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There is more and more evidence that machine learning can be successfully applied in materials
science and related fields. However, datasets in these fields are often quite small (from tens to several
thousands of samples). This means the most advanced machine learning techniques remain neglected,
as they are considered to be applicable to big data only. Moreover, materials informatics methods
often rely on human-engineered descriptors, that should be carefully chosen, or even created, to fit the
physicochemical property that one intends to predict. In this article, we propose a new method that
tackles both the issue of small datasets and the difficulty of developing task-specific descriptors. The
SMILES-X is an autonomous pipeline for molecular compounds characterisation based on a { Embed-
Encode-Attend-Predict} neural architecture with a data-specific Bayesian hyper-parameters optim-
isation. The only input to the architecture—the SMILES strings—are de-canonicalised in order to
efficiently augment the data. One of the key features of the architecture is the attention mechanism,
which enables the interpretation of output predictions without extra computational cost. The
SMILES-X achieves state-of-the-art results in the inference of aqueous solubility

(RMSE s ~ 0.57 £ 0.07 mols/L), hydration free energy (RMSE s ~ 0.81 £ 0.22 kcal/mol, which
is ~24.5% better than molecular dynamics simulations), and octanol /water distribution coefficient
(RMSE ¢t =~ 0.59 =+ 0.02 for LogD at pH 7.4) of molecular compounds. The SMILES-X is intended to
become an important asset in the toolkit of materials scientists and chemists. The source code for the
SMILES-X is available at github.com /GLambard /SMILES-X.

1. Introduction

In the fields of bio- and cheminformatics, machine learning (ML) algorithms combined with human-engineered
molecular descriptors [1] have shown great potential in tasks of predicting physicochemical properties of
molecular compounds. In practice, however, it is often necessary to run a blind scan through a large number of
such combinations (there are over 6000 descriptors available) in order to find the most accurate inference
model, which still may not lead to success. Most of the descriptors are task- or domain-specific, and their format
makes it impossible to use them for more general problems, such as virtual screening, similarity searching,
clustering and structure-activity modelling [2-5].

For these purposes molecular fingerprints have been developed [6]. A fingerprint is a binary representation
of amolecule: its structural or functional features are translated into a string of bits as a way to keep the
fingerprint invariant to rotations, translations and property-preserving atomic permutations (see, e.g., extended
circular fingerprints [7]). Even though fingerprints are known to be beneficial to tasks like similarity searches,
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their development requires some level of simplification, information loss and/or bias towards the field and
molecular target they have been designed for.

In 2014 Cadeddu et al [8] demonstrated that chemical language is quantitatively similar to a natural
language, which implies that molecules can be considered as chemical sentences. This finding encouraged the
use of machine learning algorithms based on the text representations of the molecules. The most common
molecular text representation is SMILES (simplified molecular input line entry system) [9, 10]. Applying natural
language processing (NLP) techniques to the SMILES allowed, for example, to build a powerful generative
model for de novo drug design [11]. Another study shows state-of-the-art results in reaction prediction problem
[12]. These and other works prove that one can achieve best to date results by applying machine learning directly
on SMILES and that fully data-driven machine learning approaches can outperform the methods that depend on
hand-encoded features [11-15]. Yet it is usually implied that the usage of deep neural architectures (NAs)
requires the presence of big data.

In fields like materials science, however, it is common to have datasets containing from several tens to several
thousands of samples, which is considered to be too small for a direct deep learning application. Some research
groups apply them for secondary tasks such as building novel high-level features as non-linear combinations of
molecular descriptors [16—18]. Others apply deep learning to learn features based on 2D /3D images [19, 20],
molecular graphs [21], N-gram graphs [22] or a combination of mentioned inputs [23], similar to computer
vision (CV). Still none of them intend to develop a deep NA specifically for small datasets. There are some works
on transfer learning [11, 16, 24, 25], but the results vary greatly depending on the correlation between the tasks—
which is often unknown a priori. This situation is comparable to the fields of CV or NLP, where most of the used
NAs are trained on big data and impose architectures that do not fit small datasets.

Aside from the lack of data, another bottleneck on the way to using NAs in physics and chemistry is the lack
of interpretability of the trained models. A method for explaining neural networks has been recently proposed
[19]. It consists of training an additional neural network to generate a mask identifying the most important
SMILES characters. Despite the respectable coherence in the interpretation of the chemical solubility, the
explanation network is entirely correlated to its prediction network, which forces the training phase to be
doubled for each dataset. Moreover, even though the explanation network allows us to identify the groups that
have the highest weight in the property prediction, there is no evidence that the original prediction network has
also learned the known chemistry concepts in order to make proper characterisation.

In this article we propose a method allowing to overpass the issues of data scarcity, descriptors engineering
and the prediction interpretation ambiguity at the same time. To achieve this, we borrowed the latest techniques
from the CV and NLP fields to build an entirely autonomous system—the SMILES-X. As the name implies, we
use SMILES molecular representation as the sole input. It allowed us to implement an augmentation procedure
similar to Bjerrum [26]. The key feature of the algorithm is the attention mechanism [27]. Not only does it allow
us to get more information out of small data by reading deeper into the SMILES, but also it provides a
straightforward interpretation of the model’s output at no extra cost. The attention layer also allows us to reduce
the number of trainable parameters, keeping the architecture relatively light. We use a simplified version of
attention applicable to feed-forward networks [28]. The attention mechanism has already been applied in the
field of cheminformatics [12]. But to the best of our knowledge, this is the first time in materials science related
fields when an NA is specifically designed to manage small datasets, and the first attempt to integrate an NLP-
based attention mechanism for predicting physicochemical properties of molecular compounds. The SMILES-
X can be used to predict any physicochemical property given the molecule’s SMILES and is intended to become
an important asset in the toolkit of materials scientists and chemists. The algorithm achieves the state-of-the-art
results on three benchmark datasets.

The structure of the article is as follows. First, we describe the entire pipeline of the SMILES-X in section 2.
The SMILES augmentation and formatting are detailed in sections 2.1 and 2.22.1, respectively, while the
procedures of building the NA frame and its data-specific optimisation are presented in the section 2.3.

Section 3.1 is dedicated to the performance of the SMILES-X based on three benchmark datasets for regression
tasks from the MoleculeNet [29]: ESOL [30], FreeSolv [31] and Lipophilicity [32]. There are three modes of
interpretation of the results of the SMILES-X, which are discussed in section 3.2. Finally, we conclude and
discuss further possible improvements of the SMILES-X, as well as propose more potential target properties to
be inferred using the algorithm, in section 4.

2. The SMILES-X pipeline

The SMILES-X has been conceived to meet the following requirements: (i) to use the SMILES format as the only
representation of a molecular compound; computable characteristics, such as the fingerprints or physical
descriptors, are left out. (if) Remove the SMILES canonicalization [9] in order to exploit the full capacity of the

2



10P Publishing

Mach. Learn.: Sci. Technol. 1(2020) 025004 G Lambard and E Gracheva

Figure 1. The SMILES-X pipeline.

molecular compound representation. (iii) The core architecture is simple enough to handle small datasets
without sacrificing the prediction accuracy. (iv) Outcomes of the SMILES-X are interpretable.

Figure 1 is a sketch of the main steps within the SMILES-X pipeline. The primary input is a list of SMILES
strings with corresponding property values. Then, a splitting into training, validation and test sets is performed
via equiprobable sampling. The subsequent steps are detailed below.

2.1. Augmentation

Ithas been shown in CV that data augmentation approaches such as flipping, rotation, scaling, cropping and
other image transformations are effective to reduce the error rate on classification tasks and improve
generalisation [33]. Here, we introduce a technique called SMILES augmentation, similar to Bjerrum [26]. The
first step consists in removing canonicalization [9] of the SMILES. Canonicalization is the default procedure to
standardise the SMILES across the databases, therefore removing it leads to an expanded number of SMILES
individual representations. Then, augmentation is done by iterating over the following two steps: (i) Renumber
the atoms of a given SMILES by rotation of their index. (ii) For each renumbering, reconstruct grammatically
correct SMILES under the condition of conserving the initial molecule’s isomerism and prohibiting
Kekulisation [9, 10]. In the end, one obtains an expanded list of SMILES together with their corresponding
property and cardinality n,uem(s;) (number of augmentations for a SMILES s;), if any. Duplicated SMILES are
removed. The SMILES augmentation is individually performed after splitting into training, validation and test
sets to avoid any information leakage. The procedure is performed using the RDKit library [34].

2.2. Tokenisation

Tokenisation consists in dividing the SMILES into unique tokens, each token being a set of characters. The
procedure of SMILES tokenisation is as follows [9, 10]: (i) Aliphatic and aromatic organic atoms (B, C,N, O, S, P,
F,ClL Br, L b, ¢, n, 0,5, p), bounds, branches and rings (—,=, #, $, /,\, ., (; ), %digits, digit) are set as individual
tokens. (ii) The characters between squared brackets, that may include inorganic and aromatic organic atoms,
isotopes, chirality, hydrogen count, charges or class number, form a single token (brackets included, e.g.,
[NH*"]). (iii) Unlike the NLP analysis, the beginning token is not different from the termination one: both of
them are represented by a white space, which is added at both ends of a tokenized SMILES. This is important to
keep its reading direction invariant. Finally, a set of unique tokens is extracted to form the representative
chemical vocabulary for a given dataset. To become an interpretable NA input, this vocabulary is then mapped
into integers, and is conserved into memory for future usage.

2.3. Architecture search

The neural architecture search has recently reached a new milestone in finding the optimal NA for a given task,
by using, e.g., reinforcement learning techniques [35, 36] or evolutionary algorithms [37]. However, not only
these techniques are computationally expensive but also they do not necessarily deal with the recurrent blocks. It
has therefore been decided to fix the overall NA geometry (figure 2) and search for the best set of the
hyperparameters through the Bayesian optimisation [38]. As it was mentioned earlier in section 2, this geometry
is NLP-oriented and treats SMILES strings as sentences in the chemical language; it has low complexity so as to
be applicable to small datasets, and its outcomes are interpretable. Inspired by the hierarchical neural
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Figure 2. Fixed skeleton of the neural architecture in the SMILES-X.

architecture [39], which allows us to get cutting edge results on document classification, we have built the
SMILES-X frame based on a four-step formula: { Embed, Encode, Attend, Predict} [40].

1. Embed The embedding layer [41] transforms the tokens, derived from the dataset’s vocabulary in form of
integers, into dense nempeq-dimensional float vectors. Unlike arbitrary ordinal numbers, these vectors
encapsulate the semantic meaning of tokens and their relations. This operation transforms SMILES into
series of Nepped X 1VECtOrs, OF Nigkens X Nembed teNSOT, where Nyoens corresponds to the number of tokens
in a tokenised SMILES string.

2. Encode The encoding phase is responsible for modifying the embedding, so that it captures the
relationships between tokens in the context of the dataset. It consists of two neural layers: a bidirectional
CuDNN long short-term memory (LSTM) layer [42, 43] is followed by a time-distributed fully connected
one. The former consists of ny gt LSTM blocks and maps the input SMILES, represented now by a
Neokens X Nembed tENSOT, into a context-aware Nyoens X Npgry tensor. After training, each row of the tensor
represents the meaning of a given token within the context of the rest of the SMILES string containing it.
The bidirectionality forces the embedded SMILES to be sequentially passed forwards and backwards,
conserving the invariance of their reading direction. The forward and backward encodings of a SMILES are
then concatenated, resulting in a nyoens X 2npsy output tensor. The time-distributed dense layer is then
applied to each of nykens tokens. This allows us to capture the relationships between tokens in greater detail,
or in other words to deepen the LSTM layer (similar to the effect of adding an extra dense layer to a vanilla
neural network). Given that the number of hidden units in this layer is ngepse, the output after encoding is a
Neokens X Ndense tensor. It should be noted that we specifically use CuUDNN LSTM [44] blocks for efficient
optimization and training phases on GPU from NVIDIA Corporation. Without the CuDNN version of
LSTM, the speed of training would drop by a factor of ~10, making the optimisation phase intractable.

3. Attend The attention layer detects the salient tokens, compressing tensor H € [RMokens X Ndense into an Ngepee
vector ¢ with minimum information loss [28]:

e =tanh(H - W, + b,),
exp(e)
Sopke exple;)
c=H- q, 1)

where W, € Rl and b, € RMokens* ! gre trainable parameters, o € RMokens* 1 is the attention vector and
¢ € Rraene1ig the output. Thus, the attention layer performs two important tasks at once: (1) it collapses
the representation H of a variable length chain of tokens into a fixed length vector ¢ by applying a weighted
sum over the tokens to fit the final property best, with (2) the weights in o which represent the importance
of each token towards the final property prediction, bringing to a straightforward interpretation. Therefore,
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the attention layer has two modes, one returning the output vector ¢, and the other—the attention vector a
(see section 3). The two modes are switchable at will without extra computational cost.

4. Predict The final NA layer transforms the attention layer output c into a single property value Prop(s;) by a
simple linear operation:

Prop(s;) = WE - ¢+ by, 2)

The interpretation from « in equation (1) and the prediction are thus linearly connected and are accessible
without any additional treatments on the input data or NA, unlike the pipelines in other works [14, 45, 46].

It should be noted that all the above tensors or vectors have one additional dimension, ngy gs, omitted for
the sake of simplicity. This dimension corresponds to the batch size of a single iteration passed to the network,
i.e. the maximum number of SMILES that it processes at once. All of the steps above are implemented in Keras
API[47] and Tensorflow [48] with GPU support.

3. Results and discussion

To evaluate the regression performance of the SMILES-X, it was chosen to test it on three benchmark physical
chemistry datasets issued from the MoleculeNet [29]. These datasets are considered as small, with less than 5000
compound-property pairs, and therefore present a challenge to machine learning models. The ESOL [30] dataset
contains the logarithmic aqueous solubility (mols/L) for 1128 organic small molecules; the FreeSolv[31]
consists of the calculated and experimental hydration free energies (kcal/mol) for 642 small neutral molecules in
water; and the Lipophilicity [32] stores the experimental data on octanol/water distribution coefficient (logD at
pH 7.4) for 4200 compounds.

In present report the splitting ratio for training/validation/test is set t0 0.8/0.1/0.1. The results are reported
based on 8 splits, each split using new seed for the random data sampling. The seeds have been fixed for the sake
of reproducibility. We use the averaged RMSE over the 8 test sets as the comparison metric of performance.

The optimal model architecture is determined via Bayesian optimisation individually for each split. We used
the python library GPyOpt [49] for this purpose. The search bounds are as follows:

(Nembed> PLSTM> Mdense d1d nsyiies) € {8, 16, 32, 64, 128, 512, 1024}, v € [2; 4] with a step of 0.1, where ~yis
related to the optimiser learning rate as Ir = 1077, making a total of 50421 configurations. For the Lipophilicity
dataset, ngy g and learning rate are fixed to 1024 and 10>, respectively, leaving 343 potential architectures to
search among. First, 25 architectures are randomly sampled and trained. Next, up to 25 architectures are
proposed via the expected improvement acquisition function [50]. Each of the architectures is sequentially
trained for 30 epochs for ESOL [30] and FreeSolv [31], and 10 for the Lipophilicity [32] set (these values have
been chosen based on the speed/efficiency ratio). The best proposed architecture is finally trained using a
standard Adam optimiser [51] with checkpoint and early stopping. The early stopping is configured to stop the
training if the validation loss is not improving for 50 consecutive epochs, and a checkpoint saves the parameters
of the model with the minimal validation loss. The maximum number of epochs is set to 300, but because of the
early stopping condition this value has never been reached. Depending on whether the SMILES augmentation is
requested or not, the code needs from 1 to 4 GPUs running in parallel.

3.1. Predictions

We compare the performance of SMILES-X against the best-to-date results from MoleculeNet [29], and for the
FreeSolv [31] additionally to the calculations based on the molecular dynamics simulations [31] (table 1). The
results in MoleculeNet [29] are reported for the molecular graph-based models that achieved the best results on a
given dataset: concretely, a message passing neural network [52] for the ESOL and FreeSolv datasets, and a

graph convolutional model [53] for the Lipophilicity [32] dataset. Bayesian optimisation is also used there for the
layers size, batch size and learning rate. We include both the results on canonicalised SMILES (Can) and on
SMILES that have been augmented (Augm) (see section 2.1). When a SMILES string s; is augmented to n,ugm
strings, its predicted property value is averaged over n,ugn, predictions.

Note that the uncertainty on the RMSE values reported in table 1 have different sources for each of the three
methods. Molecular dynamics calculations [29] derive it principally from the experimental errors. MoleculeNet
[29] and SMILES-X do not take experimental errors into account, but report instead the standard deviation of
RMSEs obtained after several runs (3 for the MoleculeNet, 8 for SMILES-X). Moreover, the MoleculeNet [29]
performed runs with random data splitting and a fixed model and its hyperparameters. As for the SMILES-X,
not only is the data re-sampled, but also the architecture search is performed from scratch for every run, most of
the time resulting in a different architecture. This explains larger error bars for SMILES-X. To compare the
performances, we conducted a two-sample t-test for mean values and computed one-tailed p-values (under
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Table 1. Comparison of physicochemical properties predictions from the
SMILES-X (Can, Augm) to the best performances in MoleculeNet [29] on
the ESOL [30], FreeSolv [31] and Lipophilicity [32] datasets, and to
molecular dynamics calculations [31] for the FreeSolv dataset only.
Molecular dynamics calculations [31] report the error on RMSE based on
the experimental error. MoleculeNet [29] and SMILES-X do not use
experimental error, and report instead the standard deviation of RMSEs
obtained after several runs. MoleculeNet [29] performed 3 runs with
random data splitting, but a fixed neural architecture. SMILES-X performed
8 runs with both random data splitting and neural architecture search
through Bayesian optimisation.

RMSE 5
Method ESOL FreeSolv Lipophilicity
MoleculeNet [29] 0.58 4+ 0.03 1.15 + 0.12 0.65 £ 0.04
Molecular — 1.51 + 0.07 —
dynamics [31]
SMILES-X (Can) 0.70 &+ 0.05 1.14 + 0.17 0.68 £+ 0.05
SMILES- 0.57 + 0.07 0.81 £ 0.22 0.60 + 0.04
X (Augm)
ESOL
el | FreeSolv
0.06 Lipophilicity
0.05 ‘
2
‘» 0.04
c
8 0.03 1
0.02 1
0.01
0.00 - * T -
S0 100 150 200
Number of tokens
Figure 3. Number of tokens per SMILES for the datasets ESOL [30], FreeSolv [31], and Lipophilicity [32].

alternative hypothesis that SMILES-X outperforms MoleculeNet [29]). The obtained p-values are 0.103, 0.041
and 0.386 for Lipophilicity [32], FreeSolv [31] and ESOL [30] datasets, respectively. We conclude that the
SMILES-X sets state-of-the-art results on the FreeSolv [31] dataset, while having comparable performance on
the ESOL [30] and Lipophilicity [32] datasets.

Itis unclear why our algorithm fails to improve on the ESOL data. We thought that the number of tokens per
SMILES may be the culprit. However, figure 3 shows that this is not the case. Note that even using the standard
canonicalised SMILES strings, the property can be predicted quite well without employing any chemical
knowledge (i.e., using no descriptors).

To validate the performance of the SMILES-X on small data, we ran the algorithm on the FreeSolv dataset
changing the training data size from 10% to 90% of the whole dataset. Figure 4 shows the obtained out-of-
sample performances. Each datapoint corresponds to the average RMSE . of 8 independent runs, with error
bars indicating standard deviation. Already with a dataset containing as little as 200 points SMILES-X
outperforms the molecular dynamics calculations.

There are three main reasons that we think allowed SMILES-X to achieve these results:

i. The success is mainly attributed to the attention layer, that shows similar improvements in document
classification tasks [39]. Comparing our performance to a similar NA without an attention layer [14], we see
some 32.5% improvement on accuracy.

ii. Bayesian optimisation is a valuable tool that allows us to efficiently find the best hyper-parameters in a
short time.
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Figure 5. Visualisation of a representation of SMILES tokens from the embedding layer for the FreeSolv [31] dataset.

iii. It is obvious that SMILES augmentation shows great improvement (Can versus Augm in table 1), and was
necessary to achieve the best current results. Also, one can note that a graph-based NA would not allow such
data augmentation.

3.2. Interpretability

As it was mentioned before, one of the great advantages of our method is its interpretability. The figure 5 shows
an example of the trained token embeddings for the FreeSolv [31] dataset. We used a principal component
analysis (PCA [54, 55]) to reduce dimensionality from nempeqg = 1024 down to two, for the purpose of
visualisation. The tokens that are not included in the training set, and are therefore randomly assigned, are
represented by a cross. One can see that halogens Br, F, Cl are located near each other. Other distinguishable sets
are, for example, {[C @@], [S + 2], ¢, C, [C@]} and {n, N}, that have the same valence and bonds type within
the group. The model also puts {[N + ], [O — ]} close to each other, which reveals their regular coexistence in
compounds within the FreeSolv data. Some other tokens’ placements, however, are not obvious to chemically
qualify. In any case, the principle aim of clustering is to smooth out the chemical relations; it serves as a trainable
look-up table for the further context-aware processing of tokens. We should not, thus, expect too great a degree
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Figure 6. Visualisation of the importance of each token within the SMILES towards the final prediction of the property of interest. The
illustration is done on the structure Cclccc(O)cclC from the FreeSolv [31] dataset, with hydration free energy as the corresponding
property. The 1D (a) and 2D (b) attention maps show the projections of the attention vector o on the SMILES string and molecular
graph, respectively. The redder and darker the colour is, the stronger is the attention on a given token. The temporal relative distance
Tise is shown in (). The closer to zero is the distance value, the closer is the temporary prediction on the SMILES fragment to the
whole SMILES prediction.

of interpretability at this step. Representation of the individual tokens out of their chemical context is not the
objective of the SMILES-X.

Instead, we are interested in the interpretation of the network property prediction. With the SMILES-X, we
are able to visualise the importance of each single token towards the final prediction of the property of interest
(figure 6).

There are three ways of visualisation available: (a) a 1D map built from the attention vector « (see
equation (1)) juxtaposed with the SMILES string, (b) a similar 2D version for the molecular graph and (c)
temporal relative distance 7, to the predicted property. For the first two, the redder and darker the colour is
the stronger is the attention on a given token.

7T 4ist(n) shows the evolution of the prediction for the SMILES while reading it token by token from left to
right. It is inspired by Lanchantin [56] and defined as:

’Ziist(n) _ PYOP(H) — Prop(ntokens) , (3)
|Pr0p(ntokens) |

where Prop(n) is the property predicted value based on the first n tokens of the SMILES for n € [1,...,nokens]-
Note that it converges to the final prediction Prop (nkens) = Prop(s;) (prediction based on the entire SMILES).
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This also allows us to judge as to how much a token influences the property of a compound. In this example, the
prediction based on fragment ‘Cclccc(O’ is almost identical to the final prediction on the whole structure.

For the compound that we used as an example, the oxygen atom (‘O’) is considered to be the most influential
element of the molecule for the hydration free energy prediction, which reflects chemical reality.

4. Conclusions

A new neural architecture for the chemical compounds characterisation, the SMILES-X, has been developed. In
this article, we have presented the pipeline and performance of the SMILES-X. We demonstrate its aptitude to
provide state-of-the-art results on the inference of several physicochemical properties, concretely the
logarithmic aqueous solubility (RMSE ., = 0.57 + 0.07 mols L"), hydration free energy

(RMSE e = 0.81 £ 0.22 kcal mol™") and octanol /water distribution coefficient (RMSE,s = 0.60 £ 0.04 for
LogD at pH 7.4). These results prove that it is now possible to successfully predict a physicochemical property
employing no chemical intuition, even with a small dataset at hand. The success of the SMILES-X rides on three
key factors: (i) The Embed-Encode-Attend-Predict architecture, that allows us to simplify the whole architecture
thanks to the attention mechanism (i.e., to have less trainable parameters), and therefore reduces the risk of
over-fitting. (ii) The Bayesian optimisation of the neural network’s hyper-parameters allows us to achieve close-
to-optimal representation of the molecular compounds, per task and dataset. (iii) The use of SMILES strings as a
sole input representation of chemical compounds allows efficient data augmentation.

Thanks to the attention mechanism, the SMILES-X comes with three modes of interpretation of the
inference outcomes. This provides the end-user with the insights on which fragments of the chemical structure
have the highest (or the lowest) influence on the property of interest. This kind of artificial intuition is a valuable
asset not only for the tasks of characterisation and design of novel compounds, but also to re-purpose already-
known materials.

As for the future improvement on the SMILES-X, we plan to use BERT-like [57] NA’s skeleton for the sake of
reducing the accuracy gap existing between the ESOL, FreeSolv and Lipophilicity datasets studied here. The
LSTM blocks are known to have memory problems with very distant dependencies within long sentences, and
an architecture that is entirely based on the attention mechanism, i.e. free from LSTM blocks, like BERT, may
overcome this weakness. Another way to improve the inference accuracy may be via informative sampling [58].

In our forthcoming article we will address the tasks of classification, still using the MoleculeNet’s datasets
[29]. That means that the SMILES-X will be modified in order to handle single-to-many, many-to-many and
many-to-single classification tasks.
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