
Machine Learning: Science and Technology

PAPER • OPEN ACCESS

Methods for comparing uncertainty quantifications for material property
predictions
To cite this article: Kevin Tran et al 2020 Mach. Learn.: Sci. Technol. 1 025006

View the article online for updates and enhancements.

This content was downloaded from IP address 122.172.173.154 on 28/06/2023 at 10:38

https://doi.org/10.1088/2632-2153/ab7e1a

Mach. Learn.: Sci. Technol. 1 (2020) 025006 https://doi.org/10.1088/2632-2153/ab7e1a

OPEN ACCESS

RECEIVED

20 December 2019

REVISED

25 February 2020

ACCEPTED FOR PUBLICATION

9 March 2020

PUBLISHED

18 May 2020

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

PAPER

Methods for comparing uncertainty quantifications for material
property predictions
Kevin Tran1,3, Willie Neiswanger2,3, Junwoong Yoon1, Qingyang Zhang1, Eric Xing2 and ZacharyWUlissi1,4
1 Chemical Engineering Department, Carnegie Mellon University, Pittsburgh, PA 15217 United States of America
2 Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA 15217 United States of America
3 These authors contributed equally to this work
4 Author to whom any correspondence should be addressed.

E-mail: zulissi@andrew.cmu.edu

Keywords: uncertainty, density functional theory, neural networks

Supplementary material for this article is available online

Abstract
Data science and informatics tools have been proliferating recently within the computational
materials science and catalysis fields. This proliferation has spurned the creation of various
frameworks for automated materials screening, discovery, and design. Underpinning these
frameworks are surrogate models with uncertainty estimates on their predictions. These
uncertainty estimates are instrumental for determining which materials to screen next, but the
computational catalysis field does not yet have a standard procedure for judging the quality of such
uncertainty estimates. Here we present a suite of figures and performance metrics derived from the
machine learning community that can be used to judge the quality of such uncertainty estimates.
This suite probes the accuracy, calibration, and sharpness of a model quantitatively. We then show
a case study where we judge various methods for predicting density-functional-theory-calculated
adsorption energies. Of the methods studied here, we find that the best performer is a model where
a convolutional neural network is used to supply features to a Gaussian process regressor, which
then makes predictions of adsorption energies along with corresponding uncertainty estimates.

1. Introduction

The fields of catalysis and materials science are burgeoning with methods to screen, design, and understand
materials [1–4]. This research has spurned the creation of Machine Learning (ML) models to predict various
material properties. Unfortunately, the design spaces for these models are sometimes too large and
intractable to sample completely. These under-sampling issues can limit the training data and therefore the
predictive power of the models. It would be helpful to have an uncertainty quantification (UQ) for a model
so that we know when to trust the predictions and when not to. More specifically: UQ would enable various
online, active frameworks for materials discovery and design (e.g. active learning [5], online active learning
[6], Bayesian optimization [7], active search [8], or goal oriented design of experiments [9]).

Such active frameworks have already been used successfully in the field of catalysis and materials
informatics. For example: [10] has used a neural network to perform online active learning of nudged elastic
band (NEB) calculations, reducing the number of force calls by an order of magnitude. [11] have also used
online active learning to accelerate NEB calculations, but they used a Gaussian Process (GP) model instead of
a neural network. [12] have used online active learning to accelerate molecular dynamics simulations. These
methods are all underpinned by models with UQ, which have garnered increasing attention [13, 14].

The goal of UQ is to quantify accurately the likelihood of outcomes associated with a predicted quantity.
For example, given an input for which we wish to make a prediction, a predictive UQ method might return a
confidence interval that aims to capture the true outcome a specified percentage of the time or might return
a probability distribution over possible outcomes. Performance metrics for predictive UQ methods aim to
assess how well a given quantification of the probabilities of potential true outcomes adheres to a set of

© 2020 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/2632-2153/ab7e1a
https://crossmark.crossref.org/dialog/?doi=10.1088/2632-2153/ab7e1a&domain=pdf&date_stamp=2020-05-18
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-9401-4918
mailto:zulissi@andrew.cmu.edu
https://doi.org/10.1088/2632-2153/ab7e1a

Mach. Learn.: Sci. Technol. 1 (2020) 025006 K Tran et al

Expected cumulative distribution

O
bs

er
ve

d
cu

m
ul

at
iv

e
di

st
ri
bu

tio
n

more calibrated

Predicted standard deviations

N
or

m
al

iz
ed

 f
re

qu
en

cy

sharper

Accuracy

Calibration

Sharpness

calibrated

sharp dull

uncalibrated

accurate inaccurate

Dispersion

disperse concentrated

Predicted standard deviations

N
or

m
al

iz
ed

 f
re

qu
en

cy

more disperse

actual

pr
ed

ic
te

d

more accurate

Figure 1. Overview of proposed procedure for judging the quality of models with uncertainty estimates. First and foremost, the
models should be accurate. Second, the models should be ‘calibrated’, which means that their uncertainty estimates should be
comparable with their residuals. Third, the models should be ‘sharp’, which means that their uncertainty estimates should be low.
Lastly, the models should be ‘disperse’, which means that the distribution of the uncertainty estimates should be wide. This study
demonstrates how to visualize and quantify these characteristics so that different methods of UQ can be compared objectively.

observations of these outcomes. Some of the performance metrics for predictive UQ are agnostic to
prediction performance—they provide an assessment of the uncertainty independent of the predictive
accuracy (i.e. a method can predict badly, but could still accurately quantify its own uncertainty).

We have seen few [15, 16] comparisons of different methods for UQ within the field of catalysis and
materials informatics. Here we examine a protocol [17, 18] for comparing the performance of different
modeling and UQ methods (figure 1). We then illustrate the protocol on a case study where we compare
various models’ abilities to predict Density Functional Theory (DFT) calculated adsorption energies. We also
offer anecdotal insights from our case study. We acknowledge that such insights may not be transferable to
other applications, but we find value in sharing them so that others can build their own intuition.

2

Mach. Learn.: Sci. Technol. 1 (2020) 025006 K Tran et al

2. Methods

2.1. Dataset information
All regressions in this paper were performed using a dataset of 47,279 DFT calculated adsorption energies
created with Generalized Adsorption Simulator for Python (GASpy) [19, 20]. Within this dataset, there were
52 different elements within the 1,952 bulk structures used as bases for the adsorption surfaces. The 61 bulk
structures that contained one element encompassed 5,844 of the adsorption calculations; the 1,057 bulk
structures that contained two elements encompassed 31,651 of the calculations; the 774 bulk structures that
contained three elements encompassed 9,139 of the calculations; and the 60 bulk structures that contained
four or five elements encompassed 645 of the calculations. The dataset also comprised 9,102 symmetrically
distinct surfaces and 29,843 distinct coordination environments (as defined by the surface and the adsorbate
neighbors). Lastly, the dataset comprised 21,269 H adsorption energies; 18,437 CO adsorption energies;
3,464 OH adsorption energies; 2,515 O adsorption energies; and 1,594 N adsorption energies.

GASpy performed all DFT calculations using Vienna Ab-initio Simulation Package (VASP) [21–24]
version 5.4 implemented in Atomic Simulation Environment (ASE) [25]. The Perdew-Burke-Ernzerhof
(rPBE) functionals [26] were used along with VASP’s pseudopotentials, and no spin magnetism or dispersion
corrections were used. Bulk relaxations were performed with a 10× 10× 10 k-point grid and a 500 electron
volts (eV) cutoff, and only isotropic relaxation were allowed during this bulk relaxation. Slab relaxations
were performed with k-point grids of 4× 4× 1 and a 350 eV cutoff. Slabs were replicated in the X/Y
directions so that each cell was at least 4.5 Å wide, which reduces adsorbate self-interaction. Slabs were also
replicated in the Z direction until they were at least 7 Å thick, and at least 20 Å of vacuum was included in
between slabs. The bottom layers of each slab were fixed and defined as those atoms more than 3 Å from the
top of the surface in the scaled Z direction.

To split the data into train/validate/test sets, we enumerated all adsorption energies on monometallic
slabs and added them to the training set manually. We did this because some of the regression methods in
this paper use a featurization that contains our monometallic adsorption energy data [19], and so having the
monometallic adsorption energies pre-allocated in the training set prevented any information leakage
between the training set and validation/test sets. After this allocation, we performed a 64/16/20
train/validate/test split that was stratified [27] by adsorbate. We then used the validation set’s results to tune
various hyperparameters manually. After tuning, we calculated the test set results and present them in this
paper exclusively. Note that the test results were obtained using models that were trained only using the
training set, not the validation set. This is acceptable because we only seek to compare methods here, not to
optimize them.

Note that random splits such as this may yield overly optimistic model results. If a model created with the
training set is meant to make extrapolative predictions in feature domains outside of the training set, then it
may be appropriate to use a train/validate/test split using k-means clustering [28] rather than random
splitting. If the model is meant to be used in an online and iterative fashion, then it may be appropriate to use
a time-series split [29]. If the model is meant to be used to interpolate within a given feature space, then the
basic random split may be appropriate. We chose to use a basic random split in this work to simplify the
results for illustrative purposes. Future work for different applications should use splitting methods that
align with the intended use of the models to be generated.

2.2. Regressionmethods
We explore various methods that aim to quantify the uncertainty for regression procedures where the
predicted quantity is a continuous variable. To standardize the assessment of performance, we ensure that
each UQ method returns predictive uncertainty results in a consistent format: a distribution over possible
outcomes of the predicted quantity for any specified input point. This result format allows us to compute all
the predictive uncertainty performance metrics which we introduce in subsequent sections. Figure 2
illustrates all of the methods we investigate in this study, and we describe each method in detail below.
NN: To establish a baseline for predictive accuracy, we re-trained a previously reported Neural Network

(NN) [30, 31] on this study’s training set. This NN model projects a three-dimensional atomic structure into
a graph, which is then fed into convolutional layers to extract local atomic information for predicting global
target properties. In this case, we predict DFT-calculated adsorption energies,∆E. The graph consists of
nodes representing atoms and edges representing distances between atoms. The NN updates the node
features using the local information extracted in the convolutional layers, then hidden layers in the NN maps
the node features to the adsorption energies. Reference [31] for additional details.
NNEnsemble:We created an ensemble of NNs by 5-fold subsampling the training data and then training

individual NN models on the 5 folds. Each individual NN model’s architecture is identical to the base NN
architecture outlined previously. The only differences are their training sets and their individually

3

Mach. Learn.: Sci. Technol. 1 (2020) 025006 K Tran et al

Crystal Graph Convolutional Neural Network
(NN)

ΔÊ

NN ensemble

ΔÊ := μ
UQ := σ

Gaussian Process (GP)

E

E
UQ

In-series NNs (NNΔNN)

ΔÊ

target := ε

UQ := ε

ε = ΔÊ - ΔE

target := ΔE

Bayesian Neural Network (BNN)

ΔÊ := μ
UQ := σ

UQ := σ

GP with NN mean (GPNN-μ)

ΔÊ

target := ΔE

E

NN prediction
UQ

Convolution-Fed Gaussian Process (CFGP)

E

E
UQDropout Neural Network (Dropout NN)

ΔÊ

Figure 2. Overview of the various UQ methods we investigated in this study.∆E represents DFT-calculated adsorption energies;
∆Ê represents ML-predicted adsorption energies; UQ represents ML-predicted uncertainty quantifications; µ represents the
mean of a sample of points; σ represents the standard deviation of a sample of points; ε represents the residuals between DFT and
ML; and ϵ̂ represents the residuals between ML-predicted ε and the actual ε.

randomized initial weights. For the final prediction of the ensemble we computed the mean of the set of
models’ predictions, and for the ensemble’s estimate of uncertainty we computed the standard deviation of
the set of predictions.
BNN: The aim of a Bayesian Neural Network (BNN) is to determine the posterior distribution of model

parameters rather than a single optimal value of the parameters. In practice, inferring true posterior
distributions is very difficult and even infeasible in most cases. Thus, we approximate the model posterior to
be as close as possible to the true posterior. The same NN architecture was used, but we converted the NN
into BNN by assigning posterior distributions to all model parameters in the hidden layers in the NN model.
The BNN then approximated the true posterior distributions using variational inference so that it could use
the approximated posterior to predict the adsorption energies. We sampled the model parameters 20 times
from the approximated posterior distributions, and used the mean of these predictions as the final prediction

4

Mach. Learn.: Sci. Technol. 1 (2020) 025006 K Tran et al

and the standard deviation of these predictions as the estimation of uncertainty. We implemented the BNN
and performed variational inference using Pyro [32].
Dropout NN: Dropout Neural Networks (Dropout NN) have been shown to approximate Bayesian

models [33]. We created a Dropout NN by first replicating the exact architecture used to create the
convolutional NN outlined previously. Then we enforced a random dropout rate of 30% in the dense hidden
layers that followed the convolutional layers. The nodes were randomly dropped out during both training
and prediction. To make predictions, we sampled the Dropout NN 20 times. The mean of the predictions
was used as the final prediction of the Dropout NN, and the standard deviation of the predictions was used
as the estimation of uncertainty.
NN∆NN: Suppose we have trained a NN. We may aim to empirically fit an additional mapping that

predicts the error of the first NN. Here we show in-series NNs (NN∆NN), which trains a secondary NN to
predict the residuals of the initial NN. When training the first NN, we hold out 10% of the training data.
Afterwards, we use the residuals of the initial NN on the held-out portion as training data for the second NN.
After the secondary training, this second NN can predict residuals for the first NN on some new set of input
data. The predictions of the second NN can then be used as uncertainty estimates. Note that both the NNs
included within the NN∆NN were constructed using the same convolutional architecture outlined
previously.
GP: GPs are one of the most common regression methods for producing UQs, and so we use them here

as a baseline. We fit a standard GP using the same exact features that we used in previous work [19]. These
features are defined by the elements coordinated with the adsorbate and by the elements of its next-nearest
neighbors. Specifically: We use the atomic numbers of these elements, their Pauling electronegativity, a count
of the number of atoms of each element near the adsorbate, and the median adsorption energy between the
adsorbate and the elements. To ensure that these features interacted well with the GP’s kernel, we normalized
each of the features to have a mean of zero and standard deviation of one. Reference [19] for additional
details. To define the GP, we assumed a constant mean and used a Matern covariance kernel. We trained the
length scale of the Matern kernel using the Maximum Likelihood Estimation (MLE) method. All GP training
and predictions were done with GPU acceleration as implemented in
GPyTorch [34].

GPNN−µ: GPs are Bayesian models in which a prior distribution is first specified and then updated given
observations to yield a posterior distribution. The mean of this posterior distribution is used for regression,
and the covariance matrix is used for UQ. Typically, in lieu of any additional prior knowledge, practitioners
will take the prior distribution to have zero-mean. However, we could instead supply an alternative curve for
the prior mean, and then perform the usual Bayesian updates to compute the posterior of this GP given
observations. Here, for the GP prior mean, we supply the prediction given by a single pre-trained NN. We
call this method GP with NN mean
(GPNN−µ). For the input features of this GP, we used the same exact features we used for the plain GP—i.e.
the vector of atomic numbers, electronegativity, etc For the covariance kernel of this GP, we used a Matern
kernel where we fit the kernel hyperparameters using MLE. All GP training and predictions were done with
GPU acceleration as implemented in GPyTorch [34].
CFGP: A limitation of using this formulation of a GP with NN-predicted mean is that it requires the use

of hand-crafted features for the GP. This requirement reduces the transferability of the method to other
applications where such features may not be readily available. To address this, we formulated a different
method where we first train a NN (as described previously) to predict adsorption energies and then fix the
network’s weights. Then we use the 46 pooled outputs of the convolutional layers of the network as features
in a new GP. The GP would then be trained to use these features to produce both mean and uncertainty
predictions on the adsorption energies. We call this a Convolution-Fed Gaussian Process (CFGP). Note that
we normalized the 46 convolution outputs of the NN so that each output would have a mean of zero and a
standard deviation of one across the training set. To define the GP, we assumed a constant mean and used a
Matern covariance kernel. We trained the length scale of the Matern kernel using the MLE method. All GP
training and predictions were done with GPU acceleration as implemented in GPyTorch [34].

2.3. Performance metrics
We used five different metrics to quantify the accuracy of the various models: Median Absolute Error
(MDAE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Relative Percent
Difference (MARPD), and R2. We used MDAE because is insensitive to outliers and is therefore a good
measure of accuracy for the majority of the data. We used RMSE because it is sensitive to outliers and is
therefore a good measure of worst-case accuracy. We used MAE because it lies between MDAE and RMSE in
terms of sensitivity to outliers. We used MARPD and R2 because they provide normalized measures of

5

Mach. Learn.: Sci. Technol. 1 (2020) 025006 K Tran et al

accuracy that may be more interpretable for those unfamiliar with adsorption energy measurements in eV.
MARPD values were calculated with equation (1):

MARPD=
1

N

N∑
n=1

∣∣∣∣100 · x̂n − xn
|x̂n|+ |xn|

∣∣∣∣ (1)

where n is the index of a data point, N is the total number of data points, xn is the true value of the data
point, and x̂n is the model’s estimate of xn. In this case, xn is a DFT-calculated adsorption energy and x̂n is the
surrogate-model-calculated adsorption energy. The ensemble of these metrics provide a more robust view of
accuracy than any one metric can provide alone.

To assess the calibration (or ‘honesty’) of these models’ UQs, we created calibration curves. A calibration
curve ‘displays the true frequency of points in each interval relative to the predicted fraction of points in that
interval’, as outlined by [17]. In other words: We used the standard deviation predictions to create Gaussian
random variables for each test point and then tested how well the residuals followed their respective Gaussian
random variables. Thus ‘well-calibrated’ models had residuals that created Gaussian distributions whose
standard deviations were close to the model’s predicted standard deviations. We discuss calibration curves in
more detail in the Results section alongside specific examples. We also calculated the calibration errors [17]
of our models, which is a quantitative measure of calibration.

As [17] also pointed out, well-calibrated models are necessary but not sufficient for useful UQs. For
example: A well-calibrated model could still have large uncertainty estimates, which are inherently less useful
than well-calibrated and small uncertainty estimates. This idea of having small uncertainty estimates is called
‘sharpness’, and [17] define it with equation (2):

sha=
1

N

N∑
n=1

var(Fn) (2)

where var(Fn) is the variance of the random variable whose cumulative distribution function is F at point n.
This is akin to the average variance of the uncertainty estimates on the test set. Here we propose and use a
new formulation (equation (3)) where we add a square root operation. This operation gives the sharpness
the same units as the predictions, which provides us with a more intuitive reference. In other words:
Sharpness is akin to the average of the ML-predicted standard deviations.

sha=

√√√√ 1

N

N∑
n=1

var(Fn) (3)

Another consideration is the dispersion of the uncertainty estimates. If a model predicts a constant value
for uncertainty, it may still be able to perform well with regards to calibration or sharpness. Constant values
for uncertainty are likely to fail when models are used to make predictions outside the bounds of the training
data. One way to address this issue is to calculate the coefficient of variation, Cv [18]. See equation (4):

Cv =

√∑N
n=1(σn−µσ)2

N−1

µσ
(4)

where σn is the predicted standard deviation of point n, µσ is the average value of σn, and N is the total
number of test points. Low values of Cv indicate a narrow dispersion of uncertainty estimates, which may
suggest poor performance in out-of-domain predictions. Thus a higher Cv may indicate more robust
uncertainty estimates. But as [16] point out, the optimal dispersion is a function of the validation/test data
distribution. Therefore, Cv should be used as a secondary screening metric rather than a primary
performance metric.

We also assessed the performance of each predictive uncertainty method by comparing their negative
log-likelihood (NLL) values the test set. For each test point, we established a Gaussian probability
distribution using the mean and uncertainty predictions of each UQ model. Then we calculated the
conditional probability of observing the true value of the test point given the probability distribution created
from the UQ; this is the likelihood of one test point. We then calculated the product of all the likelihoods of
all test points, which yielded the total test likelihood. It follows that better UQ methods yield higher total

6

Mach. Learn.: Sci. Technol. 1 (2020) 025006 K Tran et al

(a) parity plot (b) calibration curve (c) uncertainty distribution

Figure 3. Results of the NN ensemble. Each figure here was created with the test set of 8,289 points.

likelihood values. Equivalently, we could calculate the natural logarithms of each likelihood, sum them, and
then take the negative of this value; this is NLL. Equation (5) shows how we calculated NLL:

NLL=−
n∑

i=1

lnP(yi|N(ŷi, σ̂i
2)) (5)

where yi is the true value of a test point, ŷi is a model’s predicted mean value at that test point, σ̂i
2 is the

model’s predicted variance at that test point, n is the set of all test points, and N(x, y) is a normal distribution
with mean x and variance y. Note how the NLL value depends on the size and location of the test set. This
means that the absolute value of NLL changes from application to application, and so a ‘good’ NLL value
must be contextualized within a particular test set. Within a test set, a lower NLL value indicates a better fit.
We also note that we assumed Gaussian distributions for our UQ methods’ predictions. This assumption
does not necessarily need to be applied, meaning that the normal distribution in equation (5) may be
replaced with any other appropriate distribution.

We use NLL because it provides an overall assessment that is influenced by both the predictive accuracy
of a method as well as the quality of its UQ. Previous work [35, 36] has shown the NLL to be a strictly proper
scoring rule, which intuitively means that it provides a fair quantitative assessment (or score) for the
performance of the UQ method, and that it can be decomposed into terms that relate to both calibration and
sharpness. NLL is also a popular performance metric that has been used to quantify uncertainty in a variety
of prior work [37] and provides an additional single score for UQ methods.

3. Results

3.1. Illustrative examples
Let us first discuss the results of our NN ensemble for illustrative purposes. Figure 3 contains a parity plot,
calibration curve, and predicted-uncertainty distribution of our NN ensemble model. The parity plot shows
the accuracy of the model; the calibration curve shows the honesty of the model’s uncertainty predictions;
and the uncertainty distribution shows the sharpness of the model’s uncertainty predictions. Accurate
models have parity plots whose points tend to fall near the diagonal parity line. Calibrated models have
calibration curves that approach the ideal diagonal line. Sharp models have uncertainty distributions that
tend towards zero. Note that sharpness should not be won at the cost of calibration.

The calibration curve was created by first establishing Gaussian random variables for each test point
where the means were the model’s predictions and the variances were the model’s predicted variances. The
test residuals could then be compared against their respective random variables. For simplification purposes,
we divided each of the test residuals by their corresponding standard deviations so that we could test all
residuals against the same unit Gaussian distribution. Thus if the normalized test residuals followed a unit
Gaussian distribution, then the model’s uncertainty predictions could be considered well-calibrated. We
tested this by calculating the theoretical cumulative distribution of points within the intervals
(−∞,x] ∀ x ∈ (−∞,∞) and then compared it against the observed cumulative distributions. A plot of the
observed cumulative distributions against the theoretical cumulative distributions is called a calibration
curve. A perfectly calibrated model would have normalized residuals that are Gaussian, which would yield a

7

Mach. Learn.: Sci. Technol. 1 (2020) 025006 K Tran et al

(a) calibration of NN ensemble (b) calibration of GP (c) calibration of CFGP

(d) parity of NN ensemble (e) parity of GP (f) parity of CFGP

Figure 4. Calibration curves and parity plots of an overconfident NN ensemble, an underconfident GP, and better-calibrated
CFGP. The vertical uncertainty bands in the parity plots indicate±2 standard deviations in the uncertainty predictions of each
model. For clarity, we sampled only 20 points of the 8,289 test points to put in the parity plots. It follows that relatively
overconfident models would have more points with uncertainty bands that do not cross the diagonal parity line; relatively
underconfident models would have more points that cross the diagonal parity line; and a well-calibrated model would have ca. 19
out of 20 points cross the parity line.

diagonal calibration line. Therefore, models’ calibration could be qualified by the closeness of their
calibration curves to this ideal, diagonal curve. We quantified this closeness by calculating the area between
the calibration curve and the ideal diagonal. We call this the miscalibration area, and smaller values indicate
better calibration. We also calculated the calibration error [17], which is the sum of square differences
between the expected cumulative distributions and observed cumulative distributions.

The shape of a calibration curve could also yield other insights. If a model’s UQs were too low/confident,
then the normalized residuals would be too large and they would fall outside their distributions too
frequently. This would result in a lower observed cumulative distributions compared to the expected
cumulative distributions, which would correspond to a calibration curve that falls below the ideal diagonal.
Therefore, overconfident models yield calibration curves that fall under the ideal diagonal, and
underconfident models yield calibration curves that fall over the ideal diagonal. Figure 4 illustrates this point
by plotting calibration curves of various models alongside their parity plots that contain error bars
corresponding to±2 standard deviations. Note that when we say a calibration curve ‘falls under the
diagonal’, we allude to curves whose right-hand-side fall under the diagonal.

3.2. Summary results
Figure 5 contains parity plots for all UQ methods studied here; figure 6 contains all calibration curves; and
figure 7 contains all distribution plots of the ML-predicted UQs. These figures illustrate the accuracy,
calibration, and sharpness of the different UQ methods, respectively. Table 1 lists their performance metrics.

Regarding accuracy: All methods’ MDAE results are virtually identical, and their MAE results are within
10% of each other. This suggests that all methods have comparable predictive accuracies for inliers. The plain
GP has a higher RMSE value than the rest of the methods, indicating that it has the worst predictive accuracy
for outliers. Correlations between residuals and uncertainty estimates are discussed in the Supplementary
Information section briefly (stacks.iop.org/MLST/1/025006/mmedia).

Regarding calibration: The NN ensemble, BNN, and Dropout NN are overconfident; the GP is
underconfident; and the NN∆NN, GPNN−µ, and CFGP models are relatively calibrated. The three more
calibrated methods all share a characteristic that the other methods do not: They all start with a NN that is

8

https://stacks.iop.org/MLST/1/025006/mmedia

Mach. Learn.: Sci. Technol. 1 (2020) 025006 K Tran et al

(a) NN ensemble (b) BNN (c) Dropout NN

(d) NNΔNN (e) GP (f) GPNN−µ

(g) CFGP

Figure 5. Parity plots for all UQ methods used in this study. Shading plots were used in lieu of scatter plots because the large
number of test points (8,289) obfuscated patterns. Darker shading indicates a higher density of points. Logarithmically scaled
shading was used to accentuate outliers. The dashed, diagonal lines indicate parity.

dedicated for prediction alone, and then they end with some other in-series method to estimate uncertainty.
Interestingly, this in-series method of learning predictions and then learning uncertainties is similar in spirit
to how gradient boosted models ‘learn in stages’ using an ensemble of models.

Regarding sharpness: The NN ensemble, BNN, and Dropout NN models yield the most sharp
uncertainties, although they do so at the cost of calibration. Among the three more calibrated models, the
NN∆NN yields the lowest sharpness of 0.16 eV while the GPNN−µ and CFGP yield sharpnesses of 0.21 and
0.24 eV, respectively. Note how GP-based UQ methods tend to yield less sharp uncertainties than methods
based purely on NNs. This suggests that GPs may yield more conservative UQs.

Regarding NLL: The CFGP method yields the best (i.e. lowest) NLL value of ca. 2,800 while both the GP
and GPNN−µ models yield relatively moderate NLL values of ca. 6,000. Note how the under-confident GP
model has a worse miscalibration area, calibration error, and sharpness than the NN∆NN but a better NLL
value. Simultaneously, the three most over-confident and sharp models (NN ensemble, BNN, and Dropout
NN) yield the worst NLL results. This shows that better NLL values correlate with relatively conservative
estimates of UQ, but not with relatively liberal estimates. In other words: If we use NLL as our main
performance metric, then we will favor under-confident UQ estimates in lieu of over-confident estimates.

9

Mach. Learn.: Sci. Technol. 1 (2020) 025006 K Tran et al

(a) NN ensemble (b) BNN (c) Dropout NN

(d) NNΔNN (e) GP (f) GPNN−µ

(g) CFGP

Figure 6. Calibration curves for all UQ methods used in this study. Dashed, blue lines indicate perfect calibration while solid
orange lines indicate the experimental calibration of the test set. The blue, shaded area between these lines is defined as the
miscalibration area.

Given the performance metrics for accuracy, calibration, sharpness, and NLL, we expect the CFGP or
GPNN−µ methods to yield the best performing UQ models for our dataset. When choosing UQ methods for
different applications, other factors should be considered. For example: Although the GPNN−µ method
performed relatively well, it relied on hand-crafted features. If future researchers wish to use the GPNN−µ

method to predict other properties from atomic structures, they may have to define their own set of features.
This process of feature engineering is non-trivial and varies from application to application. In some cases, it
may be easier to use a UQ method that does not require any additional features beyond the NN input, such
as NN∆NN or CFGP. This is why we declare CFGP as the method of choice for our study here; it has a
relatively competitive accuracy, calibration, and sharpness while requiring less information than GPNN−µ.

Another factor to consider is the overhead cost of implementation. For example: The NN ensemble
method is arguably the simplest NN-based UQ method used here and may be the easiest method to
implement. Conversely, NN ensembles also have a higher computational training cost than some of the other
methods used here, such as NN∆NN or CFGP. This high training cost is exacerbated if the ensemble is
meant to be used in an active framework where the model needs to be trained continuously. As another
example: The BNN method yielded perhaps the worst results of all the methods studied here. It could be
argued that further optimization of the BNN could have resulted in higher performance. But creation and
training of BNNs is still an active area of research with less literature and support than GPs or non-Bayesian
NNs. This lack of support led to us spending nearly twice as long creating a BNN compared to the other

10

Mach. Learn.: Sci. Technol. 1 (2020) 025006 K Tran et al

(a) NN ensemble (b) BNN (c) Dropout NN

(d) NNΔNN (e) GP (f) GPNN−µ

(g) CFGP

Figure 7. Distribution plots of the ML-predicted standard deviations for each method. Sharpness values are indicated by vertical
lines.

Table 1. Performance metrics for all methods used in this study, which include: Median Absolute Error (MDAE), Mean Absolute Error
(MAE), Root Mean Squared Error (RMSE), Mean Absolute Relative Percent Difference (MARPD), R2 correlation coefficient (R2),
miscalibration area (MisCal), calibration error (CalErr), sharpness (Sha), coefficient of variation (Cv), and negative log-likelihood
(NLL). The units of MDAE, MAE, RMSE, and sharpness are all in eV. The units of MARPD are in %. The miscalibration area,
calibration error, Cv, and NLL are unitless.

Method MDAE MAE RMSE MARPD R2 MisCal CalErr Sha Cv NLL·103

NN 0.11 0.19 0.34 61 0.80 N/A N/A N/A N/A N/A
NN ensemble 0.11 0.18 0.32 59 0.82 0.12 1.70 0.14 1.06 192.08
BNN 0.11 0.19 0.31 59 0.83 0.20 5.32 0.03 0.30 669.61
Dropout NN 0.11 0.19 0.34 61 0.79 0.14 2.52 0.09 0.82 7.38·1014
NN∆NN 0.11 0.19 0.34 59 0.80 0.05 0.39 0.16 0.71 18.61
GP 0.11 0.21 0.39 61 0.73 0.14 2.35 0.65 0.21 6.41
GPNN−µ 0.11 0.19 0.33 59 0.81 0.03 0.08 0.21 0.34 6.09
CFGP 0.11 0.19 0.33 59 0.80 0.03 0.13 0.24 0.33 2.80

methods. It follows that further optimization of the BNN would be non-trivial and may not be worth the
overhead investment.

11

Mach. Learn.: Sci. Technol. 1 (2020) 025006 K Tran et al

4. Conclusions

We examined a procedure for comparing different methods for uncertainty quantification (UQ). This
procedure considers the accuracy of each method, the honesty of their uncertainty estimates (i.e. their
calibration), and the size of their uncertainty estimates (i.e. their sharpness). To assess accuracy, we outlined
a common set of error metrics such as MAE or RMSE, among others. To assess calibration, we showed how
to create, interpret, and quantify calibration curves. To assess sharpness, we showed how to calculate and plot
sharpness. To assess all three aspects simultaneously, we suggest using the negative log-likelihood (NLL) as a
performance metric. The ensemble of all these metrics and figures can be used to judge the relative
performance of various UQ methods in a holistic fashion.

As a case study, we tested six different methods for predicting Density Functional Theory (DFT)
calculated adsorption energies with UQ. The best performing method was a Convolution-Fed Gaussian
Process (CFGP), which used a pre-trained convolutional output from a NN as features for a subsequent GP
that made probabilistic predictions. Our studies also showed that the GP-based methods we tested tended to
yield higher and more conservative uncertainty estimates than the methods that used only NNs and NN
derivatives. We also found that in-series methods tended to yield more calibrated models—i.e. methods that
use one model to make value predictions and then a subsequent model to make uncertainty estimates were
more calibrated than models that attempted to make value and uncertainty predictions simultaneously.
These results are limited to our dataset. Results may vary for studies with different applications, different
models, or different hyperparameters. But the underpinning procedure we used to compare these models is
still broadly applicable.

Note that it would be possible to recalibrate [17] each of the models in this study to improve their
uncertainty estimates. We purposefully omitted recalibration in this study to (1) simplify the illustration of
the UQ assessment procedure; (2) assess the innate performance of each of these UQ methods without
confounding with recalibration methods; and (3) reduce overhead investment. Future work should consider
recalibration if the feasible UQ methods provide insufficiently calibrated uncertainty predictions

Future work may also consider inductively biased UQs. For example: If we used the Bayesian Error
Estimation Functional with van der Waals correlation (BEEF-vdW) [38], then our DFT calculated
adsorption energies would have been distributions rather than than single point estimates. Such
distributions could be propagated to certain UQ surrogate models, e.g. as a variable-variance kernel in a
GP-type method. As another example of inductively biased UQs: A model may be able to make
low-uncertainty predictions on a DFT-optimized structure and then also make high-uncertainty predictions
on a similar but DFT-unoptimized structure. UQs do not need to be derived strictly from data. They may
also be derived from previous knowledge.

Author information

The authors declare no competing financial interest.

Acknowledgment

This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of
Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract
No. DE-AC02-05CH11231. We also acknowledge the exceptional documentation and clear examples in the
GPyTorch [34] repository, which formed the basis on much of the GP code used for this work.

Code availability

Visit https://github.com/ulissigroup/uncertainty_benchmarking for the code used to create the
results discussed in this paper. The code dependencies are listed inside the repository.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable
request.

ORCID iD

Zachary W Ulissi https://orcid.org/0000-0002-9401-4918

12

https://github.com/ulissigroup/uncertainty_benchmarking
https://orcid.org/0000-0002-9401-4918
https://orcid.org/0000-0002-9401-4918

Mach. Learn.: Sci. Technol. 1 (2020) 025006 K Tran et al

References

[1] Medford A J, Kunz M R, Ewing S M, Borders T and Fushimi R 2018 Extracting Knowledge from Data through Catalysis
Informatics ACS Catalysis 8 7403–29

[2] Gu G H, Noh J, Kim I and Jung Y 2019 Machine learning for renewable energy materials J. Mater. Chem. A 7 17096–117
[3] Schleder G R, Padilha A C M, Acosta C M Costa M and Fazzio A 2019 From DFT to Machine Learning: recent approaches to

Materials Science—a review J. Phys. Mater. 2 1–46
[4] Alberi K et al 2019 The 2019 materials by design roadmap J. Phys. D: Appl. Phys 52 1–48
[5] Settles B 2012 In Synthesis Lectures on Artificial Intelligence and Machine Learning ed Brachman R J et al (San Rafael, CA: Morgan

and Claypool) p 100
[6] Chu W, Zinkevich M, Li L, Thomas A and Tseng B 2011 Unbiased online active learning in data streams Proc. of the ACM SIGKDD

Int. Conf. on Knowledge Discovery and Data Mining pp 195–203
[7] Frazier P I 2018 A Tutorial on Bayesian Optimization arXiv:1807.02811 [stat.ML]
[8] Garnett R, Krishnamurthy Y, Xiong X Schneider J and Mann R 2012 Bayesian optimal active search and surveying Proc. of the 29th

Int. Conf. on Machine Learning, ICML 2012 vol vol 2 pp 1239–46
[9] Kandasamy K, Neiswanger W, Zhang R, Krishnamurthy A, Schneider J and Poczos B 2018 Myopic Bayesian design of experiments

via posterior sampling and probabilistic programming arXiv:1805.09964 [stat.ML]
[10] Peterson A A 2016 Acceleration of saddle-point searches with machine learning J. Chem. Phys. 145 074106
[11] Torres J A G, Jennings P C, Hansen M H, Boes J R and Bligaard T 2018 Low-scaling algorithm for nudged elastic band calculations

using a surrogate machine learning model Phys. Rev. Lett. 122 156001
[12] Jinnouchi R, Lahnsteiner J, Karsai F, Kresse G and BokdamM 2019 Phase transitions of hybrid perovskites simulated by

machine-learning force fields trained on the fly with Bayesian inference Phys. Rev. Lett. 122 225701
[13] Peterson A A, Christensen R and Khorshidi A 2017 Addressing uncertainty in atomistic machine learning Phys. Chem. Chem. Phys.

19 10978–85
[14] Musil F, Willatt M J, Langovoy M A and Ceriotti M 2019 Fast and accurate uncertainty estimation in chemical machine learning

J. Chem. Theory Comput. 15 906–15
[15] Janet J P, Duan C, Yang T, Nandy A and Kulik H J 2019 A quantitative uncertainty metric controls error in neural network-driven

chemical discovery Chem. Sci. 10 7913–22
[16] Scalia G, Grambow C A, Pernici B and Li Y-P and Green W H 2019 Evaluating Scalable Uncertainty Estimation Methods for

DNN-Based Molecular Property Prediction (http://arxiv.org/abs/1910.03127)
[17] Kuleshov V, Fenner N and Ermon S 2018 Accurate Uncertainties for Deep Learning Using Calibrated Regression 35th Int. Conf. on

Machine Learning (Stockholm, Sweden)
[18] Levi D, Gispan L, Giladi N and Fetaya E 2020 Evaluating and Calibrating Uncertainty Prediction in Regression Tasks

(http://arxiv.org/abs/1905.11659)
[19] Tran K and Ulissi Z W 2018 Active learning across intermetallics to guide discovery of electrocatalysts for CO2 reduction and H2

evolution Nat. Catal. 1 696–703
[20] Tran K, Aini P, Back S and Ulissi Z W 2018 Dynamic Workflows for Routine Materials Discovery in Surface Science J. Chem. Inf.

Model. 58 2392–400
[21] Kresse G and Hafner J 1993 Ab initio molecular dynamics for liquid metals Phys. Rev. B 47 558–61
[22] Kresse G and Hafner J 1994 Ab initio molecular-dynamics simulation of the liquid-metal—amorphous-semiconductor transition

in germanium Phys. Rev. B 49 14251–69
[23] Kresse G and Furthmüller J 1996 Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave

basis set Comput. Mater. Sci. 6 15–50
[24] Kresse G and Furthmüller J 1996 Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set Phys.

Rev. B 54 11169–86
[25] Hjorth Larsen A et al 2017 The atomic simulation environment—a Python library for working with atoms J. Phys.: Condens.

Matter. 29 273002
[26] Hammer B, Hansen L B and Norskov J 1999 Improved adsorption energetics within density-functional theory using revised

Perdew-Burke-Ernzerhof functionals Phys. Rev. B 59 7413–21
[27] Thompson S K 2012 In Sampling Eds Shewhart W A and Wilks S S Chapter 11 3rd ed (New York: Wiley) pp 139–56
[28] Meredig B et al 2018 Can machine learning identify the next high-temperature superconductor? Examining extrapolation

performance for materials discoveryMol. Syst. Des. Eng. 3 819–25
[29] Hyndman R J and Athanasopoulos G 2014 Forecasting: Principles and Practice 1st edn (Melbourne, Australia: OTexts)
[30] Xie T and Grossman J C 2018 Crystal graph convolutional neural networks for an accurate and interpretable prediction of material

properties Phys. Rev. Lett. 120 145301
[31] Back S, Yoon J, Tian N, Zhong W Tran K and Ulissi Z W 2019 Convolutional neural network of atomic surface structures to predict

binding energies for high-throughput screening of catalysts J. Phys. Chem. Lett. 10 4401–8
[32] Bingham E, Chen J P, Jankowiak M, Obermeyer F, Pradhan N, Karaletsos T, Singh R; Szerlip P, Horsfall P, Goodman N D 2018

Pyro: Deep Universal Probabilistic Programming arXiv:1810.09538 [cs.LG]
[33] Gal Y and Ghahramani Z 2016 Dropout as a Bayesian approximation : representing model uncertainty in deep learning 33rd Int.

Conf. on Machine Learning. New York, NY, USA
[34] Gardner J R, Pleiss G, Bindel D, Weinberger K Q and Wilson A G 2018 GPyTorch: Blackbox Matrix-Matrix Gaussian Process

Inference with GPU Acceleration 32nd Conf. on Neural Information Processing Systems (NeurIPS)
[35] Gneiting T and Raftery A E 2007 Strictly proper scoring rules, prediction and estimation J. Am. Stat. Assoc. 102 359–78
[36] Dawid A P and Musio M 2014 Theory and applications of proper scoring rulesMetron 72 169–83
[37] Lakshminarayanan B, Pritzel A and Blundell C 2017 Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles

31st Conf. on Neural Information Processing Systems (NIPS)
[38] Wellendorff J, Lundgaard K T, Mogelhoj A, Petzold V, Landis D D, Norskov J K, Bligaard T and Jacobsen K W 2012 Density

functionals for surface science: Exchange-correlation model development with Bayesian error estimation Phys. Rev. B 85 32–4

13

https://doi.org/10.1021/acscatal.8b01708
https://doi.org/10.1021/acscatal.8b01708
https://doi.org/10.1039/C9TA02356A
https://doi.org/10.1039/C9TA02356A
https://doi.org/10.1088/1361-6463/aad926
https://doi.org/10.1088/1361-6463/aad926
https://arxiv.org/abs/1807.02811
https://arxiv.org/abs/1805.09964
https://doi.org/10.1063/1.4960708
https://doi.org/10.1063/1.4960708
https://doi.org/10.1103/PhysRevLett.122.156001
https://doi.org/10.1103/PhysRevLett.122.156001
https://doi.org/10.1103/PhysRevLett.122.225701
https://doi.org/10.1103/PhysRevLett.122.225701
https://doi.org/10.1039/C7CP00375G
https://doi.org/10.1039/C7CP00375G
https://doi.org/10.1021/acs.jctc.8b00959
https://doi.org/10.1021/acs.jctc.8b00959
https://doi.org/10.1039/C9SC02298H
https://doi.org/10.1039/C9SC02298H
http://arxiv.org/abs/1910.03127
http://arxiv.org/abs/1905.11659
https://doi.org/10.1038/s41929-018-0142-1
https://doi.org/10.1038/s41929-018-0142-1
https://doi.org/10.1021/acs.jcim.8b00386
https://doi.org/10.1021/acs.jcim.8b00386
https://doi.org/10.1103/PhysRevB.47.558
https://doi.org/10.1103/PhysRevB.47.558
https://doi.org/10.1103/PhysRevB.49.14251
https://doi.org/10.1103/PhysRevB.49.14251
https://doi.org/10.1016/0927-0256(96)00008-0
https://doi.org/10.1016/0927-0256(96)00008-0
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.59.7413
https://doi.org/10.1103/PhysRevB.59.7413
https://doi.org/10.1039/C8ME00012C
https://doi.org/10.1039/C8ME00012C
https://doi.org/10.1103/PhysRevLett.120.145301
https://doi.org/10.1103/PhysRevLett.120.145301
https://doi.org/10.1021/acs.jpclett.9b01428
https://doi.org/10.1021/acs.jpclett.9b01428
https://arxiv.org/abs/1810.09538
https://doi.org/10.1198/016214506000001437
https://doi.org/10.1198/016214506000001437
https://doi.org/10.1007/s40300-014-0039-y
https://doi.org/10.1007/s40300-014-0039-y
https://doi.org/10.1103/PhysRevB.85.235149
https://doi.org/10.1103/PhysRevB.85.235149

	Methods for comparing uncertainty quantifications for material property predictions
	1. Introduction
	2. Methods
	2.1. Dataset information
	2.2. Regression methods
	2.3. Performance metrics

	3. Results
	3.1. Illustrative examples
	3.2. Summary results

	4. Conclusions
	Acknowledgment
	References

