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Abstract
Due to their inherent variabilities, nanomaterials-based sensors are challenging to translate into
real-world applications, where reliability and reproducibility are key. Machine learning can be a
powerful approach for obtaining reliable inferences from data generated by such sensors. Here, we
show that the best choice of ML algorithm in a cyber-nanomaterial detector is largely determined
by the specific use-considerations, including accuracy, computational cost, speed, and resilience
against drifts and long-term ageing effects. When sufficient data and computing resources are
provided, the highest sensing accuracy can be achieved by the k-nearest neighbors (kNNs) and
Bayesian inference algorithms, however, these algorithms can be computationally expensive for
real-time applications. In contrast, artificial neural networks (ANNs) are computationally
expensive to train (off-line), but they provide the fastest result under testing conditions (on-line)
while remaining reasonably accurate. When access to data is limited, support vector machines
(SVMs) can perform well even with small training sample sizes, while other algorithms show
considerable reduction in accuracy if data is scarce, hence, setting a lower limit on the size of
required training data. We also show by tracking and modeling the long-term drifts of the detector
performance over a one year time-frame, it is possible to dramatically improve the predictive
accuracy without any re-calibration. Our research shows for the first time that if the ML algorithm
is chosen specific to the use-case, low-cost solution-processed cyber-nanomaterial detectors can be
practically implemented under diverse operational requirements, despite their inherent
variabilities.

1. Introduction

Nanomaterials are very attractive for building sensors, and various examples of using 2D nanomaterials,
nano-tubes, quantum-dots, etc, can be found in the fabrication of optical detectors [1–3], molecular and
bio-sensors [4–8], ion and radiation sensors [9], chemical sensors [10, 11], gas sensors [12, 13], temperature
sensors [14] and many other cases of detection and sensing. There are many aspects that make nanomaterials
promising candidates for these applications compared to the bulk materials. For instance, their enhanced
optoelectronic and novel chemical/physical properties make them efficient choices for sensing, while their
small dimensions will lead to devices with lower power consumption and smaller size. In many cases,
nanomaterials are much more attractive than conventional semiconductor sensors due to their low-cost,
earth-abundant availability, and compatibility with affordable solution-processable techniques. Their high
surface-to-volume ratio makes them highly sensitive as chemical sensors, whereas their quantum
confinement or excitonic processes enables them to be excellent target-specific photodetectors. As a result,
over the past decades, there has been a tremendous progress in fundamental understanding and
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proof-of-concept demonstrations of chemical, biological, optical, radiological and a variety of other sensors
using nanomaterials [1–5, 7–16].

However, there exists many challenges in real-world implementation of sensors made from
nanomaterials; above all the difficulties in reproducing them which makes the size and physical location of
the fabricated nanomaterials on the substrate unpredictable and uncontrolable. Moreover, the nanomaterials
undergo gradual decay in ambient condition called ”drift”, i.e. they are not very stable; also there is often a
large noise in their measurement because of their small size due to the fact that nanomaterials not only
respond to what they are designed to measure, but also are very sensitive to many other conditions in their
environment. These shortcomings, not to mention the gradual decays of nanomaterials, have introduced
huge challenges in mass production of reliable devices from them, where predictable and controllable
manufacturing processes is essential to the industry.

In recent decades, the emergence of machine learning (ML) has demonstrated a great potential for
enhancing statistical analysis in the field of material science. Nowadays, ML provides popular tools for
obtaining information from internet of things (IoT) networks [17–21] such as charge-coupled devices
(CCDs)[22, 23], complementary metal-oxide-semiconductor (CMOS) detectors [24–26], or regular
silicon-based spectrometers, which are examples of sophisticated networks of optical detectors [27, 28].
Advances in deep learning (DL) have paved the way to understand ultra-complex problems beyond physics
and engineering where, for instance, by fine-tuning convolutional neural networks parameters on
RNA-sequencing and pharmaceutical big data, scientists are trying to model cancer.[29–31] In physics, on
one hand, people employ machine learning to analyze, predict, or interpret physical quantities; on the other
hand, underlying physical principle has also been employed to facilitate designing effective machine learning
tools [32, 33]. ML/DL methods have been successfully applied for accelerated discovery [34–36] and
development of materials and metamaterials with targeted properties [37–43], predicting chemical [44–47]
and optoelectronic properties of materials [48–51], and synthesizing nanomaterials [52]. The variations in
nanomaterial properties are usually considered as ”noise” and various experimental or statistical approaches
are often pursued to reduce these variations or to capture the useful target data from noisy measurements
[53–57]. However, the direct applications of the data analytic approaches have never been sought on the
variability of the nanomaterials themselves to utilize these variations as information instead of treating them
as noise. In the context of sensing applications, one way to overcome the aforementioned challenges of
nanomaterials is to use ML on a multitude of sensors in order to extract relevant response patterns towards
achieving accurate, reliable, and reproducible sensing outcomes.

Recently we showed that Bayesian inference can be employed on engineered variability in layered
nanomaterials-based optical transmission filters to determine optical wavelengths with ultra-high accuracy
and precision. Our previous work (Hejazi et al 2019 [58]) demonstrated the power of using advanced data
analytics on the measured data from a few uncontrolled low-cost, easy-to-fabricate mixed semiconducting
nanomaterial thin films. Mixing of nanomaterial phases has been shown to have interesting mechanical
properties.[59] In contrast, we exploited their optical properties in order to estimate the peak wavelength of
any incoming monochromatic/near monochromatic light over the spectral range of 351–1100 nm with high
precision and accuracy, and we created the world’s first cyber-physical optical detector. In that work, we
applied a Bayesian inference on optical transmittance data of 11 nanomaterial filters fabricated from two
transition-metal dichalcogenides,MoS2 andWS2 (see figure 1). We were also able to reduce the number of
filters to two filters via step-wise elimination of least useful filters and still achieve acceptable results even
with two filters. We also discussed that it is possible to choose suitable materials for desired spectrum ranges
for optical filter fabrication. In many practical applications, however, the sensing cost/speed and long-term
reliability can be equal or more important considerations. Although various machine learning (ML) tools are
frequently used on sensor and detector networks to address these considerations and dramatically enhance
their functionalities, nonetheless, their effectiveness on nanomaterials-based sensors has not been explored.

In the present work, our aim is to augment our analytical tools by employing various ML techniques,
compare their efficacy in color sensing, and finally choose the most suitable ML algorithm for color detection
based on the application requirements. We note in doing so, it is important to discuss the data-analytical
process of ML techniques within the context of nano-science datasets, so that they can be appropriately
utilized in analyzing nano-science data of other types as well. Hence, we provide below a brief outline, using
schematic visualizations, of how different ML approaches are analyzing our data. In our target application in
this paper, labels are wavelengths that combined with measured transmittance values that we will call filter
readings, create the set of sample-label pairs known as the training set. Therefore, we chose our analytical
approaches based on the supervised ML algorithms. Apart from the Bayesian inference, we employed
k-nearest neighbour (kNN), artificial neural network (ANN), and support vector machine (SVM); the
details of each method can be found in the Computational Details section. In the following discussions, we
provide a brief overview of each method to clarify their algorithmic steps.
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Figure 1. (a) Eleven filters drop-casted on glass slides; f 1 is 100%WS2, but f2, . . . , f10 are made by gradually adding MoS2 and
decreasing WS2, and finally f 11 is 100%MoS2. (b) Microscopic image of three filters f 1, f 6, f 11: nanomaterials on glass substrate.
(c) Background-subtracted transmittance vs. wavelength t1, ..., t11 for all 11 filters. The excitonic peaks get modified gradually
from f 1 to f 11 as a result of changing proportion of mixing two TMDs. (The figure is re-plotted from the original Hejazi et al
2019[58]).

As for the Bayesian inference, we discussed its underlying statistical approach in details in our previous
article [58]. For a given set of known sample-label pairs (i.e. training set), Bayesian inference gathers statistics
of the data and uses them later to classify an unknown new sample by maximizing the collective probability
of the new sample belonging to corresponding category (see figure 2(a)).

In pattern recognition, the kNN is a non-parametric supervised learning algorithm, where, a new sample
is classified into a specific category, if in average, that category’s members have smallest distance from the
unknown sample (see figure 2(b)).

ANNs are computing models that are inspired by, but not necessarily identical to, the biological neural
networks, where, models ”learn” to perform tasks by considering samples, generally without being
programmed with any task-specific rules. In this work we have used two different fully-connected ANN
architectures to investigate their efficacy on optical wavelength estimation (see Computational Details’
section). The schematics of a three layered fully-connected ANN model is shown in figure 2(c).

When it comes to supervised classification, SVM algorithms are among the powerful ML inference
models [60–62]. In its primary format as a non-probabilistic binary linear classifier, given labeled training
data, SVM outputs an optimal hyperplane which categorizes new examples into two classes (see figure 2(d)).
This hyperplane is learned based on the ”maximum margin” concept in which it divides the (training)
examples of separate categories by a clear gap that is as wide as possible [63, 64].

In real-world sensing and other ”estimation” applications, the needs (i.e. speed, accuracy, low-complexity
etc) of the end-use should determine the approach or method. Keeping these in mind, we have compared the
efficacy of these ML technique by considering the following main considerations: (a) The average error in
estimating wavelength of test samples collected at the same time the training samples were collected; (b) The
average absolute error for entire spectrum; (c) The required time for training; (d) The elapsed time for
estimating wavelength of one test sample using model/trained parameters; (e) The effect of reducing the
training set size on efficacy of each model; and (f) How well the models behave on new set of test samples
collected several months after the training. Applying these four ML techniques to our wavelength estimation
problem has revealed important facts about their efficacy. The kNN algorithm appears to perform the best in
terms of the estimation accuracy, however unlike the other three techniques, kNN time complexity is directly
proportional to the size of the training set, which will hinder its use in applications that demand real-time
implementation. It is due to the fact that kNN is a non-parametric algorithm, in which the model parameters
actually grows with the training set size. k should be considered as hyper-parameter in kNN. On the other
hand, ANN models perform fastest in the test time, since all of the model parameters in ANNs are learned
from the data during the training time, and the test time is only the classification step, which is simply
calculating the output value of an already-learned function. An interesting observation from our results is
that the SVMmodel shows slightly larger estimation errors compared to the rest of the algorithms, however
it is not sensitive to data size and is more resistant to time-dependent variations in optoelectronic response of
nanomaterials i.e. to drift. Bayesian inference turns out to be very accurate, and quite fast as well.

By looking at the outcomes of our estimation problem, we have also discovered another important aspect
of the data that we are dealing with in the nanomaterial applications. We noticed a significant nanomaterial
measurements drift over time in our dataset, which can be described as ”evolving class distributions”. This
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Figure 2. Schematic representations that distinguish the various analysis approaches used in this work: (a) The Bayesian inference,
that shows at each wavelength over each filter a probability distribution can be formed from the labeled samples of that given
wavelength. (b) The kNN algorithm. Each point represents a sample in an 11-dimensional space (transmittances t1, ..., t11), but
only two dimensions are shown for convenience. Blue and red points represent samples belonging to two wavelengths that have
close transmittance values. The unknown sample in green will be classified depending on the majority votes of the samples
encircled in the circles depending on the number of the closest neighbors. With k= 2 the choice is not certain but with k= 7 the
unknown sample obviously belongs to the class of Blue points. (c) The fully-connected three layered ANN model. Each neuron is
connected to the neurons in previous layer via weight parameters that must be optimized for the model to correctly estimate the
unknown samples class. The bias neurons (in dark blue and dark red) are not connected to previous layers since they are by
definition equal to+1. (d) The non-linear SVM algorithm, where the wavelength classes are the same as (b) and the gray solid
line draws the barrier between the two classes. The dashed lines indicate the margins. By doing a kernel trick we can transform the
data from feature space t to its dual space ϕ(t).

means the same object (i.e. light ray) will not create the same responses on the nanomaterial filters over time.
Therefore, a model trained on a training set may have completely different parameter values compared to the
same model trained on another training set collected after a period of time (e.g. a couple of months in our
case). In attempt to overcome the shifts in the data due to the drift in electronic and spectral transmittance of
nanomaterials, we show that it is possible to model the drift of nanomaterial responses over time and
combine them with the future estimations where the nanomaterial filters have drifted even more. By
observing the transmittance of filters over the period of more than a year, we were able to predict the drift in
transmittance after two months and improve the performance in the wavelength estimation. This was
however only possible in the kNN and Bayesian algorithms since they employ no other parameters than the
transmittance values themselves, while SVM and ANN train their own corresponding parameters. In the
next section we will summarize the main findings of our work.

2. Results and discussion

The detailed description of each ML algorithm, the number of parameters to be trained, and the
computational complexity of each technique will be discussed in the Computational Details section. The
resolution of the collected wavelength samples is 1 nm. To discuss the efficacy of our wavelength estimators,

we define the estimation error percent as error%= |λGroundtruth(nm)−λEstimated(nm)|
λGroundtruth(nm) × 100.

We first present our results comparing the wavelength estimation accuracy from various techniques.
Figure 3 shows a comparison of wavelength estimation by different ML techniques performed using the same
set of training data comprised of 75,000 samples. The average errors are the average of error percentages for
10 test samples for each wavelength. By comparing the overall values of the average error as a function of
wavelength, it is possible to see that the kNN method appears to best estimate the wavelength of an unknown
light source, followed by the Bayesian inference method, when the estimation conditions (time, number of
filters used, training size etc) are not constrained to low values. The ANN and SVM are in the 3rd and 4th
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Figure 3. The percent error of estimating wavelength of test samples in a given wavelength averaged over 10 samples of the same

wavelength; we define the estimation error percent as error%=
|λGroundtruth(nm)−λEstimated(nm)|

λGroundtruth(nm)
× 100. (a) Bayesian inference; (b)

kNN algorithm; (c) ANN algorithm; and (d) Linear SVM, using all 11 filters. The insets are semi-log plot of the same figures. The
y-axis of inset plots have been limited by cutting of the values that are too close to 0, for better visibility, and consequently these
points do not show up in semi-log plot.

place in overall performance on estimating wavelength of test samples. In order to perform a more
quantifiable comparison between the various approaches, we have calculated the average absolute error of
entire spectrum by calculating the absolute error (| λGroundtruth(nm)−λEstimated(nm) |) for all 7,500 test
samples and averaging them (see figure 4(a)). In addition, we have performed the AAN using both 1 and 2
hidden layers, which has been presented in the comparison data shown in figure 4 and subsequent figures,
where we can see a fifth batch of columns for 2 hidden layer ANN shown with AAN(2 h) as opposed to
ANN(1 h) with 1 hidden layer.

To investigate the sensitivity of the models to the size of the training set, we randomly picked different
portions of the training set to perform the training and testing, i.e. by randomly choosing 1

5 ,
2
5 , etc of the

original dataset (see figure 4(a)). As it was expected from theory, the SVMmodel is least sensitive to the size
of training data, followed by the Bayesian inference. However, the ANN and kNN show considerable
reduction in performance by reducing the training set size. We can see that figure 4(a) where SVM shows
minor changes from one data size to other, while for instance 1 hidden layer ANN shows steep change in
error values. Another important fact that we learn from this figure is the minimum size of training set
required to perform reasonable estimation. As we see, in each case using only 1

5 of the training set, the
average absolute error tends to increase considerably. The 1

5 th translates to 20 times the number of different
classes (wavelengths in our case), which sets a lower bound on size of the training dataset that must be
collected. Another non-trivial and highly interesting observation is the relative errors of 1 hidden layer vs. 2
hidden layer ANN model as the error in wavelength estimation rises more sharply with decreasing training
sets in the 1 hidden layer ANN, suggesting that ANN with more hidden layers appears to ”learn” better from
the available data and yield more accurate estimations. The other consideration is the available data is not
exactly enough for this problem even when all data is used. This can be justified by seeing that even from
going from 4

5 to all of the data there is a noticeable change in overall accuracy, while we expect to see minor
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Figure 4. (a) Average absolute error calculated by averaging abs.err= |λReal(nm)−λEstimated(nm)| of all 7500 test samples when
different sizes of randomly chosen training data are used for training the model, performed with each of the 4 machine learning
methods; (b) The semi-log plot of required time to test each new sample using the trained models after all training steps are
completed.

change in accuracy of each model if the supplied data was sufficient. However, collecting large amounts of
data in some applications might be expensive and time-consuming some experimental applications, and the
user may look for the best ML model regardless of the testing time. In those cases, if we ignore the drift in
nanomaterial properties, then the kNN and Bayesian models would give good results with small data sizes;
but if the data is scarce and the nanomaterial filters are going to be used for longer periods without
re-training them, then SVMmodel can work the best. We note that for more advanced applications such as
multi-wavelength detection, more advanced ML/DL algorithms and larger datasets will be required.

We next analyze the performance of each algorithm in terms of the required time for each model to train,
and afterwards to test. In kNN and Bayesian models there are no real learning steps, and as a result there is a
definitive answer for value of a test sample with a given training set. The kNN model calculates the distance
of the test sample from every training samples, which are fixed; so the testing time is directly related to the
size of the training set. Given our relatively small dataset the kNN model works rather fast, but most likely it
would not be the case if larger dataset were used (see figure 4(b)). As for Bayesian algorithm, the training
part is limited to collecting the statistics from training data. In testing step, the model searches through all
probability distributions and maximizes the posteriori; though it is obviously time consuming but is
independent from the training set size. Hence, in both models the main and/or only required time is for
testing.

As for ANN and SVM the training step can be dynamically decided by desired conditions. In the case of
SVM, the training step is governed by choice of tolerance, kernel type, etc. After the support vectors are
found, the testing step is carried out by checking which side of the hyperplanes the test sample falls. In our
study different choices of kernel/tolerance did not pose meaningful enhancement on the estimation efficacy
of the trained SVMmodels (see Computational Details section).

The situation is quite different for ANN, since one can iterate the training loop infinite times and the
results may either improve, converge, or just get stuck in a local minima. Time and computational resources
for training are the real costs of the ANN algorithm, but in general ANN can fit very complicated non-linear
functions that other models might not have as good performance as ANN. After the end of the training step
(decided by the experimenter based on the desired level of accuracy), the testing step is basically a few matrix
multiplications only, as explained in Computational Details section. Hence, the testing time of ANN is quite
short and independent from the size of training set. In addition, we found that with smaller training sets the
ANN model is prone to over-fitting, i.e. the model might perform well on the training set itself but not on
new test set. The required testing time for each sample when all training steps are completed is shown in
figure 4(b), which is the more relevant time-scale for real-world applications. The details of each model and
their computational complexity is discussed in Computational Details section.

Owing to their affinity for adsorbing oxygen, and moisture, as well as through creation of defects with
exposure to ambient conditions, the electronic and optical properties of the nanomaterials gradually evolve
with time, which are reflected in drifts in their spectral transmittance values. Hence, even though they show
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Figure 5. (a) Average absolute error of estimation in semi-log scale using all training data for test samples collected at the same
time as the training data, compared to the test samples collected after one and two months; (b) Third order polynomial functions
fitted to the average transmittance of filters f 1 and f 11 over period of ~ 400 days. Scatter plots are the average measured
transmittance values and the solid lines indicated the fitted functions; (c) Average absolute error of estimating wavelength of test
samples collected two months after training when no modification is applied to the model (Blue bars), and when the training
sample-label pairs are corrected using the drift functions (Orange bars) in Bayesian and kNN models.

fair stability in short period of time, the effective transmittance of our nanomaterial filters slowly change over
time. This causes slow reduction of accuracy in estimating wavelength over time in later measurements.
However, as shown in our previous work [15, 58] by calibrating the filters from time to time it would be
possible to continue using these same filters over extended periods of time, and the efficacy of estimations
does not suffer from wears or minor scratches, since the re-calibration will overcome the gradual changes of
the filters.

In the current work we instead investigate the performance of each ML method over time by testing the
efficacy of the trained models on the new test samples collected after two months. The average absolute error
(with all training data) of estimating wavelength of newly collected test samples and original test samples are
shown in figure 5(a). Quite interestingly, the SVMmodel shows minimal change in the estimation accuracy
having the ratio of ~ 1 in first month, and smaller change later, while all other models show considerable
reduction in accuracy. This change is quite obvious in a 1 hidden layered ANN. Next, we discuss how to
overcome the effect of transmittance change of filters as a result of drift in optoelectronic response of
nanomaterials by modeling the drift over time.

Choosing a proper ML technique that performs more robustly over time is only one way of using the
filters over time without the need for re-calibration; but it is also possible to model the drift of nanomaterial.
For this purpose we observed the transmittance change over time for our nanomaterial filters in a period of
about 400 days, and tried to fit a polynomial curve to the average transmittance values at each wavelength for
each filter with respect to number of days after the filters were fabricated. Two examples of these curves
shown in figure 5(b) are for filters f 1 and f 11 at 500 nm, that present the slow decrease of transmittance over
time, where a third order polynomial function fairly fits the drift. To check the validity of our claim we
calculated the expected transmittance at each wavelength for each filter around the day 450, which was the
day that another new set of test samples were collected. In case of Bayesian, we replaced the mean value of
transmittance by the calculated transmittance values at the day 450, while for kNN, we multiplied each

transmittance t in training set by a corresponding coefficient
tavg(450)
tavg(0)

× t, then used them for estimation (see

figure 5(c)). Applying the drift over time functions is only possible for kNN and Bayesian algorithms since
they do not have a distinct learning step, while the two other models have already trained their parameters
based on the old training data. The results show that Bayesian model is more compatible with the drift over
time function, which is expected since these fitting functions are calculated using the mean transmittance
values, as Bayesian algorithm also uses mean values/standard deviations for estimation.

3. Conclusions

In conclusion, we have successfully demonstrated the efficacy of various ML techniques in estimating the
wavelength of any narrow-band incident light in spectrum range 351–1100 nm with high accuracy using the
optical transmittance information collected from a few low-cost nanomaterial filters that require minimal
control in fabrication. With the available data the kNN algorithm shows highest accuracy with the average
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estimation errors reaching to 0.2 nm over the entire 351–1100 nm spectrum range, where the training set is
collected with 1 nm spectral resolution; but this method is not suitable for real-time applications since the
required testing time is linearly proportional to the training set size. The situation is almost the same with the
Bayesian algorithm which performs very well, but although its speed is not data size dependent, still the
process is much slower than the other methods. The real-time speed considerations can be very well satisfied
with ANN models where the estimation time can be as low as 10µs, but these models as well as Bayesian and
kNN turn out to be more sensitive to drift in spectral transmittance of nanomaterials over time. On the other
hand SVMmodels show a bit lower accuracy compared to the rest but do not suffer from smaller data sizes
and are more resilient to drift in spectral transmittance. Even though we have shown in our previous work
that re-calibrating the filters will overcome the drifts and wears in nanomaterials, but if the re-calibration is
not a readily available option for the user, the SVMmodel offers acceptable accuracy and longer usability over
time. On the other hand if speed is a consideration the ANNmodels would be the best choice, which turn out
to perform well if enough data is provided. We also observed that ANN models with more number of layers
seems to learn better from the available data. The choice of model depends on the application; for instance
spectroscopy does not demand a fast real-time output but accurate and precise estimations. There are other
applications especially in biology, for instance in DNA sequencing [65], where the accuracy of the peak
wavelength is not of importance as long as it is estimated close enough, but the time is of vital importance.

Furthermore, we have verified the possibility of modeling the drift of nanomaterials over time by
observing the gradual changes in the filter functions, hence, being able to predict the filter function at later
times, and thereby increase the accuracy of the ML algorithms and usability of the filters over longer periods
of time. The efficacy of each ML model in our optical sensing problem reveals some key differences between
this problem and other applications of ML in material science and engineering. The drift of nanomaterials
properties for instance, which poses an important complication on the problem via evolving class
distributions i.e. gradually modifying the response function of the filters even though the classes i.e.
wavelengths remain the same. The other difference is in the feature selection. In optical sensing problem a
very small number of features are chosen from optoelectronic properties (transmittance only in this case) of
the nanomaterials, while in other areas the feature vector can be huge and very complex. The future work is
to generalize the methods of this paper to broad-band optical spectra. All said, we believe that application of
advanced data analytic algorithms has been very limited in optical sensing applications, and our findings can
open up a new path for designing new generation optical detectors by harnessing advanced data analyzing
algorithms/ ML techniques and significantly transform the field of high-accuracy sensing and detection
using cyber-physical approaches.

4. Computational Details

When ML is used as a discriminative model in order to distinguish different categories (e.g. different optical
wavelengths), it comes in one of these two forms: ”supervised learning”, where new samples are classified into
N categories through training based on the existing sample-label pairs; and ”unsupervised learning”, where
the labels are not available, and the algorithm tries to cluster samples of similar kind into their respective
categories.
Data Structure. The analysis of our data were performed on transmittance values measured over a wide

spectral range, 351 nm< λ < 1100 nm) for each of the 11 nanomaterial filters, as well as 110 repetitions of
these wavelength-dependent data. As mentioned in previous article, the repeated data was acquired to
account for drifts, fluctuations, and other variations commonly observed in physical measurements especially
in nanomaterial-based systems, which tend to be sensitive to their environments [15, 16, 58]. On the other
hand larger training data usually results in better performance of most ML algorithms. From the mentioned
110 spectra of each nanomaterial filter, 100 of them were labeled as ”training data” or sample-label pairs and
used for training the models (M= 750× 100= 75000 training samples). The other 10 spectra per filter were
labeled as initial ”test samples” (M

′
= 750× 10= 7500 test samples or original test samples), and were used

only for testing the ”trained” models. In another words the test samples were not part of the training process
and the machine learning models did not ”see” these samples until the testing step.

In our classification problem there are N different classes: one per wavelength, and we are trying to
classify our transmittance data into these N classes. Here, we will concisely introduce each ML method and
give their mathematical equations; also we will mention the number of parameters that are being trained in
each model. Computations are carried out in Python 3.7 using a 2.5 GHz Quad-core Intel Core i7.
Bayesian Inference. The filters are not chemically independent from each other, for they are mixtures

from different proportions of the same two nanomaterials; so for computational purposes we assume
independence between their outcomes, and model them with Naive Bayes algorithm [58, 66]. The Bayesian
inference for wavelength estimation problem can be formulated as follows: Let Λ = {λ1, ...,λi, ...,λN} be N
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different wavelengths in desired spectral range and with specified granularity (i.e. 351–1100 nm with 1nm
step in this study), and T= {t1, ..., ti, ..., tQ} be the transmittance vector of Q filter values (i.e Q= 11 when all
of the filters are used in this study). Employing the Bayesian inference, the probability of the monochromatic
light having the wavelength λj based on the observed/recorded transmittance vector T is called posterior
probability

P(λj | T) =
P(T | λj)P(λj)

P(T)
, (1)

which is the conditional probability of having wavelength λj given transmittance vector T; P(λj) =
1
N is the

prior probability which is a uniform weight function here since all of the wavelengths are equally-likely to
happen; N is the total number of quantifiable wavelengths in the range under study. Moreover,
P(T | λj) =

∏Q
i=1P(ti | λj) is the probability of observing transmittance data T given wavelength λj, and is

called the likelihood, which is the probability of having transmittance vector T if wavelength is λj; P(T) is the
marginal probability which is the same for all possible hypotheses that are being considered, so acts as a
normalization factor to keep the posterior probability in the range of 0 to 1.

Individual P(ti | λj) values are assumed to be Gaussian normal distributions for each filter at each
wavelength, and their mean values and standard deviations were calculated from the training data (i.e. the
100 measured transmittance spectra) collected for each filter at each wavelength. Finally, given the measured
transmittance sample T′ (a vector of Q= 11 elements—one transmittance value per filter at an unknown
wavelength), the wavelength λ* of the unknown monochromatic light is estimated by choosing the value of
λj that maximizes the posterior probability P(λj | T′):

λ∗ = argmax
λj

P(λj | T′), (2)

This optimization called the maximum a posteriori (MAP) estimation [67–69]. To clarify the estimation
steps further we notice the Bayesian inference finds probability of the combined Q measured test
transmittance values named T′ in the entire wavelength spectrum. According to MAP estimation the
wavelength at which this probability is maximum is indeed the estimated wavelength in Bayesian inference.
Though, from machine learning point of view no parameters are being learned in Bayesian inference, but
considering the parameters of the Gaussian distribution that we calculate in this method we can say overall
2QN = 16500 parameters are being learned in this approach, N mean values and N standard deviations from
the training data (see figure 2(a)).
k-Nearest Neighbors. In pattern recognition, the kNN is a non-parametric supervised learning

algorithm used for classification and regression [70], which searches through all known cases and classifies
unknown new cases based on a similarity measure defined as a norm-based distance function (e.g. Euclidean
distance or norm 2 distance). Basically, a new sample is classified into a specific category when in average that
category’s members have smallest distance from the unknown sample (see figure 2(b)). Here, k is the number
closest cases to the unknown sample, and extra computation is needed to determine the best k value. This
method can be very time-consuming if the data size (i.e. total number of known sample-label pairs) is large.
There are two main categories for kNN: (1) centroid-based, which a new test sample is classified by the
distance of its feature values with the average (i.e. centroid) of features of all training samples that belong to
the same each class, and (2) by-instance-based, which is the standard kNN approach, in which a new case is
classified by a majority vote of its neighbors, with the case being assigned to a class that is most common
among its k nearest neighbors measured by a distance function. If k is 1, then the case is simply assigned to
the class of its nearest neighbor. Since kNN model with small k is prone to over-fitting, usually a finite odd
number is chosen for k. There are various kinds of distance functions which from them the four famous
distance functions: Euclidean,Manhattan, Chebyshev, andMinkowski are used in this study, but only the
results of Euclidean distance function is presented which is the classical presentation of distance and is given
by df(X,Y) =

√∑
(xi − yi)2. Here, X refers to each sample in the training set and Y refers to the unknown

(test) sample. To apply it to our data we need to find distance of a new transmittance vector of Q= 11
elements, T′ = {t′1, ..., t′i , ..., t′Q}, with all known transmittance vectors T= {t1, ..., ti, ..., tQ} that are already
known and labeled in the training set, so the distance function is

df(T,T′) =

√√√√ Q∑
i=1

(ti − t′i)
2. (3)
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The distance between T′ and allM training samples is calculated, and the M calculated distance values
are sorted from smallest to largest using a typical sorting algorithm. Afterwards, the k nearest neighbors i.e.
wavelengths that have smallest distance values from the test T′ are found, which are the arguments of the first
k numbers of the sorted list. Each nearest neighbor is assigned a uniform weight of 1/k, and the k neighbors
are classified. Then, the test case T′ is assigned to the group with largest vote or population. In order to find
the best k for our system we tried different values for k in the range k= [1, 20], and picked k= 7 which
performed the best. As mentioned before, kNN is a non-parametric classification algorithm so, no
parameters are being learned in kNN.
Artificial Neural Networks. ANNs are computing models that are inspired by, but not necessarily

identical to, the biological neural networks. Such models learn to perform tasks by considering samples,
generally without being programmed with any task-specific rules. An ANN is based on a collection of
connected units or nodes called artificial neurons, that upon receiving a signal can process it and then pass
the processed signal to the additional artificial neurons connected to them. A neural network has always an
input layer that are the features of each training sample and an output layer that are the classes in
classification problem, while it can also be only a number in regression problem. However, there are often
more than just two layers in an ANN model. The extra layers that are always located between the input and
output layers are called hidden layers. The number of hidden layers, the number of neurons in each layer, and
how these layers are connected form the neural network architecture [71–73]. In general, having more
number of hidden layers increases the capacity of the network to learn more details from the available
dataset, but having much more layers than necessary can result in overfitting the model to the training set i.e.
the model might be performing well on the training set but poorly on the unseen test set [72, 74]. In this
work we have used two different fully-connected ANN architectures to investigate their efficacy on optical
wavelength estimation. The reason behind using the classical structure of ANN i.e. its fully connected form,
is the small dimensionality of our data compared to other datasets often used in ANN studies -such as long
time-series, images, videos, etc The schematics of a three layered fully-connected ANN model is shown in
figure 2(c). Backpropagation is the central mechanism by which a neural network learns. An ANN
propagates the signal of the input data forward through its parameters called weights towards the moment of
decision, and then backpropagates the information about error, in reverse through the network, so that it can
alter the parameters. In order to train an ANN and find its parameters using the training set, we give labels to
the output layer, and then use backpropagation to correct any mistakes which have been made until the
training error becomes in an acceptable range. [61]. Typically, larger training dataset improves ANN’s
performance since it leads to a model that is more generalizable to an unseen test data.

In an ANN model each layer is made from a fixed number of neurons. The output of each neuron is
linear combination of corresponding input followed by a non-linear activation function such as logistic
sigmoid or softmax. These layers are connected by weight matrices, so that for an input sample T, by
performing layer by layer matrix multiplication we would like to get as close as possible to the real label (y
value) of that sample. Let’s show a three layer ANN model (with 1 hidden layer) with the layers by a(1), a(2)

and a(3). To calculate each layer a(l), l> 1), first, a matrix multiplication is performed between previous layer
and the hypothesis matrix θ(l− 1) to get z(l); then, an activation function g(z) (usually sigmoid function
g(z) = 1

1+e−z ) is applied on z(l) which results in ith layer.
First we construct H linear combinations of the input variables T= {t1, ..., ti, ..., tQ} in the form

z(2)j =

Q∑
i=1

w(1)
ji ti +w(1)

j0 (4)

a(2)j = g(z(2)j ) (5)

where, j= 1, ..., H, and H is the size of first hidden layer; and the superscript (1), (2) indicate that the

corresponding parameters are in the first or second layer of the network. wji is corresponding weights. w
(1)
j0 is

referred as biases; zj are called activations and g(z) is the mentioned non-linear activation function. At each
layer of ANN, there is such a transformation; for example in three layer ANN which includes only 1 hidden
layer, the elements of the third layer will take the form

z(3)n =
H∑
j=1

w(2)
nj a

(2)
i +w(2)

n0 (6)

a(3)n = g(z(3)n ) (7)
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where, n= 1, ..,N and N is the total number of outputs. a(3)n is the final output of the hypothesis that is going
to be compared with the known target wavelengths The bias parameters can be absorbed into the set of
weight parameters by defining an additional input variable t0 whose value is kept fixed at t0 = 1, and the
same for other layers, so we combine these various stages to give the overall network function that, for
sigmoidal output unit activation functions, takes the form

ym(T,W) = g
( H1∑

j=0

w(2)
kj g

( Q∑
i=0

w(1)
ji ti

))
(8)

Given a training set comprising a set of input vectors Tm, wherem= 1, ..,M, together with a
corresponding set of target vectors rm, we minimize the error function (also called optimization objective or
cost function) which for sigmoidal case using Lagrange multiplier method it transforms into

E(W) =−
M∑

m=1

[
rm lnym +(1− rm) ln(1− ym)

]
. (9)

or more explicitly

E(W) =−
M∑

m=1

N∑
n=1

[
rmn lnymn +(1− rmn) ln(1− ymn)

]
. (10)

where ymn denotes yn(Xm,W). So far, we have explained the FeedForward propagation. At first there is a large
cost because the model is not trained yet. An important step in the ANN learning process is called
Backpropagation which, unlike the FeedForward propagation explained above, propagates from last layer
and stops on second layer. In Backpropagation, each of the weight parameters are updated a small amount
proportional to the gradient of cost (error) function with respect to that weight parameter. The proportion
factor is called learning rate that defines updating rate for each parameter in Backpropagatoin. The training
process happens by iterating many cycles, that in each cycle, we perform the FeedForward propagation,
calculate the gradient, update the parameters of θ matrices during Backpropagation, and repeat the loop
until the model can classify the training data (in output layer) with desired level of accuracy. Afterwards, the
trained model can be used to classify the incoming new sample via a few simple matrix multiplications. The
total number of parameters in ANN is equal to elements of the weight matrices that each layer is multiplied
into plus a single bias element at each hidden layer. In this study, we examined two architectures of ANN: a
three layer network with 1 hidden layer H1= 100 neurons between an input layer of Q= 11 and output layer
of N = 750 neurons, and a four layer network with 2 hidden layers of sizes H1= 100 and H2= 400. In first
case the number of parameters is (Q+ 1)H1+(H1+ 1)N= 76950. In the second architecture the total
number of parameters is (Q+ 1)H1+(H1+ 1)H2+(H2+ 1)N= 342350. In the next section we will
estimate computational complexity of each machine learning technique which is an indicator of the testing
time. In this project, the Python’s PyTorch package is used for building the ANN model. The training step of
our ANN models are carried out using Northeastern University’s Discovery cluster.
Support Vector Machines.We begin our discussion of SVMs by returning to the two-class classification

problem using linear models of the form

y(T) = w⊺ϕ(T)+ b (11)

where ϕ(T) denotes a fixed feature-space transformation, and we have made the bias parameter b
explicit.[61] The training dataset comprises M input vectors T1, ...,TM with corresponding target values
r1, ..., rM where rm∈{−1, 1}, and new data points T′ are classified according to the sign of y(T′). We shall
assume for the moment that the training dataset is linearly separable in feature space, so that by definition
there exists at least one choice of the parameters W and b such that a function of the form equation (11)
satisfies y(Tm) > 0 for points having rm =+1 and y(Tm)< 0 for points having rm =−1, so that rmy(Tm)> 0
for all training data points. [61] In support vector machines the decision boundary is chosen to be the one
for which the margin is maximized by solving

argmax
w,b

{ 1

| w |
min
m

[
rm(w

⊺ϕ(Tm)+ b)
]}

(12)
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Table 1. SVMmodel with various kernel types.

SVM Kernel type Linear RBF Polynomial(3rd order)

Total average absolute error (nm) 2.594 1 2.598 8 3.564 4

Table 2. Time Complexity of ML method.

MLModel Bayesian kNN SVM ANN

Time Complexity O(QN) O(kM) O(QM) O(HLN)

where we have taken the factor 1
|w| outside the optimization overm becauseW does not depend onm.[61]

On the other hand there are different kernel tricks to create a non-linear models, hence create larger feature
space by a non-linear kernel function k(Ti,Tj) = ϕ(Ti)

⊺ϕ(Tj). This allows the algorithm to fit the
maximum-margin hyperplane in a transformed feature space by replacing the equation (11) with

y(T) =
M∑

m=1

αmrmk(T,Tm)+ b (13)

The transformation may be non-linear and the transformed space high-dimensional.[60, 75, 76] The
RBF kernel for example uses a Gaussian distribution for each feature T i and createsM different features

using kernel function k(T⃗i, T⃗j) = e−γ|(T⃗i−T⃗j|2 for γ > 0.
When we have more than two classes, SVM can be used as a combination of several one vs. rest classifiers

to find hyperplanes that discriminate one category from the rest of them. SVM can also efficiently perform
non-linear classification using what is called the kernel method by implicitly mapping the samples original
features set into a higher dimensional feature space, as illustrated in figure 2(d), and a new sample is classified
depending on the side of the margin that it falls in. In this work, apart from linear SVM we also tried different
kernel functions such as Polynomial, Gaussian Radial Basis Function (RBF), sigmoid, but we only reported the
results of the linear model in figure 4, since it performs slightly better than the other models; The absolute
error in estimating wavelength averaged over entire test set for a few different kernels are presented in table 1.

The number of parameters to be learned is N(Q+ 1)= 9000 for linear model, and N(M+ 1)~ 56× 106

for RBF model, where N = 750 is the number of classes,M= 75000 is number of training samples and
Q= 11 is dimension of each training sample. Even though these numbers seem pretty large specially for RBF
kernel, but most of these parameters are zero, and the calculation is carried out using sparse matrix of
parameters. In fact, SVM kernels are called sparse kernel machines. [61] In this project, the Python’s SciKit
package is used for building the SVMmodel.
Time Complexity Analysis. As given above, we have N = 750 classes of all possible wavelengths, Q= 11

filters as feature number and totallyM= 75000 samples for training. Once trained, we care more about their
inference efficiency. The time complexity is analyzed as following.

For Bayesian estimation, for each data point, the conditional distribution P(T|λj) is calculated with all
possible wavelengths which is N. The production for joint probability takes N operation as well. However
power operation is included in Gaussian distribution density function. As we compute this density across
whole spectrum, exponent in this operation will be N related; therefore, each iteration of the
implementation takes O(N). So totally, Bayesian takes O(QN) time.

For KNN, calculating the distance with all training data takes O(QM) time. After that, finding the k= 7
minimum values and their indices takes O(kM) time, so the overall complexity is in the order of O(kM).

For ANN, the computation cost from layer i to layer j is HiHj. For multiple layer version, the time cost

can be generalized as O(QH1 +
∑L

i=1HiHi+1), where Hi stands for the hidden neuron numbers at layer i, L
stands for the total layer numbers (except input). As the Q and H will be data size-independent, this method
is supposed to be much faster than the other methods. In our ANN architecture the number of neurons
increases almost by order of magnitude as we go from input to output layer, so the complexity is dominated
by the last layer. N is output layer size and if we denote the last hidden layer size by HL, the time complexity
will be in the order of O(HLN).

For SVM, for each query the kernel operation is across all support vectors within training data. The
inference complexity for linear and RBF model will be O(QMsv) since we are solving the dual form here;Msv

stands for the number of support vectors, which most of the time will be much less thanM but it can also be
up toM, so we can show its upper limit as O(QMsv).

The theoretical complexity estimations presented in table 2 are in agreement with the measured time
required for testing each sample (see figure 4(b)).
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