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Abstract
Mechanical transmission systems have been widely adopted in most of industrial applications, 
and issues related to the maintenance of these systems have attracted considerable attention in 
the past few decades. The recently developed ensemble local mean decomposition (ELMD) 
method shows satisfactory performance in fault detection of mechanical components for 
preventing catastrophic failures and reducing maintenance costs. However, the performance 
of ELMD often heavily depends on proper selection of its model parameters. To this end, 
this paper proposes an optimized ensemble local mean decomposition (OELMD) method to 
determinate an optimum set of ELMD parameters for vibration signal analysis. In OELMD, 
an error index termed the relative root-mean-square error (Relative RMSE) is used to evaluate 
the decomposition performance of ELMD with a certain amplitude of the added white noise. 
Once a maximum Relative RMSE, corresponding to an optimal noise amplitude, is determined, 
OELMD then identifies optimal noise bandwidth and ensemble number based on the Relative 
RMSE and signal-to-noise ratio (SNR), respectively. Thus, all three critical parameters 
of ELMD (i.e. noise amplitude and bandwidth, and ensemble number) are optimized by 
OELMD. The effectiveness of OELMD was evaluated using experimental vibration signals 
measured from three different mechanical components (i.e. the rolling bearing, gear and diesel 
engine) under faulty operation conditions.

Keywords: rolling bearings, fault diagnosis, vibration mode analysis, optimized ensemble 
local mean decomposition, mode mixing
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1.  Introduction

Condition monitoring and fault diagnosis (CMFD) is an 
important research field in reliability analysis of mechanical 
components [1–3]. Many CMFD techniques have been devel-
oped to analyze the vibration signals acquired from these 
mechanical components [4–7]. Recently, time–frequency-
domain analysis techniques, such as Wigner–Ville distribution 
[8] and wavelet transform [9–11], have attracted considerable 
attention. These techniques, shown to be successful in various 
applications, are, however, non-adaptive [12]. For example, 
wavelet analysis can extract local features in multiple scales, 
and hence enables the identification of singular components 
of a vibration signal for fault diagnosis of rotating machinery 
[8–11]. However, wavelet analysis has a critical limitation, i.e. 
different mother wavelets need to be determined or predefined 
for different signal processing applications. Therefore, these 
techniques are not self-adaptive [12].

Unlike the aforementioned analysis methods, empirical 
mode decomposition (EMD) can adaptively decompose any 
given complex signal into a series of intrinsic mode functions 
(IMFs) [13, 14]. However, one of the major disadvantages of 
EMD is its susceptibility to the mode mixing problem. Mode 
mixing is defined as either a single IMF consisting of mul-
tiple widely disparate scales, or a signal residing in multiple 
IMF components. Although ensemble empirical mode decom-
position (EEMD) represents a significant improvement over 
EMD for reducing mode mixing [15–18], the performance of 
EEMD largely depends on proper determination of its model 
parameters (i.e. the ensemble number and the ratio of the 
added noise) [19]. In addition, the computation complexity is 
also a concern for EMD and EEMD [20, 21].

Recently, the local mean decomposition (LMD) [22] 
was introduced to solve the mode mixing problem in EMD. 
Instead of Hilbert transform, as is used in EMD, LMD uses 
smoothed local means to extract intrinsic modes from a signal. 
Hence, the information loss caused by Hilbert transform can 
be minimized [23]. The advantages of LMD over EMD were 
originally discussed in their applications to electroencephalo-
gram (EEG) [22]. In mechanical fault detection, Wang et al 
[24, 25] used LMD for fault diagnosis of rotating machinery 
and demonstrated that LMD provided better performance 
than EMD. It was reported in [26] that the features extracted 
by LMD provided satisfactory fault detection performance 
on a helical gearbox. Kidar et  al [27] compared LMD and 
EMD in gear fault diagnosis. Their analysis results suggested 
that LMD improved the detection effectiveness over EMD 
in early gear defects. Feng et al [28] adopted LMD to detect 
early faults in planetary gearboxes. Chen et  al [29] applied 
LMD to detect both gear and bearing faults and showed LMD 
was more effective than EMD in fault detection. Liu et  al 
[30] combined Wavelet transform and LMD to analyze field 
data obtained from a locomotive rolling bearing. Han and 
Pan [31] integrated LMD with entropy/energy ratio to detect 
rolling bearing faults. Wang et al [32] incorporated LMD into 
morphology analysis for pump fault diagnosis. The above 

mentioned studies demonstrate superior performance of LMD 
over EMD in mechanical fault diagnosis [24–32].

To further enhance the capability of LMD to mitigate 
mode mixing, Sun et  al [33] recently presented the appli-
cation of an ensemble LMD (ELMD) to gas leak detection. 
Similar to EEMD, ELMD adds white noise to a raw vibra-
tion signal when decomposing the signal into characteristic 
modes. Mode mixing caused by the uniform time–frequency 
distribution of different-scale components in the raw signal 
can be significantly reduced since the added white noise can 
assist in tuning the time–frequency distribution [34]. As a 
result, ELMD can often obtain more reliable smoothed local 
means than LMD [33, 34], and thus produce better perfor-
mance in mechanical fault detection [34, 35]. Moreover, 
ELMD showed better performance than EEMD in terms of 
fault detection rate [33–35]. Because LMD is computation-
ally more efficient than EMD [22], ELMD imposes less com-
putational burden than EEMD.

The effectiveness of ELMD in mode-mixing reduction is 
often highly influenced by the selection of its parameters, 
i.e. the amplitude and bandwidth of the added noise and 
number of ensemble trials. Very limited work has been done 
to optimize these ELMD parameters, and no prior research 
has been found in mechanical fault diagnosis using parameter-
optimized ELMD. Hence, it is worth investigating how the 
ELMD parameters affect the performance in fault diagnosis 
of mechanical components and how to optimize these param
eters to achieve better performance. This paper proposes an 
optimized ensemble local mean decomposition (OELMD) 
method that optimizes three ELMD parameters (i.e. ampl
itude and bandwidth of the added noise, and number of the 
ensemble trials) to ensure satisfactory decomposition perfor-
mance. Through the parameter optimization, the parameter 
dependency of the decomposition performance of ELMD can 
be accounted for when designing ELMD for a specific appli-
cation. The resulting OELMD is expected to achieve a lesser 
degree of mode mixing than an ELMD with subjectively 
chosen parameters.

This work was inspired by the previous studies in [16, 18, 
36]. In [18], Guo et al proposed a method based on the rela-
tive root-mean-square error (Relative RMSE) to optimize the 
noise level for EEMD. Lei et al [16] then presented the use 
of Relative RMSE to select both the sifting number and noise 
amplitude in EEMD. More recently, the Relative RMSE-based 
method was proposed in [36] for the optimization of the noise 
bandwidth in EEMD. To the best of the authors’ knowledge, 
no prior studies have investigated the use of Relative RMSE as 
a criterion to optimize ELMD parameters. The contributions 
of this work include: (a) the development of a new procedure 
based on Relative RMSE to optimize the noise amplitude 
and bandwidth for ELMD; and (b) the adoption of signal-to-
noise ratio (SNR) to select an appropriate ensemble number 
for ELMD. The effectiveness of OELMD were evaluated 
and compared with ELMD using experimental vibration data 
measured from three different mechanical components (i.e. 
the rolling bearing, gear and diesel engine).

Meas. Sci. Technol. 28 (2017) 035102
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2.  Fundamentals of the ELMD method

The ELMD method was recently developed to reduce mode 
mixing caused by the uniform time–frequency distribution 
of a signal. This method repeatedly applies LMD by adding 
white noise to the signal throughout the signal decomposition 
process [33]. If there are sufficient trials in the decomposition 
process, the added white noise can be canceled out in the final 
ensemble mean [34].

Assume that a multi-component nonlinear and/or non- 
stationary signal, x(t), can be decomposed into a series of produc-
tion functions (PFs), tPFj( ), and a monotonic function r tN( ) [22].

x t t r tPF
j

N

j N
1

( ) ( ) ( )∑= +
=

� (1)

where j is the index of the production function (PF), and N 
is the total number of the PFs. Essentially, each PF is the 
product of a purely frequency modulated signal and an enve-
lope signal [22]. Furthermore, the corresponding complete 
time–frequency distribution can be obtained by assembling 
the instantaneous amplitudes and instantaneous frequencies 
of all PF components.

This process is demonstrated using a simulated signal x(t) 
consisting of three components in equation (2).

x t x t x t x t1 2 3( ) ( ) ( ) ( )= + +� (2)

where,

x t t1.5 e sin 2 5000t
1

800( ) ( )π= × × ×− ′� (3)

x t t t0.2 1 cos 2 100 cos 2 10002( ) ( ( )) ( )π π= × + × × ×� (4)

and x3(t) is an additive Gaussian white noise with the band-
width from 2 to 4 kHz. In equation (3), t′ is a periodic function 
of time with a fundamental period of 1/160 s. This frequency 
range was selected based on the fact that, compared to low-
frequency noises, high-frequency noises generally have more 
contributions to the changes of the extremum distribution of 
the original signal [24]. The time domain waveforms of x(t) 
and its three components are shown in figure  1, where the 
sampling frequency is 40 kHz.

The decomposition results of x(t) by ELMD are shown in 
figure 2, where it can be observed that the four PFs (i.e. PF1–
PF4) with different characteristic modes do not well match the 
actual modes shown in figure 1. The reason is probably that 
improper ELMD parameters were used in this analysis (the 
amplitude and bandwidth of the added noise and the ensemble 
number were subjectively chosen, as is typically done in the 
original ELMD method). Hence, properly determining the 
ELMD parameters is expected to improve the decomposition 
performance.

In the ELMD decomposition process, if the amplitude of 
the added noise is much larger than that of the original signal, 
it may result in redundant PFs that consume extra computa-
tional time. In contrast, if the amplitude of the added noise 
is too small, the noise may not affect the extremums that the 
LMD method relies on [35]. Thus, the effectiveness in mode 
mixing reduction may dramatically decrease. In addition, 
high-frequency noises have more impact on the changes of 
the extremum distribution of the original signal than low-
frequency noises [34]. However, the computation complexity 
increases with the increase of the noise bandwidth. Finally, 
if the number of ensemble trials is too large, the computa-
tional cost may be prohibitively high. Conversely, a very 
small value may not be sufficient to cancel out the noise 
remaining in each PF [33]. Therefore, it is important to be 
able to determine optimum ELMD parameters that ensure 
effective mitigation of mode mixing and minimize the com-
putational cost. It is worth noting that most of the existing 
studies on ELMD designed ELMD with subjectively selected 
parameters that are often suboptimal. Hence, there is a need 
for a systematic and effective approach to selecting suitable 
ELMD parameters.

3.  Optimized ensemble local mean decomposition 
(OELMD)

Optimization of the added white noise’s amplitude (LN) and 
bandwidth (  fb) and the ensemble number (NE) is essential to 
reduce mode mixing and can lead to a reduced computational 
cost as well. Here, OELMD is proposed to accomplish param
eter optimization.

Figure 1.  Time domain waveforms of the signal x(t) and its 
components, x1(t), x2(t) and x3(t).

Figure 2.  ELMD analysis results on the simulated signal shown 
in figure 1. The bottom figure shows the residual from the 
decomposition.

Meas. Sci. Technol. 28 (2017) 035102
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3.1.  Optimization of noise amplitude

Initially, the effects of the added noise’s amplitude on ELMD 
were investigated. For x(t) described in equation  (2), fig-
ures  3–5 illustrate the decomposition results using ELMD 
with noise amplitudes of 0.1, 0.6, and 1.5, respectively. The 
number of ensemble trails was subjectively set to 100 in these 
simulations.

As can be seen in figures 3–5, the degree of mode mixing 
varies with the amplitude of the added noise. When the ampl
itude of the added noise is 0.1 (figure 3), the components x1(t) 
and x2(t), cannot be separated by the first two PFs because of 
mode mixing. When the amplitude is 1.5, the mode mixing 
effect in figure 4 is worse than that in figure 3. In compar-
ison, when the amplitude of the added noise is 0.6, the mode 
mixing effect in figure 5 is less than those in figures 3 and 4.  
The PFs in figure  5 correspond to the original x(t) comp
onents (i.e. PF1, PF2 and PF3 correspond to x1(t), x2(t) and 
x3(t), respectively). These observations are consistent with 
[33], where the noise amplitude was suggested to be neither 
too small nor too large.

In order to choose a suitable noise amplitude value, 
inspired by [16–18], an error index, termed relative root-
mean-square error (Relative RMSE), is introduced in this 
work. Relative RMSE is defined as the ratio of the root-
mean-square of the decomposition error to the root-mean-
square of the original signal x(t), where the decomposition 
error is the difference between x(t) and a specific PF, cmax(t), 

i.e. the PF component with the highest correlation with the 
original signal [17]. Mathematically, the Relative RMSE can 
be expressed as [17, 18]:

∑

∑
=

−

−

=

=

Relative RMSE

x k c k

x k x

k

M

k

M
1

max
2

1

2

( ( ) ( ))

( ( ) )
� (5)

where x(k) is the kth sample in x(t), M is the total number of 
samples in x(t), and x  is the sample mean of x(t). On the one 
hand, if the Relative RMSE is close to zero, it indicates that the 
specific PF, cmax(t), is similar to the original signal. This sug-
gests that cmax(t) contains not only the main component in the 
original signal but also noise and/or other weakly correlated 
or irrelevant signal components [12]. In other words, mode 
mixing occurs in this PF. On the other hand, an optimum value 
of noise amplitude that maximizes the Relative RMSE may 
exist. At this optimum value, the PF is close to an intrinsic 
mode/component of x(t). To this end, an optimization method 
was proposed to determine the appropriate noise amplitude by 
maximizing the Relative RMSE.

The relationship between the Relative RMSE and the added 
noise amplitude LN for x(t) is given in figure 6, where LN was 
initially set to a maximum value lmax  =  2, and then decreased 
to a minimum value lmin in increments (Δl) of 0.05. As can be 
seen in the figure, the maximum Relative RMSE corresponds 
to 0.6 of the noise amplitude. In figures 3–5, the decomposition 
performance of ELMD at the noise amplitude of 0.6 is better 
than at 0.1 or 1.5. Hence, the proposed optimization approach 
based on the maximum Relative RMSE is effective to find a 
suitable noise amplitude value. Figure  6 also indicates that 
the maximum Relative RMSE under different ensemble num-
bers NE is different, but the optimal noise amplitude remains 
the same. Therefore, the ensemble number hardly affects the 
determination of the noise amplitude.

3.2.  Optimization of noise bandwidth

The noise bandwidth is another factor that influences the 
decomposition performance of ELMD. As with the selec-
tion of noise amplitude, the noise bandwidth is optimized by 

Figure 3.  Decomposition result with a noise amplitude of 0.1.

Figure 4.  Decomposition result with a noise amplitude of 0.6.

Figure 5.  Decomposition result with a noise amplitude of 1.5.

Meas. Sci. Technol. 28 (2017) 035102
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maximizing the Relative RMSE [17]. The detailed procedure 
is as follows:

First, define a pool of candidate upper bandwidths of the 
added noise, fb  =  i × fs, i  =  1, 2,..., n, where fs is the sampling 
frequency of x(t) in equation (2).

Second, obtain the interpolated signal x′(t) of x(t) by cubic 
spline interpolation for each candidate fb. The data length of 
x′(t) is equal to the length of x(t) with the same fb.

Third, perform ELMD on x′(t) for each candidate fb with 
the optimal noise amplitude determined in section  3.1. The 
upper bandwidth of the added white noise is fb in the ELMD 
process. Then, calculate the Relative RMSE values for each 
candidate fb.

Finally, determine the optimal fb as the candidate with the 
maximum Relative RMSE.

Figure 7 shows the simulation results of ELMD on x(t) 
using different fb values. As can be seen in this figure, the 
maximum Relative RMSE is located at 40 kHz, which is 
selected as the optimal noise bandwidth. As was the case in 
figure 6, the location of the maximum Relative RMSE is not 
influenced by NE.

In order to verify the optimization result in figure  7, 
figure 8 illustrates the decomposition performance of ELMD 
on x(t) with different noise bandwidths. Figure 8(a) shows that 
the PFs well match the original x(t) components because the 
optimal noise bandwidth of 40 kHz is used. In figure 8(b), sig-
nificant mode mixing is observed when the noise bandwidth 
is 80 kHz because the Relative RMSE at 80 kHz in figure 7 is 
the local minimum. In figure 8(c), when the noise bandwidth 
is 120 kHz, a redundant mode PF3 appears, indicating mode 
mixing. Similar results are observed in figure 8(d) when the 
upper bandwidth of the added noise is 200 kHz. Figures 8(c) 
and (d) indicate that the decomposition using 120 kHz pro-
vides better performance than that using 200 kHz. This is 
because the Relative RMSE at 120 kHz is larger than that 
at 200 kHz. Since a 40 kHz bandwidth produces the largest 
Relative RMSE in figure  7, the decomposition results in 
figure 8(a) are superior to those of the other three bandwidths. 
Consequently, figure 8 demonstrates the effectiveness of the 
optimization method.

3.3.  Optimization of number of ensemble trials

The number of ensemble trials needed is proportional to 
the amount of white noise added to the original signal [15]. 
After determining the optimal noise amplitude and band-
width, the next task is to choose an appropriate number of 
ensemble trails. If the number is too large, it may lead to 
a prohibitively high computational cost [33]. Conversely, 
a small value may not be enough to cancel out the added 
noise from the decomposed PFs. In this work, the signal-to-
noise ratio (SNR) was adopted to determine the appropriate 
ensemble number.

For each ensemble number in ELMD, the signal decompo-
sition stops once the selected PF is obtained. Here, the first PF 
was used to calculate the SNR value and find the appropriate 
ensemble number.

p pSNR 10log10 1 2( / )=� (6)

Here, p1 is the power of the first PF, and p2 is the power of 
the noise, which is equal to the power of the original signal 
minus p1. The relationship between the SNR and the ensemble 
number, as shown in figure 9, was obtained by analyzing x(t) 
using ELMD with the optimized noise amplitude of 0.6 and 
bandwidth of 40 kHz.

As can be seen in figure 9, when the ensemble number is 
smaller than 100, an increase in the ensemble number leads 
to a significant increase in the SNR value. However, after 100 
ensemble trials, the SNR value remains constant. Therefore, 
the optimal ensemble number for x(t) when the optimized 
noise amplitude of 0.6 and bandwidth of 40 kHz are used is 
100.

Figure 10 compares the decomposition performances of 
ELMD for both 20 and 100 ensemble trials. The original 
x(t) components of the decomposed PFs are recovered cor-
rectly in both cases. In order to compare the results of dif-
ferent ensemble trials quantitatively, two evaluation indexes, 
namely the correlation coefficient r and the energy error E, are 
introduced. Coefficient r refers to the correlation between the 
original x(t) components and the PFs decomposed by ELMD. 
The energy error, E, is defined as:

E
E x t I

E x t
i

i i

i

s

s

( ( ) )
( ( ))

=
−

� (7)

Figure 6.  Relationship between Relative RMSE and the noise level 
of the added white noise.

Figure 7.  Relationship between Relative RMSE and the upper 
bandwidth of added noise.
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where Es(·) is the energy of the signal, xi(t) is the ith original 
component of x(t), and Ii is the corresponding PF of xi(t). In 
this simulation, i  =  {1, 2, 3}. A smaller E indicates a better 
decomposition performance of ELMD. Table 1 lists r and E 
for different numbers of ensemble trials with the optimized 
noise amplitude of 0.6 and bandwidth of 40 kHz. The quanti
tative indexes r and E are shown for x1(t) and x2(t). As the 
number of ensemble trials increases, r increases, indicating 
improved ELMD performance. The correlation coefficient 
of ELMD for 100 ensemble trials is larger than for 20 trials, 
suggesting better decomposition performance in that case. 
However, as the number of ensemble trials increases over 100, 
the gain in ELMD performance is very limited (i.e. less than 
0.0012). Similar results are also observable for E. Because the 
computation effort needed for 200 ensemble trials is twice 

Figure 8.  Decomposition results of ELMD on x(t) with different noise bandwidths. (a) fp   =   40 kHz (b) fp   =   80 kHz. (c) fp   =   120 kHz 
(d) fp   =   200 kHz.

Figure 9.  Relationship between SNR and the number of ensemble 
trials.

Meas. Sci. Technol. 28 (2017) 035102
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that needed for 100 trials, it is reasonable to choose 100 as 
the optimal number of trials for this specific case. Therefore, 
the optimized ensemble number in figure  9 is verified, and 
SNR is shown to be an effective criterion for determining the 
ensemble number.

3.4.  Procedure of OELMD

Figure 11 shows a flowchart of the proposed OELMD method. 
For a given signal x(t), the decomposition process for the pro-
posed OELMD method can be summarized as follows:

Step 1—Determine the optimal noise amplitude and band-
width using maximum Relative-RMSE based optimization 
(see sections 3.1 and 3.2).

Step 2—Calculate the appropriate number of ensemble trials 
with the SNR-optimization approach using the optimal 
noise amplitude and bandwidth (see section 3.3).

Step 3—Perform ELMD with the optimized parameters 
(i.e. optimal noise amplitude, bandwidth, and ensemble 
number).

It is worth noting that Step 1 determines the optimal noise 
amplitude and bandwidth sequentially and separately, and an 
alternative to the sequential optimization is to jointly optimize 

both parameters by solving the following optimization problem: 
LN
∗ , f b

∗  =   ( )  ( )lative RMSE L f x t Narg max Re , ; ,L f, N b EN b
. One 

way to solve this problem is to use an iterative two-step optim
ization algorithm that iterates between the optimization of LN 
(keeping fb fixed) and the optimization of fb (keeping LN fixed) 
until a convergence criterion is met. A detailed discussion of 

the joint optimization is beyond the scope of this work, and 
will be considered in our future work.

After the three parameters of the white noise were optim
ized, a comparison of the ELMD (LN  =  0.2, fb  =  80 kHz 
and NE  =  200) and OELMD (LN  =  0.6, fb  =  40 kHz and 
NE  =  100) methods was conducted. The decomposition 
results of the same original signal x(t) derived by ELMD 
and OELMD are presented in figure 12. It can be seen that 
OELMD performs well in the elimination of mode mixing. 
For further comparison, the envelope spectra of the decom-
posed components are respectively presented in figure 13. In 
figure 13, the envelope spectra of the first two components, 
obtained by ELMD and OELMD, are similar. In the OELMD 
results, the spectrum lines of the high frequency (156 Hz) and 
low frequency (98 Hz) components appear distinct. However, 
the amplitudes of these two components (98 Hz and 156 Hz) 
in the ELMD results are smaller than in the OELMD results, 
and the frequency multiplication components in the ELMD 
results are less distinguishable than in the OELMD results. 
Overall, the spectrum lines in the OELMD results are more 
clearly visible than in the ELMD results, where a serious fre-
quency interference problem exists. Consequently, OELMD 
was superior to ELMD in term of reducing mode mixing in 
this simulation.

4.  Experimental results and discussion

To verify the effectiveness of the proposed OELMD method 
in mechanical fault diagnosis, experimental data collected 
from three different mechanical components was analyzed. 
The performances of OELMD and ELMD were compared in 
the experimental analysis.

4.1.  Case study 1: bearing fault detection

The first test case was detection of an inner race fault of a 
rolling bearing. The bearing vibration signal was collected 
from a gearbox test rig (figure 14), which consisted of one 
planetary and one parallel gearbox, a 3 hp driving motor, and 
a magnetic brake. A local pitting defect was introduced into 

Figure 10.  Results of decomposition by ELMD for NE  =  20 (left) and NE  =  100 (right).

Table 1.  Decomposition performance for different numbers of 
ensemble trials.

NE r1 r2 E1 E2

20 0.8212 0.8199 0.4143 0.3627
50 0.8415 0.8237 0.4124 0.3611
100 0.8495 0.8398 0.3981 0.3568
150 0.8502 0.8403 0.3977 0.3566
200 0.8507 0.8405 0.3972 0.3563

Meas. Sci. Technol. 28 (2017) 035102
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the inner race of the bearing in the input shaft of the planetary 
gearbox (figure 14). A number 9 ball bearing with a diam-
eter of 7.925 mm, pitch diameter of 38.989 mm, and contact 
angle of 0° was used. An accelerometer recorded the bearing 
vibration. The motor driving speed was 1750 rpm and the 
sampling frequency was 12 000 Hz. Thus, the rotating 
frequency of the input shaft of the parallel gearbox was 
fr  =  29.17 Hz, and the ball pass frequency of the inner race 
(BPI) was fi  =  157.93 Hz.

Figure 15 illustrates the raw vibration signal of the faulty 
bearing. Obvious bearing impulsive and gear modulation 
components were observed in the raw vibration (figure 15). 
The OELMD was then applied to the raw vibration signal. 

The parameter optimization results are shown in figure  16. 
As can be seen in the figure, the optimal noise amplitude in 
figure 16(a) is 0.3, the optimal noise bandwidth in figure 16(b) 
is 12 kHz, and optimal ensemble number in figure 16(c) is 100.

Figures 17 and 18 depict the time and envelope waveforms 
of the PFs decomposed by OELMD. Four dominant frequency 
components located at the harmonics of BPI (i.e. fi, 2fi, 4fi,  
and 5fi) can be observed in the first PF in figure 18. A pure 
dominant frequency at BPI is observed in PF3, but in PF4, 
the only dominant frequency is at 3fr. As a result, the vibra-
tion modes of the input shaft rotation and the inner race 
were decomposed into different PFs according to figure 18. 
Although in PF2 in figure 18, the two modes (2fr and 4fi) mix, 

Figure 11.  Flowchart of the OELMD method.

Figure 12.  Decomposition results of the simulated signal x(t) by the OELMD and ELMD methods. (a) Decomposition results of OELMD 
(b) Decomposition results of ELMD.
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when comparing the amplitude of PF1 and PF2, it is obvious 
that the peak values of the dominant frequency components in 
PF1 are much larger than that of those in PF2. PF1 is the most 
informative mode of the three. According to Randall [37], for 
a bearing with an inner race defect, the main vibration pattern 
in the envelope spectrum of the bearing vibration will be a 
series of peaks at BPI harmonics. Therefore, OELMD anal-
ysis correctly identified the inner race fault (figure 18).

A comparative study was performed on the OELMD and 
ELMD methods. The time and envelope waveforms of the PFs 
decomposed by ELMD are presented in figures  19 and 20.  

The ELMD parameters were selected as follows: the noise 
amplitude was 0.1, the noise bandwidth was 20 kHz, and the 
ensemble number was 100. ELMD (figure 20) suffered much 
more severe mode mixing than OELMD (figure 18) did. For 
EMLD, the two modes (2fr and 4fi) mixed in PF1 and PF3. 
In addition, PF2 and PF4 were useless modes since they did 
not provide any useful information on the bearing vibration. 
In addition, the largest peak value of PF1 in figure  20 was 
located at 2fr, while in figure  18, the first PF obtained by 
OELMD contained only BPI harmonics. Overall, this com-
parison suggests that (a) because of unsuitable parameters, 
the ELMD method is subject to severe frequency interference, 
and (b) the fault detection performance of OELMD is better 
than that of ELMD.

4.2.  Case study 2: gear fault detection

The second test case was detection of gear wear faults in the 
parallel gearbox (figure 14). Figure  21 shows the structure 
diagram of the gearbox. The wear fault was introduced to the 
driving gear Z2. The motor driving speed was 980 rpm, and the 
sampling frequency was 12 000 Hz. The transmission ratio of 
the planetary gearbox was 12.64, and the fault characteristic 

Figure 13.  The envelope spectrum of the PFs derived by the OELMD and ELMD methods from the simulated signal x(t). (a) The envelope 
spectrum of PFs by OELMD. (b) The envelope spectrum of PFs by ELMD.

Figure 14.  Experimental setup and the faulty bearing with inner race defect.

Figure 15.  Raw vibration signal of the tested bearing with inner 
race fault.
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frequency and meshing frequency of Z2 were fr  =  4.46 Hz and 
fz  =  129.21 Hz respectively.

Figure 22 shows the time and frequency spectra of the raw 
gear vibration signal. In figure 22(b), frequency peaks appear 
at 129.67, 389.01, and 907.69 Hz (i.e. fz, 3fz and 7fz), indi-
cating that the meshing frequency of the Z1–Z2 gear pair dom-
inates the vibration response of the parallel gearbox. OELMD 
was then applied to the raw vibration signal. Figure 23 shows 
the parameter optimization results. As indicated in the figure, 

Figure 16.  OELMD parameter optimization results: (a) noise amplitude, (b) noise bandwidth, and (c) ensemble number.

Figure 17.  Time waveforms of the PFs decomposed by OELMD.

Figure 18.  Envelope waveforms of the PFs decomposed by 
OELMD.

Figure 19.  Time waveforms of the PFs decomposed by ELMD.

Figure 20.  Envelope waveforms of the PFs decomposed by ELMD.

Figure 21.  The structure diagram of the parallel gearbox in 
figure 12.
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Figure 22.  The raw vibration signal: (a) the time domain waveform and (b) the frequency spectrum.

Figure 23.  OELMD parameter optimization results: (a) noise amplitude, (b) noise bandwidth, and (c) ensemble number.

Figure 24.  Time waveforms of the PFs decomposed by (a) OELMD and (b) ELMD.

Figure 25.  Envelope waveforms of the PFs decomposed by (a) OELMD and (b) ELMD.
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the optimal noise amplitude in figure 23(a) is 0.2, the optimal 
noise bandwidth in figure  23(b) is 36 kHz, and optimal 
ensemble number in figure 23(c) is 50.

Figures 24 and 25 show the results of analysis on OELMD 
and ELMD side by side. For ELMD, the noise amplitude was 
0.1, the noise bandwidth was 30 kHz, and ensemble number 
was 50. As indicated in figure  24, there are no significant 
differences between OELMD and ELMD in the time wave-
forms. However, in figure  25(a) distinct frequency comp
onents of fr and 2fr are visible in PF1 and PF2 (decomposed 
by OELMD), whereas in figure 25(b), PF1 alone demonstrates 
these frequency components (using ELMD). In addition, in 
figure  25(b), PF2 and PF4 fails to provide any information 
about the fault frequency fr of gear Z2. The results indicate 
better performance of OELMD than ELMD in the gear fault 
detection.

4.3.  Case study 3: valve fault detection of a diesel engine

A four-stroke, four-cylinder diesel engine (Model 4135D) was 
tested to evaluate the proposed OELMD method. The engine 
operating rotating speed was 1500 rpm, and its operating 
power was 50 kW. In the experiment, the inlet valve clear-
ance of the first cylinder was set to a large value to simulate a 
valve fault condition. Four piezoelectric accelerometers were 
installed on the right-side engine bodies of the four cylinders 
to measure their vibration signals (figure 26). A sampling fre-
quency of 30 kHz was used. Cylinder vibration was measured 
under normal and valve fault conditions.

The measured raw vibration of the first cylinder was used 
for the analysis. Figure  27 shows the time and frequency 
spectra of the raw diesel vibration signals under normal and 
valve fault conditions. The time waveforms in figures 27(a) 
and (b) are similar with the exception of an approximately 
0.01 s lag time between the normal and faulty waveforms. On 
the other hand, diesel engine vibration was much more intense 
under the valve fault condition than under normal conditions. 
The largest peak value under valve fault condition reached 
200 mV while the largest peak under normal condition 
reached less than 150 mV. Additionally, there was a period 
of severe vibration impulses from 0.056 s to 0.060 s (figure 
27(a)). In the corresponding period of the normal waveform in 
figure 27(b), there was no such severe vibration. It is reason-
able to conclude that the valve fault may have generated these 
vibration impulses.

In the frequency spectra in figures 27(c) and (d), the domi-
nant frequency peaks for both normal and valve fault condi-
tions appear at 3545 Hz. This 3545 Hz vibration pattern is 
probably the first order harmonic of the diesel engine’s natural 
vibration mode. The dominant peak is much higher under the 
valve fault condition than under normal conditions, which is 
consistent with the time waveforms in figures 27(a) and (b). 
The frequency spectra also demonstrate that under the valve 
fault condition, the diesel engine’s main vibration comp
onents come from the frequency range of 3000 Hz–4000 Hz. 
The vibration contributions under normal conditions exist in a 
broader frequency range (2000 Hz–4000 Hz) than those under 
the valve fault condition.

OELMD was then applied to decompose the raw vibration 
signal into seven PFs. In the analysis, optimal values for noise 
amplitude (0.36), noise bandwidth (59 kHz), and ensemble 
number (150) were used. Figures 28 and 29 show the OELMD 
analysis results. For ELMD, noise amplitude of 0.2, band-
width of 50 kHz, and ensemble number of 150 were used.

OELMD and ELMD provide almost the same decomposi-
tion result on the first PF (figure 28). In the range of 3000 
Hz–4000 Hz, the frequency spectra of PF1 for both OELMD 
and ELMD (figure 29(a) and (b)) and the raw fault vibration 
signal (figure 27(c)) are similar. Since the dominant peaks of 
the two PF1 modes in figures 29(a) and (b) are located at 3545 
Hz, according to the results of the analysis in figure 27, it is 
reasonable to conclude that PF1 best represents the overall 
tendency of the diesel engine vibration.

However, in figure  28, the second PF decomposed by 
OELMD differs from the one decomposed by ELMD. 
OELMD provides clear impulsive components in PF2, 
while ELMD does not show many individual impulses. The 
frequency spectra of these second PFs reveal that the PF2 
decomposed by OELMD has an absolute dominant frequency 
at 3640 Hz (figure 28). In contrast, the ELMD-decomposed 
PF2 has two dominant frequency components: one at 3640 Hz  
and the other in a mixing mode. The third PF obtained by 
OELMD also contains one dominant frequency at 3640 Hz 
(figure 29(a)), although a disturbance frequency component 
is present as well. However, the dominant frequency comp
onent of PF3 obtained by ELMD is located at 1384 Hz (figure 
29(b)), which does not belong to the primary vibration fre-
quency range (3000 Hz–4000 Hz) for the diesel engine with 
a valve fault. As a result, the PF3 obtained by OELMD pro-
vides more useful information about the valve fault than the 
one obtained by ELMD decomposition. Hence, figures 28 and 
29 suggest that the decomposition performance of OELMD is 
more effective than that of ELMD for the valve fault vibration 
signal.

4.4.  Discussion

The three case studies discussed in this paper demonstrate 
better performance of OELMD than ELMD due to the deter-
mination of suitable critical parameters. Improper ELMD 
parameters either increase the computation cost, decrease 
the fault detection performance, or both. Moreover, a suit-
able number of ensemble trials can be obtained with the 

Figure 26.  The installation positions of the accelerometers.
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OELMD method. The computation cost can be significantly 
reduced by using the optimized ensemble number while the 
mode decomposition effectiveness can still be guaranteed. 
This is because, in most cases, a suitable ensemble number is 
unknown and large value of the ensemble number is selected 
for ELMD analysis, artificially and subjectively, for the pur-
pose of reliable mode decomposition. For example, in case 
study 2, the optimized ensemble number was 50. However, 
when the original ELMD was used to analyze the signal, it 
often chose an ensemble number of 100 or more to ensure 
adequate decomposition performance. Nevertheless, these 
results do not necessarily mean that OELMD is computation-
ally more efficient than ELMD, because obtaining the optim
ized parameters also consumes some computational time, 
which should be considered as part of the computational time 
required by OELMD. The results only suggest that, after the 

suitable ELMD parameters are obtained, the fault detection 
performance can be improved.

Although an adaptive strategy was proposed to select suit-
able parameters for EEMD in [16], previous publications indi-
cate better performance of ELMD than EEMD in mechanical 
fault diagnosis [33–35]. Consequently, in this work, the fault 
detection performance of OELMD is only compared against 
ELMD. However, comparisons between OELMD, ELMD, 
and EEMD have not been conducted on real-world vibra-
tion signals. This is an area with practical applications that is 
worth investigating in future research. In addition, OELMD 
and ELMD utilize noise to improve the decomposition per-
formance and obtain more distinct fault vibration modes. 
Another signal processing technique, namely stochastic reso-
nance (SR), also adopts the noise information to enhance fault 
characteristics [38], and demonstrates promising performance 

Figure 27.  The raw vibration signal: (a) time waveform under the valve fault condition, (b) frequency spectrum under the valve fault 
condition, (c) time waveform under normal conditions, and (d) frequency spectrum under normal conditions.

Figure 28.  Time waveforms of the first three PFs decomposed by (a) OELMD and (b) ELMD.
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in fault detection of gearboxes [39]. Hence, our future work 
will also consider investigating SR-based fault diagnosis on 
real-world vibration signals and comparing its performance 
with that of OELMD.

5.  Conclusion

In this paper, an ELMD method improved by optimizing three 
critical parameters, namely OELMD, was proposed. A new 
procedure based on Relative RMSE was introduced to optimize 
noise amplitude and bandwidth, and a SNR-optimization 
approach was developed to obtain a suitable ensemble number. 
When these optimized parameters were applied to the intrinsic 
mode decomposition process, OELMD can effectively reduce 
mode mixing and enhance the fault detection performance. 
Three case studies were conducted to verify the effectiveness of 
the proposed method. The results demonstrate that (a) suitable 
ELMD parameters can be obtained by OELMD; (b) OELMD 
represents an improvement over ELMD in mode mixing reduc-
tion, and is therefore expected to increase the fault detection rate; 
and (c) improvement in computational efficiency is achieved by 
minimizing the ensemble number. The proposed method has 
significant practical applications in mechanical fault diagnosis. 
Our future work will investigate the effectiveness of OELMD 
with real-world engineering vibration data measured from 
gearboxes of wind turbines and mining machines, and compare 
the fault detection performance of OELMD with those of both 
ELMD and EEMD. SR-based fault diagnosis with the real-
world data will also be included in our future research.
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