four-parameter NumPy array with four
standard models provided by scikit-learn. Default hyperparameters were retained unless
otherwise mentioned.

Three conceptually simple models were found most efficient to process limited sam-
ples involving few features [34]: logistic regression classifier (LR) is inspired from conven-
tional multivariate statistics and is based on the tentative estimate of posterior probabili-
ties of several classes with linear functions [60]. The k nearest neighbor (KNN) classifier will
partition a given sample according to the majority of its k nearest neighbors in the feature
multidimensional space. K may be modified at will by changing n_neighbors hyperparam-
eter. Importantly, the choice is dependent on the definition of distance in this space, which
may be modified by scaling. The decision tree (DT) classifier will partition a sample by per-
forming a series of binary tests, the total number of which may be limited by max_depth
hyperparameter.

Multilayer perceptron (MLP) is a simple neural network. This is made of a series of
sequential layers including so-called nodes or neurons that send output signals to the fol-
lowing layer as functions of a combination of input signals sent by the underlying layer.
Neural networks involve a very high number of parameters, since the interaction between
each couple of nodes belonging to adjacent layers is characterized by a so-called weight
parameter that is set during the training phase. This complexity results in a high capacity
to fit extended datasets. The denomination of “deep learning” refers to the involvement
of a possibly high number of layers inserted between the “external” input and output lay-
ers. The behavior of these so-called hidden layers is usually largely ignored.

Since the dataset was not extensive enough to allow us to optimize hyperparameters
(i.e. fixed, training-independent parameters), we essentially used default values with min-
imal changes that were found suitable for a low feature number dataset (this was 4 as
indicated above) [34]. For each method, the dataset was split 100 times into a training set
and a testing set, and classification efficiency was obtained by calculating prediction ac-
curacy (pa), corrected prediction accuracy (cpa, a modified Rand-type score corrected for
chance, as calculated with scikit-learn adjusted_rand_score function), Cohen kappa score
and area under ROC score (auc) when positive/negative discrimination was studied.

4.5.2. Analysis of Individual Cell Images

1. Individual cell images (50 x 50 pixels) were first subjected to a scaling procedure
(scikit-learn RobustScaler method) to ensure that all parameters displayed similar
median and quartile distributions. In some cases, data reduction was performed with
principal component analysis (PCA).

2. Images were then analyzed with the aforementioned standard algorithms (logical re-
gression, k nearest neighbors, decision tree and neural networks). In addition to
aforementioned MLP, we used convolutive networks (CNNs), since they are thought
to be well suited to image analysis [12,25] and are currently considered the gold
standard [61]. In addition to conventional so-called dense layers, CNNs involve con-
volutional layers where each neuron is stimulated by a restricted set of neurons be-
longing to the underlying layer through a translation-independent set of weights (ker-
nels). Also, a given layer may directly stimulate numerous upper layers (feature maps)



Int. J. Mol. Sci. 2024, 25, 3270

20 of 24

with different sets of weights (filters). This architecture allows the model to identify
motives of growing complexity in a fairly hierarchical way. Further, so-called drop-
out layers appeared to be a powerful means of reducing overfitting. The Tensorflow
platform was used, taking advantage of the keras application programming interface.
A number of architectures were tested by modification of a number of parameters
(number of filters, kernel size, addition of an input channel for simultaneous pro-
cessing of FITC and DAPI images, activation and loss parameter) starting from a sug-
gested simple architecture ([25] p. 496). However, due to the high number of param-
eters and long training time, these attempts remained preliminary.

Under all conditions, efficiency parameters were calculated by random splitting of
datasets between 10 and 100 times into a training set (about 75% of samples) and a
testing set (about 25% of samples). Classification efficiency was then calculated on
the training and testing set after training models on training sets.

As shown in Figure 8, when 32 different models and model settings were used to

calculate all four indices in the same dataset of 1733 cells, a tight correlation was found be-
tween these indices.

efficiency parameter

relationship between efficiency parameters

+ pa
® auc
0.8 1
0.6
0.4
0.2 1
0.0 T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

corrected prediction accuracy

Figure 8. Relationship between classification efficiency indices. A series of 1733 cell images were
classified with two models (k neighbors classifier and multilayer perceptron classifier) using differ-

ent hyperparameters and different preprocessing procedures (data scaling with or without dimen-

sional reduction based on principal component analysis). Prediction accuracy (pa), area under ROC
curve (auc) and Cohen kappa score were plotted versus corrected prediction accuracy (cpa) as
shown.

4.6. Statistics

The significance of efficiency indices yielded by different models was calculated with

Student’s f-test in two-tail mode and using Satterthwaite’s correction for degree of free-
dom determination [62]. Calculations were performed with Libre Office statistical tools
(http://www libreoffice.org (access on 20 January 2024)).
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5. Conclusions

In addition to the description of a simple ML model that performed positive/negative
ANCA discrimination matching experienced human analysis after training on a limited
dataset, the main conclusion of this report is that simple models such as KNN may be
more rewarding than complex neural networks in the performance of simple classification
tasks with limited datasets. Indeed, model settings are easier to select with simple models;
also, results obtained with conceptually simple models may be more easily interpreted
that those yielded by models as complex as neural networks, which may involve more
than one million parameters [63], which might facilitate further progress. This conclusion
may be an incentive to address problems of medical interest with ML, even when it is not
feasible to launch rapidly a large-scale project, involving the building of a large dataset
and operation of complex analytical tools.
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Al artificial intelligence

ANA anti-nuclear antibody

ANCA anti-neutrophil cytoplasmic antibody
auc area under ROC curve

C-ANCA cytoplasmic type ANCA

CNN Convolutional neural network

cpa corrected prediction accuracy

DAPI 4,6-diaminophenylindol (considered as a fluorescent nucleus marker)
DT decision tree classifier

FITC fluorescein isothiocyanate

KNN k nearest neighbors classifier

LR logistic regression classifier

ML machine learning

MLP multilayer perceptron

P-ANCA perinuclear-type ANCA

pa prediction accuracy

ROC receiver operator curve
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