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ABSTRACT 

In this paper, author describes a Liouville-Green transform to solve a singularly perturbed two-point boundary value 
problem with right end boundary layer in the interval [0,1]. They reply Liouville-Green transform into original given 
problem and finds the numerical solution. Then they implemented this method on two linear examples with right end 
boundary layer which nicely approximate the exact solution.  
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1. Introduction 

Singular perturbation problems are of common occur- 
rence in fluid mechanics, quantum mechanics, optimal 
control, chemical reactor theory, aerodynamics, reac- 
tion-diffusion processes, geophysics. It is a well known 
fact that the singularly perturbed two-point boundary 
value problem posses boundary or interior layers i.e. re- 
gions of rapid change in the solution near the end points 
or some interior points with width O(1) as 0  . In 
recent years, a large number of special methods have 
been developed to provide accurate numerical solutions. 
For details one may refer to the books of [1-5] and the 
references [6-11]. Many of these methods consist of: 1) 
dividing the problem into an inner region (boundary 
layer) problem and an outer region problem; 2) express- 
ing the inner and outer solutions as asymptotic expan- 
sions; 3) equating various terms in the inner and outer 
expressions to determine the constants in these expres- 
sions; and 4) combining the inner and outer solutions in 
some fashion to obtain a uniformly valid solution. Typi- 
cally, the inner region problems are obtained from the 
original problem by rescaling the independent variable. 
These techniques and their variations have been used 
successfully on a variety of linear and nonlinear singular 
perturbation problems. However, there can be difficulties 
in applying these methods, such as the matching of the 
coefficients of the inner and outer expansions. Success 
may depend on finding the proper scaling or the proper 
transformation to express the dependent and independent 

variables.  
A non-asymptotic method, also called boundary-value 

technique, has been introduced by Roberts [12-14] to 
solve certain classes of singular perturbation problems. 
He also discussed the analytical and approximate solu- 
tions of several numerical examples. To the best of our 
knowledge, very few asymptotic solutions were estab- 
lished for boundary value problems [15,16]. In this paper, 
author studies the second order singularly perturbed two- 
point boundary value problem with right end boundary 
layer via Liouville-Green transform and obtain asymp- 
totic and numerical solutions. Few examples are also 
demonstrated for the applicability of the method.  

2. Liouville-Green Transforms 

Now, we discuss our method for singularly perturbed 
two-point boundary value problems with right-end boun- 
dary layer of the underlying interval. To be specific, we 
consider a class of singular perturbation problem of the 
form  

           0, 0,1y x f x y x g x y x x         (1) 

with boundary conditions 

 0y   and  1y             (2) 

where   is a small positive parameter  0  1 ;  , 
  are known constants; we assume that  f x ,  g x  
are assumed to be sufficiently continuously differentiable 
function in [0,1]. Furthermore, since the coefficient of 
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 y x  is negative and non zero throughout the interval 
[0,1]. This assumption merely implies that the boundary 
layer will be in the neighborhood of x = 1.  

Rewrite the Equation (1) as below: 

           0, 0,1y x f x y x g x y x x         (3) 

Let the new Liouville-Green transforms    , ,z x v z  
be 

   1
dz x f x


   x               (4) 

     1
,x x f x 


               (5) 

     .v z x y x                (6) 

According to (6), we have  
 

     
     

 
 
   2

d 1 d d
,

d d d

x x xy v v
z x v x v z

x x z x zx x

  
  

  
   

2
                         (7) 

       
 

 
 

 
 

22 2
2

2 2 2

2d 1 d d
.

dd d

x x x xy v v 2
x v

x x z xx z

   
 

  

       
              x

                   (8) 

From (3), (7) and (8), we obtain 

 
     

 
 
 

 
         
22 2

2 2 2 3 2

2d 2 d
0,

dd

x x x x x g xv v
f x f x v z

x x zz x x

      
      

         
            

   
  

i.e. 

       
     

 
   

2 2

2 2 2 2

d 1 2 d 1 2
0.

dd

x x x g xv v
x f x f x v z

z x xz

    
      

       
              

  

From (4), we have 

 
   

 
 

 
       

22
2 2

2 2 2 2

d d 1
1 2

dd

f x f x f xv v
f x g x v z

z f xz f x f x f x
    
     

           
   

0,  

i.e. 

 
   

 
 

 
             

22

2 2 2 2

d d d 1 d
2 ,

d d dd

f x f x f xv v v v
,f x g x v z M x N x v z

z z f x zz f x f x f x
      

   
         

 
  (9) 

where 

   
     

 
 

 
     

2

2 2 2

1
, , 2

f x f x f x
.M x N x f x g

f xf x f x f x
  

   
      

 
x  

 
Since   is a small parameter ,  0 1  M x  

and  ,N x    are sufficiently small on [0,1]. So, as 
0  , the right hand side of Equation (9) vanishes. 

Therefore, we have 
2

2

d d
0.

dd

v v

zz
                (10) 

Therefore, the approximate solutions of (10) are  v z

  1 2e ,zv z C C               (11) 

where 1 2  are two arbitrary constants. From (4)-(6), 
one has the asymptotic solutions of differential equations 

,C C

   
 

 
   

 
0

1
d

1 2e .

x
f s sv z v z

y x C C
x f x f x




 
    
 
 

 (12) 

where  are two arbitrary constants.  1 2,C C

3. Application to Two Point Boundary Value 
Problems 

As an application, we consider the following second- 
order two-point boundary value problem   

          0,

0 1, 0 1,

y x f x y x g x y x

x




   

  
      (13) 

Which is equivalent to  
         

   
0

0 , 1 ,

y x f x y x g x y x

y y



 

   

 


 

where ,   are constants. 
Applying the boundary conditions of (13), in (12), we 

have 

   1 2 ,
0 0

C C
f f

     
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   
 

1

0

1
d

1 2

1 1
e

1 1

f x x

C C
f f

  
            

 

One has 

 
 

 

1

0

1
d

1

1
e

1 0

f x x

f f
C

 
 

  
 
 


       (14) 

   
2

1
0 1f f

C

  
 

   
 


          (15) 

where 

   
 

1

0

12 d1
e 1

0 1

f x x

f f
   

          

0  

Then BVP (13) has the following asymptotic solution: 

   
 

0

1
ds

1 2 e

x
f s

y x C C
f x

  
 

 

,


       (16) 

where  are given by (14), (15) respectively. 1 2

Example 3.1. Consider the following singular pertur-
bation problem  

,C C

     0, 0,1y x y x x              (17) 

with  and .        (18)  0y 1  1 0y 

Clearly this problem has a boundary layer at x = 1. i.e.; 
at the right-end of the underlying interval. The exact so- 
lution is given by  

      1 1e 1 exy x     1



 

Comparing (17) with (13), we have 

   1, 0, 1 , 0f x g x      

1
2 e 1 0,
 

     
 

 

1

1 1

e

e 1

C





 
  
 
 

  
 

 

2 1

1

e 1

C





 
  

 

 

 

 1

1

1 e

1 e

x

y x









 
  


 
  

 

              (19) 

The computational results are presented in Tables 1 
and 2 for 310   and 10−4, respectively. Figures 1 and 
2 show our solution and exact solution for different val- 
ues of x.  

Example 3.2. We consider the following variable coef- 
ficient singular perturbation problem from Kevorkian 
and Cole [2, p. 33, Equations (2.3.26) and (2.3.27) with 

1 2   ]. 
 
Table 1. Numerical results of example 3.1 with ε = 10−3, h = 
10−3. 

x y(x) Exact solution 

0.000 1.0000000 1.0000000 

0.200 1.0000000 1.0000000 

0.400 1.0000000 1.0000000 

0.600 1.0000000 1.0000000 

0.800 1.0000000 1.0000000 

0.900 1.0000000 1.0000000 

0.920 1.0000000 1.0000000 

0.940 1.0000000 1.0000000 

0.960 1.0000000 1.0000000 

0.980 1.0000000 1.0000000 

1.000 1.0000000 1.0000000 

 
Table 2. Numerical results of example 3.1 with ε = 10−4, h = 
10−4. 

x y(x) Exact solution 

0.0000 1.0000000 1.0000000 

0.2000 1.0000000 1.0000000 

0.4000 1.0000000 1.0000000 

0.6000 1.0000000 1.0000000 

0.8000 1.0000000 1.0000000 

0.9000 1.0000000 1.0000000 

0.9200 1.0000000 1.0000000 

0.9400 1.0000000 1.0000000 

0.9600 1.0000000 1.0000000 

0.9800 1.0000000 1.0000000 

1.0000 1.0000000 1.0000000 
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Figure 1. x versus y(x) and exact solution for example 3.1 at 
ε = 10−3, h = 10−3. 
 

 

Figure 2. x versus y(x) and exact solution for example 3.1 at 
ε = 10−4, h = 10−4. 
 

      1
1 0,

2 2

x
y x y x y x x        

 
0,1



   (20) 

   with 0 0 and 1 1y y .          (21) 

He has chosen to use uniformly valid approximation 
(which is obtained by the method given by Nayfeh [12, p. 
148, Equation (4.2.32)] as our “exact” solution; 

   
 2 41 1

e
2 2

x x
y x

x

 
 


 

The numerical results are given in Tables 3 and 4 for 
 and , respectively. 310  410

Comparing (20) with (13), we have 

    1
1 , , 0 , 1.

2 2

x
f x g x        

 
 

3
2 42 e 1 0

 
     

 

Table 3. Numerical results of example 3.2 with ε = 10−3, h = 
10−3. 

x y(x) Exact solution 

0.000 0.0000000 0.0000000 

0.200 0.5555555 0.5555556 

0.400 0.6250000 0.6250000 

0.600 0.7142857 0.7142857 

0.800 0.8333333 0.8333333 

0.900 0.9090909 0.9090909 

0.920 0.9259259 0.9259259 

0.940 0.9433962 0.9433962 

0.960 0.9615384 0.9615384 

0.980 0.9803922 0.98039922 

1.000 1.0000000 1.0000000 

 
Table 4. Numerical results of example 3.2 with ε = 10−4, h = 
10−4. 

x y(x) Exact solution 

0.0000 0.0000000 0.0000000 

0.2000 0.5555555 0.5555556 

0.4000 0.6250000 0.6250000 

0.6000 0.7142857 0.7142857 

0.8000 0.8333333 0.8333333 

0.9000 0.9090909 0.9090909 

0.9200 0.9259259 0.9259259 

0.9400 0.9433962 0.9433962 

0.9600 0.9615384 0.9615384 

0.9800 0.9803922 0.98039922 

1.0000 1.0000000 1.0000000 
 

1C





 

2C





 

   

 2 4

4

3

4

1 e

1

2
1 e

x x

y x
x









 
   


  
  

 

          (22) 

The computational results are presented in Tables 3 
and 4 for 310   and 10−4, respectively. Figures 3 and 
4 show our solution and exact solution for different val- 
ues of x. 

,  
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Figure 3. x versus y(x) and exact solution for example 3.2 at 
ε = 10−3, h = 10−3. 
 

 

Figure 4. x versus y(x) and exact solution for example 3.2 at 
ε = 10−4, h = 10−4. 

4. Conclusion 

In this paper, authors concerned with the numerical solu- 
tions of singularly perturbed two-point boundary value 
problems with right end boundary layer. Here they take 
the assumption that  on the whole interval [0, 
1], i.e. the function 

  0f x 
 f x  has same sign on the whole 

interval [0,1]. Our method is good on computer imple-
mentation. But this method is not valid if the equation is 
changed into  

            0y x f x y x g x y x h x        

i.e. in no-homogeneous form. 
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