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ABSTRACT

The motion of the charged particles in graphene in the frame of the quantum non-local
hydrodynamic description is considered. It is shown as results of the mathematical
modeling that the mentioned motion is realizing in the soliton forms. The dependence of
the size and structure of solitons on the different physical parameters is investigated.

Keywords: The theory of solitons; generalized hydrodynamic equations; quantum non-local
hydrodynamics; theory of transport processes in graphene.

1. INTRODUCTION

We deliver here some main ideas and deductions of the generalized Boltzmann physical
kinetics and non-local physics developed by B. Alexeev [1–10]. For simplicity, the
fundamental methodic aspects are considered from the qualitative standpoint of view
avoiding excessively cumbersome formulas. A rigorous description can be found, for
example, in the monograph [6].
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In 1872 L Boltzmann [11,12] published his kinetic equation for the one-particle distribution
function (DF)  tf ,, vr . He expressed the equation in the form

 fJDtDf B , (1.1)

where BJ is the local collision integral, and
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(particle) derivative, v and r being the velocity and radius vector of the particle,
respectively. Boltzmann equation (1.1) governs the transport processes in a one-component
gas, which is sufficiently rarefied that only binary collisions between particles are of
importance and valid only for two character scales, connected with the hydrodynamic time-
scale and the time-scale between particle collisions. While we are not concerned here with
the explicit form of the collision integral, note that it should satisfy conservation laws of point-
like particles in binary collisions. Integrals of the distribution function (i.e. its moments)
determine the macroscopic hydrodynamic characteristics of the system, in particular the
number density of particles n and the temperatureT . The Boltzmann equation (BE) is not of
course as simple as its symbolic form above might suggest, and it is in only a few special
cases that it is amenable to a solution. One example is that of a maxwellian distribution in a
locally, thermodynamically equilibrium gas in the event when no external forces are present.

In this case the equality 0BJ and 0ff  is met, giving the maxwellian distribution

function 0f . A weak point of the classical Boltzmann kinetic theory is the way it treats the
dynamic properties of interacting particles. On the one hand, as the so-called “physical”
derivation of the BE suggests, Boltzmann particles are treated as material points; on the
other hand, the collision integral in the BE brings into existence the cross sections for
collisions between particles. A rigorous approach to the derivation of the kinetic equation for
f (noted in following as fKE ) is based on the hierarchy of the Bogolyubov-Born-Green-

Kirkwood-Yvon (BBGKY) [1,6,13,14] equations.

A fKE obtained by the multi-scale method turns into the BE if one ignores the change of
the distribution function (DF) over a time of the order of the collision time (or, equivalently,
over a length of the order of the particle interaction radius). It is important to note [1 - 6] that
accounting for the third of the scales mentioned above leads (prior to introducing any
approximation destined to break the Bogolyubov chain) to additional terms, generally of the
same order of magnitude, appear in the BE. If the correlation functions are used to derive

fKE from the BBGKY equations, then the passage to the BE means the neglect of non-
local effects.

Given the above difficulties of the Boltzmann kinetic theory, the following clearly inter related
questions arise. First, what is a physically infinitesimal volume and how does its introduction
(and, as the consequence, the unavoidable smoothing out of the DF) affect the kinetic
equation? This question can be formulated in (from the first glance) the paradox form – what
is the size of the point in the physical system? Second, how does a systematic account for
the proper diameter of the particle in the derivation of the fKE affect the Boltzmann
equation? In the theory developed by B. Alexeev, we refer to the corresponding fKE as
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Generalized Boltzmann Equation (GBE). The derivation of the GBE and the applications of
GBE are presented, in particular, in monograph [6]. Accordingly, our purpose is first to
explain the essence of the physical generalization of the BE.

Let a particle of finite radius be characterized, as before, by the position vector r and
velocity v of its center of mass at some instant of time t . Let us introduce physically small
volume (PhSV) as element of measurement of macroscopic characteristics of physical
system for a point containing in this PhSV. We should hope that PhSV contains sufficient
particles phN for statistical description of the system. In other words, a net of physically
small volumes covers the whole investigated physical system.

Every PhSV contains entire quantity of point-like Boltzmann particles, and the same DF f
is prescribed for whole PhSV in Boltzmann physical kinetics. Therefore, Boltzmann particles
are fully “packed” in the reference volume. Let us consider two adjoining physically small
volumes 1PhSV and 2PhSV . We have in principle another situation for the particles of
finite size moving in physical small volumes, which are open thermodynamic systems.

Then, the situation is possible where, at some instant of time t, the particle is located on the
interface between two volumes. In so doing, the lead effect is possible (say, for 2PhSV ),

when the center of mass of particle moving to the neighboring volume 2PhSV is still in

1PhSV . However, the delay effect takes place as well, when the center of mass of particle

moving to the neighboring volume (say, 2PhSV ) is already located in 2PhSV but a part of

the particle still belongs to 1PhSV .

Moreover, even the point-like particles (starting after the last collision near the boundary
between two mentioned volumes) can change the distribution functions in the neighboring
volume. The adjusting of the particles dynamic characteristics for translational degrees of
freedom takes several collisions. As result, we have in the definite sense “the Knudsen
layer” between these volumes. This fact unavoidably leads to fluctuations in mass and hence
in other hydrodynamic quantities. Existence of such “Knudsen layers” is not connected with
the choice of space nets and fully defined by the reduced description for ensemble of
particles of finite diameters in the conceptual frame of open physically small volumes,
therefore – with the chosen method of measurement.

This entire complex of effects defines non-local effects in space and time. The
corresponding situation is typical for the theoretical physics – we could remind about the role
of probe charge in electrostatics or probe circuit in the physics of magnetic effects.

Suppose that DF f corresponds to 1PhSV and DF ff  is connected with 2PhSV for
Boltzmann particles. In the boundary area in the first approximation, fluctuations will be
proportional to the mean free path (or, equivalently, to the mean time between the
collisions). Then for PhSV the correction for DF should be introduced as

DtDfff a  (1.2)
in the left hand side of classical BE describing the translation of DF in phase space. As the
result
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Ba JDtDf  , (1.3)

where BJ is the Boltzmann local collision integral.

Important to notice that it is only qualitative explanation of GBE derivation obtained earlier
(see for example [6]) by different strict methods from the BBGKY – chain of kinetic
equations. The structure of the fKE is generally as follows

nonlocalB JJ
Dt
Df

 , (1.4)

where nonlocalJ is the non-local integral term incorporating the non-local time and space
effects. The generalized Boltzmann physical kinetics, in essence, involves a local
approximation








Dt
Df

Dt
DJ nonlocal  (1.5)

for the second collision integral, here  being the mean time between the particle collisions.
We can draw here an analogy with the Bhatnagar - Gross - Krook (BGK) approximation for
BJ ,


ff

J B


 0 ,                                                    (1.6)

which popularity as a means to represent the Boltzmann collision integral is due to the huge
simplifications it offers. In other words – the local Boltzmann collision integral admits
approximation via the BGK algebraic expression, but more complicated non-local integral
can be expressed as differential form (1.5). The ratio of the second to the first term on the
right-hand side of Eq. (1.4) is given to an order of magnitude as )Kn( 2OJJ Bnonlocal 
and at large Knudsen numbers (Kn defining as ratio of mean free path of particles to the
character hydrodynamic length) these terms become of the same order of magnitude. It
would seem that at small Knudsen numbers answering to hydrodynamic description the
contribution from the second term on the right-hand side of Eq. (1.4) is negligible.

This is not the case, however. When one goes over to the hydrodynamic approximation (by
multiplying the kinetic equation by collision invariants and then integrating over velocities),
the Boltzmann integral part vanishes, and the second term on the right-hand side of Eq. (1.4)
gives a single-order contribution in the generalized Navier-Stokes description.
Mathematically, we cannot neglect a term with a small parameter in front of the higher
derivative. Physically, the appearing additional terms are due to viscosity and they

correspond to the small-scale Kolmogorov turbulence [6]. The integral term nonlocalJ turns
out to be important both at small and large Knudsen numbers in the theory of transport
processes. Thus, DtDf is the distribution function fluctuation, and writing Eq. (1.3)
without taking into account Eq. (1.2) makes the BE non-closed. From viewpoint of the
fluctuation theory, Boltzmann employed the simplest possible closure procedure ff a  .
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Then, the additional GBE terms (as compared to the BE) are significant for any Kn, and the
order of magnitude of the difference between the BE and GBE solutions is impossible to tell
beforehand. For GBE the generalized H-theorem is proven [3,6].

It means that the local Boltzmann equation does not belong even to the class of minimal
physical models and corresponds so to speak to “the likelihood models”. This remark refers
also to all consequences of the Boltzmann kinetic theory including “classical”
hydrodynamics.

Obviously the generalized hydrodynamic equations (GHE) will explicitly involve fluctuations
proportional to . In the hydrodynamic approximation, the mean time  between the
collisions is related to the dynamic viscosity  by

 p , (1.7)

[13,14]. For example, the continuity equation changes its form and will contain terms
proportional to viscosity. On the other hand, if the reference volume extends over the whole
cavity with the hard walls, then the classical conservation laws should be obeyed, and this is
exactly what the monograph [6] proves. Now several remarks of principal significance:

1. All fluctuations are found from the strict kinetic considerations and tabulated [6].
The appearing additional terms in GHE are due to viscosity and they correspond
to the small-scale Kolmogorov turbulence. The neglect of formally small terms is
equivalent, in particular, to dropping the (small-scale) Kolmogorov turbulence
from consideration and is the origin of all principal difficulties in usual turbulent
theory. Fluctuations on the wall are equal to zero, from the physical point of view
this fact corresponds to the laminar sub-layer. Mathematically it leads to
additional boundary conditions for GHE. Major difficulties arose when the
question of existence and uniqueness of solutions of the Navier - Stokes
equations was addressed. O.A. Ladyzhenskaya has shown for three-
dimensional flows that under smooth initial conditions a unique solution is only
possible over a finite time interval. Ladyzhenskaya even introduced a
“correction” into the Navier - Stokes equations in order that its unique solvability
could be proved; GHE do not lead to these difficulties.

2. It would appear that in continuum mechanics the idea of discreteness can be
abandoned altogether and the medium under study be considered as a
continuum in the literal sense of the word. Such an approach is of course
possible and indeed leads to the Euler equations in hydrodynamics. However,
when the viscosity and thermal conductivity effects are to be included, a totally
different situation arises. As is well known, the dynamical viscosity is
proportional to the mean time  between the particle collisions, and a
continuum medium in the Euler model with 0 implies that neither viscosity
nor thermal conductivity is possible.

3. The non-local kinetic effects listed above will always be relevant to a kinetic
theory using one particle description – including, in particular, applications to
liquids or plasmas, where self-consistent forces with appropriately cut-off radius
of their action are introduced to expand the capability of GBE [5, 6]. Fluctuation
effects occur in any open thermodynamic system bounded by a control surface
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transparent to particles. GBE (1.3) leads to generalized hydrodynamic equations
[6] as the local approximation of non local effects, for example, to the continuity
equation

  00 





 a
a

t
v

r


, (1.8)

where a , a
0v ,  a0v are calculated in view of non-locality effect in terms of gas density

 , hydrodynamic velocity of flow 0v , and density of momentum flux 0v ; for locally

Maxwellian distribution, a ,  a0v are defined by the relations
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where I


is a unit tensor, and a is the acceleration due to the effect of mass forces.

In the general case, the parameter  ? is the non-locality parameter; in quantum
hydrodynamics, the “time-energy” uncertainty relation defines its magnitude. Obviously the
mentioned non-local effects can be discussed from viewpoint of breaking of the Bell’s
inequalities [15] because in the non-local theory the measurement (realized in 1PhSV ) has

influence on the measurement realized in the adjoining space-time point in 2PhSV and
verse versa.

The violation of Bell’s inequalities [15] is found for local statistical theories, and the transition
to non-local description is inevitable.

Notice that the application of the above principles also leads to the modification of the
system of Maxwell equations. While the traditional formulation of this system does not
involve the continuity equation, its derivation explicitly employs the equation

0





 a

a

t
j

r
 , (1.10)

where a is the charge per unit volume, and aj is the current density, both calculated
without accounting for the fluctuations. As a result, the system of Maxwell equations written
in the standard notation, namely
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(1.11)

contains

fla   , fla jjj  . (1.12)
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The fl , flj fluctuations calculated using the generalized Boltzmann equation are given, for
example, in Ref. [2,4,6].

Now we can turn our attention to the quantum hydrodynamic description of individual
particles. The abstract of the classical Madelung’s paper [16] contains only one phrase: “It is
shown that the Schrödinger equation for one-electron problems can be transformed into the
form of hydrodynamic equations”.

The following conclusion of principal significance can be done from the generalized quantum
consideration [7,8]:

1. Madelung’s quantum hydrodynamics is equivalent to the Schrödinger equation (SE)
and leads to description of the quantum particle evolution in the form of Euler
equation and continuity equation.

2. SE is consequence of the Liouville equation as result of the local approximation of
non-local equations.

3. Generalized Boltzmann physical kinetics defines the strict approximation of non-
local effects in space and time and after transmission to the local approximation
leads to parameter , which on the quantum level corresponds to the uncertainty
principle “time-energy”.

4. GHE lead to SE as a deep particular case of the generalized Boltzmann physical
kinetics and therefore of non-local hydrodynamics.

In principal GHE needn’t in using of the “time-energy” uncertainty relation for estimation of
the value of the non-locality parameter . Moreover, the “time-energy” uncertainty relation
does not lead to the exact relations and from position of non-local physics is only the
simplest estimation of the non-local effects.

Really, let us consider two neighboring physically infinitely small volumes 1PhSV and

2PhSV in a non-equilibrium system. Obviously the time  should tend to diminish with
increasing of the velocities u of particles invading in the nearest neighboring physically
infinitely small volume ( 1PhSV or 2PhSV ):

nuH . (1.13)

However, the value  cannot depend on the velocity direction and naturally to tie  with the
particle kinetic energy, then

2mu
H , (1.14)

where H is a coefficient of proportionality, which reflects the state of physical system. In the
simplest case H is equal to Plank constant  and relation (1.14) becomes compatible with
the Heisenberg relation.

It is known that Ehrenfest adiabatic theorem is one of the most important and widely studied
theorems in Schrödinger quantum mechanics. It states that if we have a slowly changing
Hamiltonian that depends on time, and the system is prepared in one of the instantaneous



Physical Review & Research International, 3(2): 55-116, 2013

62

eigenstates of the Hamiltonian then the state of the system at any time is given by an the
instantaneous eigenfunction of the Hamiltonian up to multiplicative phase factors [17-21].
Since the establishment of this theorem many fundamental results have been obtained, such
as Landau–Zener transition [17,18], the Gell-Mann-Low theorem [19], Berry phase [20] and
holonomy [21].

The adiabatic theory can be naturally incorporated in generalized quantum hydrodynamics
based on local approximations of non-local terms. In the simplest case if Q is the
elementary heat quantity delivered for a system executing the transfer from one state (the
corresponding time moment is int ) to the next one (the time moment et ) then

 


TQ 21 , (1.15)

where ine tt  and T is the average kinetic energy. For adiabatic case Ehrenfest
supposes that

,...,2 21 T (1.16)

where ,..., 21  are adiabatic invariants. Obviously for Plank’s oscillator (compare with
(1.14))

nhT 2 . (1.17)

Conclusion: adiabatic theorem and consequences of this theory deliver the general
quantization conditions for non-local quantum hydrodynamics.

Non-local physics demonstrates its high efficiency in many fields – from the atom structure
problems to cosmology [9,10].

The possibility of the non local physics application in the theory of superconductivity is
investigated in [22-24]. It is shown that by the superconducting conditions the relay
(“estafette”) motion of the soliton’ system (“lattice ion – electron”) is realizing without creation
of the additional chemical bonds. From the position of the quantum hydrodynamics the
problem of creation of the high temperature superconductors leads to finding of materials
which lattices could realize the soliton’ motion without the soliton destruction. These
materials should be created using the technology of quantum dots.

This paper is directed on investigation of possible applications of the non-local quantum
hydrodynamics in the theory of transport processes in graphene including the effects of the
charge density waves (CDW). Is known that graphene, a single-atom-thick sheet of graphite,
is a new material which combines aspects of semiconductors and metals. For example the
mobility, a measure of how well a material conducts electricity, is higher than for other known
materials at room temperature. In graphene, a resistivity is of about 1.0 microOhm-cm
(resistivity defined as a specific measure of resistance; the resistance of a piece material is
its resistivity times its length and divided by its cross-sectional area). This is about 35
percent less than the resistivity of copper, the lowest resistivity material known at room
temperature.
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Measurements lead to conclusion that the influence of thermal vibrations on the conduction
of electrons in graphene is extraordinarily small. From the other side the typical reasoning
exists:

“In any material, the energy associated with the temperature of the material causes the
atoms of the material to vibrate in place. As electrons travel through the material, they can
bounce off these vibrating atoms, giving rise to electrical resistance. This electrical
resistance is "intrinsic" to the material: it cannot be eliminated unless the material is cooled
to absolute zero temperature, and hence sets the upper limit to how well a material can
conduct electricity.”

Obviously this point of view leads to the principal elimination of effects of the high
temperature superconductivity. From the mentioned point of view the restrictions in mobilities
of known semiconductors can be explained as the influence of the thermal vibration of the
atoms. The limit to mobility of electrons in graphene is about 200,000  )/2 sVcm  at room

temperature, compared to about 1,400  )/2 sVcm  in silicon, and 77,000  )/2 sVcm  in
indium antimonide, the highest mobility conventional semiconductor known. The opinion of a
part of investigators can be formulated as follows: "Other extrinsic sources in today's fairly
dirty graphene samples add some extra resistivity to graphene," [25] "so the overall
resistivity isn't quite as low as copper's at room temperature yet. However, graphene has far
fewer electrons than copper, so in graphene the electrical current is carried by only a few
electrons moving much faster than the electrons in copper." Mobility determines the speed at
which an electronic device (for instance, a field-effect transistor, which forms the basis of
modern computer chips) can turn on and off. The very high mobility makes graphene
promising for applications in which transistors much switch extremely fast, such as in
processing extremely high frequency signals. The low resistivity and extremely thin nature of
graphene also promises applications in thin, mechanically tough, electrically conducting,
transparent films. Such films are sorely needed in a variety of electronics applications from
touch screens to photovoltaic cells.

In the last years the direct observation of the atomic structures of superconducting materials
(as usual superconducting materials in the cuprate family like YBa2Cu3O6.67 (Tc = 67 K)) was
realized with the scanning tunneling microscope (STM) and other instruments, STMs scan a
surface in steps smaller than an atom.

Superconductivity, in which an electric current flows with zero resistance, was first
discovered in metals cooled very close to absolute zero. New materials called cuprates -
copper oxides "doped" with other atoms -- superconduct as "high" as minus 123 Celsius.
Some conclusions from direct observations [26,27]:

1. Observations of high-temperature superconductors show an "energy gap"
where electronic states are missing. Sometimes this energy gap appears
but the material still does not superconduct - a so-called "pseudogap"
phase. The pseudogap appears at higher temperatures than any
superconductivity, offering the promise of someday developing materials
that would superconduct at or near room temperature.

2. STM image of a partially doped cuprate superconductor shows regions with
an electronic "pseudogap". As doping increases, pseudogap regions spread
and connect, making the whole sample a superconductor.
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3. High temperature superconductivity in layered cuprates can develop from an
electronically ordered state called a charge density wave (CDW). The
results of observation can be interpreted as the creation of the
"checkerboard pattern" due to the modulation of the atomic positions in the

2CuO layers of x632 OCuYBa  caused by the charge density wave.

4. Application of the method of high-energy X-ray diffraction shows that a CDW
develop at zero field in the normal state of superconducting YBa2Cu3O6.67
(Tc = 67 K). Below Tc the application of a magnetic field suppresses
superconductivity and enhances the CDW. It means that the high-Tc
superconductivity forms from a pre-existing CDW environment.

Important conclusion: high temperature superconductors demonstrate new type of
electronic order and modulation of atomic positions. As it was shown in [22,24] the
mentioned above graphene properties can be explained only in the frame of the self-
consistent non-local quantum theory  [7,8] which leads to appearance of the soliton waves
moving in graphene.

2. GENERALIZED QUANTUM HYDRODYNAMIC EQUATIONS

Strict consideration leads to the following system of the generalized quantum hydrodynamic
equations (GHE) [6] written in the dimensional generalized Euler form:
Continuity equation for species :
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and continuity equation for mixture
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Momentum equation for species
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Generalized moment equation for mixture
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Energy equation for component
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and after summation the generalized energy equation for mixture
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Here  1
F are the forces of the non-magnetic origin, B - magnetic induction, I


- unit tensor,

q - charge of the  -component particle, p - static pressure for  -component,  -

internal energy for the particles of  - component, 0v - hydrodynamic velocity for mixture.
For calculations in the self-consistent electro-magnetic field the system of non-local Maxwell
equations should be added (see (1.11), (1.12)).

It is well known that basic Schrödinger equation (SE) of quantum mechanics firstly
was introduced as a quantum mechanical postulate. The obvious next step should be done
and was realized by E. Madelung in 1927 – the derivation of special hydrodynamic form of
SE after introduction wave function  as

     tzyxietzyxtzyx ,,,,,,,,,  . (2.7)
Using (2.7) and separating the real and imagine parts of SE one obtains
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and Eq. (2.8) immediately transforms in continuity equation if the identifications in the
Madelung’s notations for density  and velocity v

 2 , (2.9)
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introduce in Eq. (2.8). Identification for velocity (2.10) is obvious because for 1D flow
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where v is phase velocity. The existence of the condition (2.10) means that the

corresponding flow has potential

m/ . (2.12)

As result two effective hydrodynamic equations take place:
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But
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and the relation (2.15) transforms (2.14) in particular case of the Euler motion equation
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where introduced the efficient potential
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Additive quantum part of potential can be written in the so called Bohm form
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Some remarks:

a) SE transforms in hydrodynamic form without additional assumptions. But numerical
methods of hydrodynamics are very good developed. As result at the end of seventieth
of the last century we realized the systematic calculations of quantum problems using
quantum hydrodynamics (see for example [1,28].

b) SE reduces to the system of continuity equation and particular case of the Euler

equation with the additional potential proportional to 2 . The physical sense and the
origin of the Bohm potential are established later in [7, 8, 29].

c) SE (obtained in the frame of the theory of classical complex variables) cannot contain
the energy equation in principle. As result in many cases the palliative approach is used
when for solution of dissipative quantum problems the classical hydrodynamics is used
with insertion of additional Bohm potential in the system of hydrodynamic equations.

d) The system of the generalized quantum hydrodynamic equations contains energy
equation written for unknown dependent value which can be specified as quantum
pressure p of non-local origin.

The transport properties in graphene can be described at low energies by a massless Dirac-
fermion model with chiral quasiparticles [30,31]. The Boltzmann and Schrödinger
approaches are used also [32,33]. Applications of these approaches are directed on the
calculation of kinetic coefficients. The non-local kinetic equations also are used by the
authors of this article for calculation of graphene electrical conductivity [34]. Here we intend
to investigate the possibilities of non-local quantum hydrodynamics for modeling of the
charge density waves in grafene. In non-local quantum hydrodynamics the many particles
correlations manifest itself in equations in the terms proportional to non-locality parameter 
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The influence of spin and magnetic moment of particles can be taken into account by the
natural elegant way via the internal energy of particles. Really for example electron has the
internal energy 

melspel ,,   , (2.20)

containing the spin and magnetic parts, namely

2/,  spel , Bpm mel , ; (2.21)

mp - electron magnetic moment, B - magnetic induction. But
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 . Relation (2.20) can be written as
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if B is directed along the spin direction. On this stage of investigations we omit the influence
of the internal energy of particles, therefore spin waves will be investigated separately.

3. GENERALIZED QUANTUM HYDRODYNAMIC EQUATIONS DESCRIBING THE
SOLITON MOVEMENT IN THE CRYSTAL LATTICE

Let us consider the charge density waves which are periodic modulation of conduction
electron density. From direct observations of charge density waves follow that CDW develop
at zero external fields. For our aims is sufficient in the following to suppose that the effective
charge movement was created in graphene lattice as result of an initial fluctuation.

The movement of the soliton waves at the presence of the external electrical potential
difference will be considered also in this article.

The effective charge is created due to interference of the induced electron waves and
correlating potentials as result of the polarized modulation of atomic positions. Therefore in
this approach the conduction in graphene convoys the transfer of the positive (+е, pm ) and

negative (-е, em ) charges. Let us formulate the problem in detail. The non-stationary 1D
motion of the combined soliton is considered under influence of the self-consistent electric
forces of the potential and non-potential origin. It was shown [22-24] that mentioned soliton
can exist without a chemical bond formation. First of all for better understanding of the
situation let us investigate the situation for the case when the external forces are absent.
Introduce the coordinate system ( Ctx  ) moving along the positive direction of the x
axis with the velocity 0uC  , which is equal to the phase velocity of this quantum object.

Let us find the soliton type solutions for the system of the generalized quantum equations for
two species mixture. The graphene crystal lattice is 2D flat structure which is considered in
the moving coordinate system ( tux 0 , y ). In the following we intend (without taking
into account the component’s internal energy) to apply generalized non-local quantum
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hydrodynamic equations (2.1) – (2.6) to the investigation of the charge density waves (CDW)
in the frame of two species model which lied to the following dimensional equations [6, 8]:
Poisson equation for the self-consistent electric field:
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Continuity equation for the positive particles:
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Continuity equation for electrons:

     

0

2
00

















































eyeeeeeee

eee

Fp
yy

Fp

uuuu


























(3.3)

Momentum equation for the х direction:
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Energy equation for the positive particles:
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Energy equation for electrons:

  
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Here u - hydrodynamic velocity;  - self-consistent electric potential; e , p - densities for

the electron and positive species; ep , pp - quantum electron pressure and the pressure of

positive species; eF , pF - the forces acting on the mass unit of electrons and the positive
particles.

The right hand sides of the energy equations are written in the relaxation forms following
from BGK kinetic approximation
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Non-local parameters can be written in the form (see (1.14))
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 (3.7)

where RN - integer.

Acting forces are the sum of three terms: the self-consistent potential force (scalar potential
 ), connected with the displacement of positive and negative charges, potential forces

originated by the graphene crystal lattice (potential U ) and the external electrical field
creating the intensity Е. As result the following relations are valid
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Let write down these equations in the dimensionless form, where dimensionless symbols are
marked by tildes; introduce the scales:
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Let us introduce also the following dimensionless parameters
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Taking into account the introduced values the following system of dimensionless non-local
hydrodynamic equations for the 2D soliton description can be written:
Poisson equation for the self-consistent electric field:
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Continuity equation for the positive particles:
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Continuity equation for electrons:
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Momentum equation for the х direction:
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Energy equation for the positive particles:
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Energy equation for electrons:
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We have the following dimensionless relations for forces:


 EU ~

~
~

~
~

F~pξ 






 , 

 EU ~
~
~

~
~

F~eξ 






 ,

yEy
U

y
~

~
~

~
~

F~py 









, yEy
U

y
~

~
~

~
~

F~ey 









. (3.16)

Graphene is a single layer of carbon atoms densely packed in a honeycomb lattice. Figure 1
reflects the structure of graphene as the 2D hexagonal carbon crystal, the distance a
between the nearest atoms is equal to nma 142.0 .

Figure. 1. Crystal graphene lattice

Elementary cell contains two atoms (for example A and B, Figure 1) and the primitive lattice
vectors are given by

 3;3
21
a
a ,  3;3

22 
aa .

Coordinates of the nearest atoms to the given atom define by vectors

 3;1
21
a
δ ,  3;1

22 
aδ ,  0;13 aδ .

Six neighboring atoms of the second order are placed in knots defined by vectors

11 aδ  , 22 aδ  ,  123 aaδ  .
Let us take the first atom of the elementary cell in the origin of the coordinate system
(Figure. 1) and compose the radii-vector of the second atom with respect to the basis 1a и

2a :


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Let us find u и v, taking into account that

  yx
aaa eeδr 3
22

3;1
211  . (3.18)

Equalizing (3.17) и (3.18), we have
3
2
u ,

3
1
v , then

211 3
1

3
2 aar  . (3.19)

Assume that  r1V is the periodical potential created by one sublattice. Then potential of
crystal is

       



1

0
1111

n
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Atoms in crystal form the periodic structure and as the consequence the corresponding
potential is periodic function

   mVV arr  11
,

where for 2D structure

2211 aaa mmm  ,

and 1m и 2m are arbitrary entire numbers. Expanding  r1V in the Fourier series one
obtains
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n eVV1 . (3.21)

In our case the both basis atoms (п=0,1) are the same. Here

2211 bbb gg  ,

1b и 2b are the translational vectors of the reciprocal lattice. For graphene
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Then
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where bb
rb

bb SVeVV
n

i n   
11 . The structure factor bS for graphene:
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For the approximate calculation we use the terms of the series with 21 g , 22 g .
Therefore
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Using the vectors 1b and 2b of the reciprocal lattice from (3.22) and coordinates х and у
one obtains from (3.26):
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We need the derivatives for the forces components in dimensionless form







 














 





3
~
~3
4sin~~3~3

2cos
3

~
~3
2sin~

~
~

1110



x
a

Uy
a

x
a

UU







 








3
2

~3
4sin3~3

4cos~
20

 x
a

y
a

U 

















 y

a
x

a
U ~3~3

2cos~
~
2sin6~

12




















  y

a
x
a

~3~
2cos

6
~
~3
2cos 







 

3
2~

~3
8sin~

22
 x

a
U ,                                            (3.28)






















 



 y

a
Uy

a
x
a

U
y
U ~3~3

4sin32~~3~3
2sin

3
~
~3
2cos3~

~
~

1110








 








3
2~

~3
4cos~3~3

4sin~3 20
 x

a
y

a
U 


















 y

a
x

a
U ~3~3

2sin~
~
2cos32~

12




















  y

a
x
a

~3~
2sin

6
~
~3
2sin33 







 y
a

U ~3~3
8sin~32 22


,                                   (3.29)

where the notations are introduced:
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Consider as the approximation the acting forces by 0~ t , when x~~
 . After substitution

of (3.28) and (3.29) in (3.16), one obtains the expressions for the dimensionless forces
acting on the unit of mass of particles:
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Analogically

pξeξ F~F~  , pyey F~F~  . (3.33)

The forces (3.31)-(3.33) should be introduced in the system of the hydrodynamic equations
(3.10)-(3.15).

Suppose that the external field intensity Е is equal to zero. The effective hydrodynamic
velocity is directed along x axis. This fact can be used by averaging over y~ of the obtained
system of quantum hydrodynamic equations. The averaging will be realized in the limit of
one hexagonal crystal cell. Carry out the integration of the left and right hand sides of the

hydrodynamic equations calculating the integral 
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 because of system symmetry for arbitrary function Ψ,

characterizing the state of the physical system. We suppose also that by averaging all
physical values (characterizing the state of the physical system) do not depend on y~ .As
result we have the following system of equations:
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Continuity equation for the positive particles:
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Continuity equation for electrons:
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Momentum equation for the movement along the х direction:
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Energy equation for the positive particles:
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Energy equation for electrons:
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4. ESTIMATIONS OF THE NUMERICAL PARAMETERS

We need estimations for the numerical values of dimensionless parameters for solutions of
the hydrodynamic equations (3.34) - (3.39). In its turn these parameters depend on choosing
of the independent scales of physical values. Analyze the independent scales for the
physical problem under consideration. It should be stressed that we choose just scales but
not real physical values which may differ significantly from scale values. Real physical
values will be obtained as a result of numerical self-consistent calculations.

Assume that the surface electron density in graphene is about 21010  смnе


(such value is
typical for many experiments (see [35-37]), the thickness of the graphene layer is equal to ~
1 nm. Then the electron concentration consists 31710  cmne , and the density for the

electron species 31010 cmgnm eee
 which leads to the scale 310

0 10 cmg .
For numerical solutions of the hydrodynamic equations (3.34)-(3.39) we need Cauchy
conditions, obviously in the typical for graphene conditions the estimation e

~ ~1 is valid

which can be used as the condition by 0~
 .

The process of the carbon atoms polarization leads to displacement of the atoms from the
regular chain and to the creation of the ”effective” positive particles which concentration

ep nn  . Masses of these particles is about the mass of the carbon atom гmp
23102  .

Тhen, 5105 
p

e

m
m

T
L

; 36102 cmgnm ppp
 and by the choosed scale for the

density 0 we have p
~ ~ 4102  .

Going to the scales for thermal velocities for electrons and the positive particles we have by
Т=300°К:

eV0 ~ ссм
m
Tk

e

B 6104.6  , take the scale scmV e /105 6
0  ;

рV0 ~ ссм
m
Tk

р

B 4105.4  , take the scale scmV р /105 4
0  .

The theoretical mobility in graphene reaches up to sVcm 2610 [38]. Let us use the scale

scmи /105 6
0  . Тhen 12

0

2
0 
u
VN e , 4

2
0

2
0 10
u
V

P p .

Let us estimate the parameters Е and R. For this estimation we need the scale 0 . Admit

a
e 0 , where δ is a “shielding coefficient”. Naturally to take nmax 142.00  (see
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Figure. 1) as the length scale, then 1~ a . In the situation of a uncertainty in 0 choosing
let us consider two limit cases:
1) δ~1.

Then 2
0

0

um
eE
e


 ~1000,

0

2
00




em
xeR  ~ 7103  .

2) δ=0.0001.

Then 2
0

0

um
eE
e


 ~0.1,

0

2
00




em
xeR  ~ 3103  .

Consider the terms describing the lattice influence. We should estimate the coefficients

(3.30) using 0 as the scale for the potential V, VV ~
0 . Three possible cases under

consideration:

1) V ~ 0

We choose 10
~UU  ~10, 11

~UF  ~10, 20
~UJ  ~±5, 12

~UB  ~±2,5, 22
~UG  ~±5.

In this case the coefficients of “the second order” are less than the coefficients of “the
first order.”
2) 0V (The small influence of the lattice),

We choose 10
~UU  ~0.1, 11

~UF  ~0.1, 20
~UJ  ~0.05, 12

~UB  ~0.025,

22
~UG  ~0.05.

3) 0V (The great influence of the lattice),

We choose 10
~UU  ~1000, 11

~UF  ~1000, 20
~UJ  ~500, 12

~UB  ~250, 22
~UG  ~500.

Estimate parameter
00uxm

NH
e

R for two limit cases:

1) 1RN , then Н~15.

2) 100RN , then Н~1500.

Initial conditions demand also the estimations for the quantum electron pressure and the
pressure for the positive species. For the electron pressure we have eee pVp ~2

00 and

using for the scale estimation Tknp Bee  ~ 22
oeeoeee VVmn  ~ 2

0 oeV , one obtains ep~ ~1.

Analogically for the positive particles ppp pVp ~2
00 , and using

Tknp Bpp  ~ 2
0

2
ppoppp VVmn  , we have pp ~ 2

00
4102 pV , pp~ ~ 4102  .

Tables 1, 2 contain the initial conditions and parameters which were not varied by the
numerical modeling.
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Table 1. Initial conditions

 0~e  0~ p  0~  0~ep  0~pp  0~
~




 e  0~

~







 p  0~
~




  0~

~


 ep  0~

~



 pp

1 4102  1 1 4102  0 0 0 0 0

Table 2. Constant parameters

a~ L T N P
1 1 4102  1 410 

Table 3 contains parameters (for the six different cases) which were varied by the numerical
modeling.

Тable 3. Varied parameters

Variant № Е R H U F J B G
1 0.1 0.003 15 10 10 5 2.5 5
2 0.1 0.003 15 0.1 0.1 0.05 0.025 0.05
3 0.1 0.003 15 10 10 -5 -2.5 -5
4 1000 7103  15 10 10 5 2.5 5
5 0.1 0.003 1500 10 10 5 2.5 5
6 0.1 0.003 15 1000 1000 500 250 500

In the present time there no the foolproof methods of the calculations of the potential lattice
forces in graphene. In the following mathematical modeling the strategy is taken consisting
in the vast variation of the parameters defining the evolution of the physical system.

5. RESULTS OF THE MATHEMATICAL MODELING WITHOUT THE EXTERNAL
ELECTRIC FIELD

The calculations are realized on the basement of equations (3.34)-(3.39) by the initial
conditions and parameters containing in the Tables 1 – 3. Now we are ready to display the
results of the mathematical modeling realized with the help of Maple (the versions Maple 9
or more can be used). The system of generalized hydrodynamic equations (3.34) – (3.39)
have the great possibilities of mathematical modeling as result of changing of Cauchy
conditions and parameters describing the character features of initial perturbations which
lead to the soliton formation.

The mathematical software Maple (beginning with the version 9) is applicable; the following
Maple notations on figures are used: r- density p

~ , s - density e
~ , u- velocity u~ , p -

pressure pp~ , q – pressure ep~ and v - self consistent potential ~ . Explanations placed
under all following figures, Maple program contains Maple’s notations – for example, the
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expression 0)0)(( uD means in the usual notations 0)0(~
~





u

, independent variable t

responds to ~ .

Important to underline that no special boundary conditions were used for all following cases.
The aim of the numerical investigation consists in the discovery of the soliton waves as a
product of the self-organization of matter in graphene. It means that the solution should exist
only in the restricted domain of the 1D space and the obtained object in the moving
coordinate system ( tx ~~~

 ) has the constant velocity 1~ u for all parts of the object. In
this case the domain of the solution existence defines the character soliton size. The
following numerical results demonstrate the realization of mentioned principles.

Figures. 2-9 reflect the result of calculations for Variant 1 (Table 3) in the first and the
second approximations. In the first approximation the terms of series (3.25) with 11 g ,

12 g (then coefficients U and F) were taken into account. The second approximation

contains all terms of the series (3.25) with 21 g , 22 g (then coefficients U, F, J, B and
G).

Figure. 2. s – the electron density e
~ ,                Figure 3. r – the positive particles density,

u – velocity u~ (solid line).                                  (solid line); p – the positive particles pressure
(first approximation, Variant 1). (first approximation, Variant 1)
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Figure 4. v – potential ~ (solid line).                  Figure 5. q – electron pressure.
and derivative D(v)(t) . (first approximation, Variant 1).

(first approximation, Variant 1).

Figure 6. s – electron density e
~ ,           Figure 7. r – the positive particles density (solid line)

u – velocity u~ (solid line),                                         p – the positive particles pressure,
(the second approximation, Variant 1).                    (the second approximation, Variant 1).
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Figure 8. v – potential ~ (solid line), Figure 9. q – electron pressure.
and derivative D(v)(t) .                                             (the second approximation, Variant 1).
(the second approximation, Variant 1).

From Figures 2 - 9 follow that the size of the created soliton is about 0.5 a , where a =0.142
nm . The domain size occupied by the polarized positive charge is about 0.025 a (see
figures 3, 7). The negative charge distributes over the entire soliton domain (figures 2, 6), but
the negative charge density increases to the edges of the soliton. Therefore the soliton
structure reminds the 1D atom with the positive nuclei and the negative shell.

The self-consistent potential ~ is practically constant in the soliton boundaries, (Figures 4,
8). The small grows of the positive particles pressure exists in the x direction. This effect
can be connected with the hydrodynamic movement along х and “the reconstruction” of the
polarized particles in the soliton front.

Comparing the figures 2 – 5 and 6 – 9 we conclude that the calculation results in the first and
the second approximation do not vary significantly. Seemingly significant difference of
figures 2 and 6 on the edges of the domain has not the physical sense because corresponds
to the regions where constu  . Then the restriction of two successive approximations is
justified. Along with it the question about the convergence of the series leaves open because
the first and the second approximations include only the restricted quantity of terms of the
infinite series with the coefficients known with the small accuracy.

Figures 10 - 15 show the results of calculations responding to Variant 3 (Table 3). In the first
approximation Variant 3 is identical to Variant 1 (coefficients 0 GBJ ) and only the
results of the second approximation are delivered. These calculations are more complicated
in the numerical realization and all curves are imaged separately, (Figures 10 – 15).
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Figure 10. u – velocity u~ .                            Figure 11. s – electron density e
~ ,

(the second approximation, Variant 3).                     (the second approximation, Variant 3).

Figure 12. r – the positive particles density.    Figure 13. p – the positive particles pressure,
(the second approximation, Variant 3).                 (the second approximation, Variant 3).
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Figure 14. v – potential ~ .                                   Figure 15. q – electron pressure.
(the second approximation, Variant 3).                (the second approximation, Variant 3).

In the comparison with Variant 1 the calculations in Variant 3 are realized for the case with
opposite signs in front of the coefficients of second order. In this case the distortion of the left
side of soliton is observed because by 0~

 the velocity u~ is not constant. Then this kind
of potential for lattice is not favorable for creation of the super-conducting structures.
Variant 2 (Table 3) correspond to diminishing of the lattice potential in 100 times by the
same practically self-consistent potential, (Figures 16 – 23).

Figure 16. s – electron density e
~ ,,                  Figure 17. r – the positive particles density,

u – velocity u~ (solid line).                          (solid line); p – the positive particles pressure
(the first approximation, Variant 2).                         (the first approximation, Variant 2).
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Figure 18. v – potential ~ (solid line),                          Figure 19. q – electron pressure.
D(v)(t) ,(the first approximation, Variant 2).                 (the first approximation, Variant 2).

Figure 20. s – electron density e
~ ,                     Figure 21. r – the positive particles density,

u – velocity u~ (solid line).                                 (solid line); p – the positive particles pressure
(the second approximation, Variant 2).                     (the second approximation, Variant 2).
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Figure 22. v – potential ~ (solid line), Figure 23. q – electron pressure.
D(v)(t) .                                                                   (the second approximation, Variant 2).
(the second approximation, Variant 2).

From comparison of figures 2 - 9 and 16 - 23 follow that numerical diminishing of the lattice
potential (by the practically the same value of the self-consistent potential) does not
influence on soliton size. But at the same time the solitons gain the more symmetrical forms.
Therefore namely the self-consistent potential plays the basic role in the soliton formation.
Let us analyze now the influence of Н - parameter, practically the influence of the non-
locality parameter. Figures 24 – 31 (Variant 5) correspond to increasing of the parameter H
in 100 times in comparison with Variant 1.

Figure 24. s – electron density e
~ ,                     Figure 25. r – the positive particles density,

u – velocity u~ (solid line).                                  (solid line); p – the positive particles pressure
(the first approximation, Variant 5). (dashed line), D(p)(t) - dotted line.

(the first approximation, Variant 5).
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Figure 26. v – potential ~ (solid line);                             Figure 27. q – electron pressure.
D(v)(t) , (the first approximation, Variant 5).                              (solid line), D(q)(t) ,

(the first approximation, Variant 5)

Figure 28. s – electron density e
~ ,                      Figure 29. r – the positive particles density,

u – velocity u~ (solid line). (solid line); p – the positive particles pressure
(the second approximation, Variant 5).                     (the second approximation, Variant 5).
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Figure 30. v – potential ~ (solid line); Figure 31. q – electron pressure
D(v)(t) , (the second approximation, Variant 5).         (solid line), D(q)(t) , (the second

approximation, Variant 5).

The comparison of figures 2 - 5 and 24 - 27 indicates that in the first approximation the very
significant increasing of the H value in 100 times leads to increasing of the soliton size only
in two times without significant changing of the soliton structure. The comparison of
calculations (see figures 6 and 28) in the second approximation leads to conclusion that the
region (where the velocity u~ is constant) has practically the same size.

Consider now the calculations responding to Variant 4 (Table 3). Increasing in 410 times of
the scale 0 denotes increasing the self consistent potential and the lattice potential
introduced in the process of the mathematical modeling. This case leads to the drastic
diminishing of the soliton size. Figures 32 - 35 demonstrate that in the calculations of the first
approximation the soliton size is cma 124 1042.110~   and exceeds the nuclei size only
in several times. The positive kernel of the soliton decreasing in the less degree and
occupies now the half of the soliton size. It is no surprise because the low boundary of this
kernel size is the character size of the nuclei. Application of the second approximation for the
lattice potential function in the mathematical modeling leads to the significant soliton
deformation but the same soliton size (Figures 36-39).
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Figure 32. s – electron density e
~ ,                    Figure 33. r – the positive particles density,

u – velocity u~ (solid line).                                 (solid line); p – the positive particles pressure
(the first approximation, Variant 4).                         (the first approximation, Variant 4).

Figure 34. v – potential ~ (solid line).                      Figure 35. q – electron pressure.
(the first approximation, Variant 4).                           (the first approximation, Variant 4).
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Figure 36. s – electron density e
~ ,                      Figure 37. r – the positive particles density,

u – velocity u~ (solid line).                                  (solid line); p – the positive particles pressure
(the second approximation, Variant 4). (the second approximation, Variant 4)

Figure 38. v – potential ~ (solid line).                        Figure 39. q – electron pressure.
(the second approximation, Variant 4)                     (the second approximation, Variant 4)

The drastic increasing of the periodic potential of the crystal lattice (in hundred times, see
figures 40 – 48) in comparison with the self-consistent potential also leads to diminishing of
the soliton size. For the case Variant 6, Table 3 this size consists only a210~  . But this
increasing does not lead to the relative increasing of the soliton kernel and to the mentioned
above the soliton deformation in the second approximation (see figures 45 – 48). Figure 41
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demonstrates the extremely high accuracy of the soliton stability, the velocity fluctuation
inside the soliton is only u~10~ 16 .

Figure 40. s – electron density e
~ ,                              Figure 41. u – velocity u~ .

(the first approximation, Variant 6).                         (the first approximation, Variant 6).

Figure 42. r – the positive particles density,                           Figure 43. v – potential ~ .
(solid line); p – the positive particles pressure                  (the first approximation, Variant 6).
(the first approximation, Variant 6).
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Figure 44. q – electron pressure.                                 Figure 45. s – electron density e
~ ,

(the first approximation, Variant 6).                                       u – velocity u~ (solid line).
(the second approximation, Variant 6).

Figure 46. r – the positive particles density.                        Figure 47. v – potential ~ .
(solid line); p – the positive particles                            (the second approximation, Variant 6).
pressure, (the second approximation, Variant 6).
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Figure 48. q – electron pressure.
(the second approximation, Variant 6).

6. RESULTS OF THE MATHEMATICAL MODELING WITH THE EXTERNAL
ELECTRIC FIELD

Let us consider now the results of the mathematical modeling with taking into account the
intensity of the external electric field which does not depend on y . In this case the solution
of the hydrodynamic system (3.10) – (3.15) should be found. After averaging and in the
moving coordinate system it leads to the following equations written in the first approximation
(compare with the system (3.34) – (3.39)):

Poisson equation for the self-consistent electric field:
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Continuity equation for the positive particles:
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Continuity equation for electrons:

     
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Momentum equation for the х direction:
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Energy equation for the positive particles:
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Energy equation for electrons:
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Two classes of parameters were used by the mathematical modeling – parameters and
scales which were not changed during calculations and varied parameters indicated in Table
4.

Parameters, scales and Cauchy conditions which are common for modeling with the external
field:
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Тable 4. Varied parameters in calculations with the external electric field

Variant №
0
~E  0~

~




  0~

~



 pp  0~
~


 ep

1 0 0 0 0
7.0 10 10 0 0
7.1 10 10 10 -1
8.0 100 100 0 0
8.1 100 100 10 0
9.0 10000 10000 0 0
9.1 10000 10000 10 -1

The external intensity of the electric field is written as

0
6

002
4

0
0

0
0

~1014.7~238~10~ E
m
VECGSEE

a
eE

x
E Е  

. It means that even by

1~
0 E we are dealing with the rather strong fields. But namely strong external fields can

exert the influence on the soliton structures compared with the Coulomb forces in the lattice.
For example in [39] the influence of the external electric field in graphene up to

mV /1010 87  is considered. The values 0
~E are indicated in Table 4, variants 9.0 and

9.1 respond to the extremely strong external field.

Table 4 contains in the first line the reminder about the first variant of calculations reflected

on figures 2 – 5. These data (in the absence of the external field, 0~
0 E ) are convenient

for the following result comparison. The variants of calculations in Table 4 are grouped on

principle of the 0
~E increasing. In more details: figures 49 – 58 correspond to 10~

0 E ,

figures 59 – 68 correspond to 100~
0 E , figures 69 – 80 correspond to 10000~

0 E .

Figure 49. r – the positive particles density,             Figure 50. u – velocity u~ . (Variant 7.0).
(solid line); p – the positive particles pressure.
(Variant 7.0).
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Figure 51. q–electron pressure (Variant 7.0). Figure 52. s–electron density e
~ (Variant 7.0).

Figure 53. v – potential ~ (solid line);
D(v)(t) , (Variant 7.0).
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Figure 54. r – the positive particles density,           Figure 55. u – velocity u~ . (Variant7.1).
(solid line); p – the positive particles pressure.
(Variant 7.1).

Figure 56. q – electron pressure.                                   Figure 57. s – electron density e
~ ,

(Variant 7.1). (Variant 7.1).
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Figure 58. v – potential ~ (solid line); D(v)(t) , (Variant 7.1).

Figure 59. r – the positive particles density,             Figure 60. u – velocity u~ . (Variant 8.0).
(solid line); p – the positive particles pressure.
(Variant 8.0).
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Figure 61. q – electron pressure.                                 Figure 62. s – electron density e
~ ,

(Variant 8.0).                                                                   (Variant 8.0).

Figure 63. v – potential ~ (solid line);D(v)(t) , (Variant 8.0).
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Figure 64. r – the positive particles density,           Figure 65. u – velocity u~ . (Variant 8.1).
(solid line); p – the positive particles pressure.
(Variant 8.1).

Figure 66. q – electron pressure.                           Figure 67. s – electron density e
~ ,

(Variant 8.1).                                                          (Variant 8.1).
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Figure 68. v – potential ~ (solid line);D(v)(t) , (Variant 8.1).

Figure 69. r – the positive particles density,             Figure 70. u – velocity u~ . (Variant 9.0).
(solid line); p – the positive particles pressure.
(Variant 9.0).
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Figure 71. q – electron pressure.                                 Figure 72. s – electron density e
~ ,

(Variant 9.0).                                                                (Variant 9.0).

Figure 73. v – potential ~ (solid line);D(v)(t) , (Variant 9.0).
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Figure 74. p – the positive particles pressure.    Figure 75. p – the positive particles pressure.
(Variant 9.1).                                                             (Variant 9.1).

Figure 76. r – the positive particles density,          Figure 77. u – velocity u~ . (Variant 9.1).
(Variant 9.1).
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Figure 78. q – electron pressure.                                 Figure 79. s – electron density e
~ ,

(Variant 9.1). (Variant 9.1).

Figure 80. v – potential ~ (solid line);D(v)(t) , (Variant 9.1).

Consider now the character features of the soliton evolution and the change of the charge
distribution in solitons with growing of the external field intensity:

1. The character soliton size is defined by the area where 1~ u . It means that all parts
of the soliton wave are moving without destruction. The size of this area is practically
independent on choosing of the numerical method of calculations.
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2. Figures 75 – 77 demonstrate the typical situation when the area of possible
numerical calculations for a physical variable does not coincide with area 1~ u
where the soliton regime exists.

3. In the area of the soliton existence the condition 1~ u is fulfilled with the high
accuracy defined practically by accuracy of the choosed numerical method (Figures
50, 55, 60, 65, 70, 77).

4. As a rule for the choosed topology of the electric field the size of the soliton
existence is growing with increasing of the electric field intensity.

5. Under the influence of the external electric field the captured electron cloud is
displacing in the opposite direction (of the negative variable~ ). The soliton kernel is
loosing its symmetry.

6. The redistribution of the self-consistent effective charge creates the self-consistence
field with the opposite (to the external field) direction, (Figures 53, 58, 63, 68, 73,
80).

7. The quantum pressure of the positive particle is growing with the ~ increase. On

the whole the specific features of the qp ~,~ pressures are defined by the process of
the soliton formation.

7. CONCLUSION

The origin of the charge density waves (CDW) is a long-standing problem relevant to a
number of important issues in condensed matter physics. Mathematical modeling of the
CDW expansion as well as the problem of the high temperature superconduction can be
solved only on the basement of the nonlocal quantum hydrodynamics in particular on the
basement of the Alexeev non-local quantum hydrodynamics. It is known that the
Schrödinger – Madelung quantum physics leads to the destruction of the wave packets and
can not be used for the solution of this kind of problems. The appearance of the soliton
solutions in mathematics is the rare and remarkable effect. As we see the soliton’s
appearance in the generalized hydrodynamics created by Alexeev is an “ordinary” oft-
recurring fact. The realized here mathematical modeling CDW expansion support
established in [22,24] mechanism of the relay (“estafette”) motion of the soliton’ system
(“lattice ion – electron”) which is realizing without creation of additional chemical bonds.
Important to underline that the soliton mechanism of CDW expansion in graphene (and other
substances like 2NbSe ) takes place in the extremely large diapason of physical parameters.
But CDW existence belongs to effects convoying the high temperature superconductivity. It
means that the high temperature superconductivity can be explained in the frame of the non-
local soliton quantum hydrodynamics.

Important to underline that the problem of existing and propagation of solitons in graphene
and in the perspective high superconducting materials belong to the class of significantly
non-local non-linear problems which can be solved only in the frame of vast numerical
modeling.
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