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Abstract
Extrinsic Calibration between LiDAR and POS (position and orientation system) is a
fundamental prerequisite for varieties of MLS (mobile laser scanner) applications. Due to the
sparse structure of LiDAR data, the current calibration methods relying on common point
feature matching are unreliable, and the low accuracy POS results make the extrinsic calibration
of MLS system more challenging. In this paper, we propose an incremental estimation method
of six degree of freedom extrinsic transformation of LiDAR and POS. Firstly, the POS-SLAM is
used to accumulate LiDAR scans as online sub maps. Attitudes of the carrier are calculated by
using GNSS/INS loose combination method of bidirectional adjustment, and scans are
associated with sub map based on the time interpolation. Then, the extrinsic calibration
parameters are estimated by optimizing corresponding points difference between SLAM and
MLS coordinate frame. Finally, field tests have been conducted to the proposed method. RMS
between the map by the calibrated MLS and by the static measurement is 0.57 cm. The results
demonstrate that the accuracy and robustness of our calibration approach are sufficient for
mapping requirement of MLS.

Keywords: MLS, calibration, integrated navigation

(Some figures may appear in colour only in the online journal)

1. Introduction

In modern industrial applications, LiDAR, GNSS and IMU
are assuming increasingly critical roles in autonomous driv-
ing robot control, etc. However, methods by single sensor
are limited by their shortcomings and rarely perform well.
LiDAR is an optical metrological technology that captures tar-
get surfaces in the three-dimensional (3D) space with highly
redundant sets of discrete points. However, LiDAR is also
defective in high-speed carrier, due to its limited vertical FOV,
discreteness of scanned points, and scanning distortion. IMU
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is a technology that captures high frequency self-motion. It
provides the carrier’s motion state at a higher frequency than
LiDAR, thereby helping data association of scans and redu-
cing scanning distortion [1]. The POS (position and orient-
ation system) composed of IMU and GNSS can eliminate
the accumulated error of IMU and obtain more stable atti-
tude information. Similarly, the integrated navigation scheme
MLS (mobile laser scanner) is more and more widely used in
engineering. Cedric proposed a distortion correction method
for LiDAR based on IMU pre-integration [2]. This method
optimizes LiDAR matching by using IMU results, and lim-
its IMU errors drift by LiDAR matching. Yang et al [3] pro-
pose a tightly-coupled aided inertial navigation with LiDAR
and camera. Feature points tracked from camera and planes
feature from LiDAR are used as the geometric constraints to
enhance its state estimator. The combination method of IMU
and LiDAR is more robust and become one of the mainstream
methods in navigation.
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Uncertainty of attitude calculated by LiDAR or POS will
hinder their joint applications, so the extrinsic calibration is
required to obtain accurate transformation between LiDAR
and POS. Due to the discrete of LiDAR data, little work has
been focused on their calibration.

In this paper, we propose an online LiDAR/POS calib-
ration method based on incremental scan matching. Sensors
achieved time synchronization with PPS signal from GNSS,
and their time delay only a few milliseconds. Inspired by the
Cartographer [4], we designed a SLAM method combined
with GNSS. It obtains the global cloud point map and the tra-
jectory of LiDAR.Next, the trajectory of the carrier is obtained
through the loosely coupled GNSS/IMU algorithm. Correl-
ate scan data to global map through carrier trajectory inter-
polation. Finally, residual optimization process between the
corresponding data points will calculate the exact calibration
parameters. The method has no restrictions on scanning mode,
and does not require assumptions based on feature extraction.
The main contributions of our work are as follows:

• A novel field calibration model for LiDAR/POS guidance is
proposed. More accurate and robust calibration parameters
are obtained using long-range trajectory optimization.

• A multi-resolution-based scan-to-map matching method is
used, enabling the generation of high-precision point cloud
map even on low-cost platforms.

• The performance of the method has been evaluated by prac-
tical tests. In addition, the errors of each step and the effects
on the overall accuracy and of the system are investigated.

The remainder of the paper is organized as follows:
section 2 briefly reviews related works. In section 3, we first
introduce the notation, task, and assumption of the paper and
summarize the proposed calibration approach. We detail the
processing procedure of our calibration method in section 4.
Section 5 provides some implementation discussions and
shows experimental results. Finally, the conclusion is drawn
in section 6.

2. Related work

The system based on optical sensors to realize environmental
perception, location and navigation by collecting surface
information of space objects, and IMU assist providing relat-
ive position. However, the space calibration between sensors is
a difficult matter which relies on professional equipment such
as manual turntable and consumes time. IMU is widely used
in the early vision integrated navigation system, and many
researches have investigated on calibration methods of spatial
parameters based on cameras and IMU. Mirzaei [5] and Kelly
[6] proposed a method, which is not limited by the calibration
turntable. Under the framework of Kalman filter, the spatial
relationship between inertial sensor and visual sensor is used
as an unknown parameter to estimate the optimal solution in
the process of data fusion. Jonathan [7] used the chessboard
calibration board to achieve calibration, and Celyn [8] used
hand-eye calibration method. However, the visual method is

limited by the scene, and the perception degradation problem
occurs in the underground tunnel, mine and other planar sub-
surface void scenes [9, 10]. Compared to vision, LiDAR is
more widely used. Referring to vision based calibration, paper
[11–13] designed a hand-eye calibration based LiDAR and
IMU calibration method. Limited by the scanning principle
of LiDAR, its raw scanning has problems such as distortion,
irregular data and deviation, which makes the calibration of
LiDAR and IMU a challenge. To deal with the motion distor-
tion caused by the rapid movement of the carrier, we propose
an online calibration method based on LiDAR/POS, compens-
ating motion distortion of LiDAR scans.

The advancement of sensor technology has expanded the
application scenarios of LiDAR and attracted the interest
of many researchers. Their calibration methods are mainly
divided into three categories according to the difference of
the carrier platform. UAV platform-based, vehicle-mounted
platform-based, and adaptive methods suitable for multiple
scenarios.

Early calibration methods focused on LiDAR scans on
UAVs. LiDAR scans the strip area covered by the flight tra-
jectory, and derives the coordinates of the ground points using
direct geo-referencing information provided by the GPS/IMU
unit and external parameters determined by the calibration
procedure [14]. The calibration is completed based on themin-
imization of the difference value of different strip scanning
feature points [15]; To solve the problem of excessive labor
cost in the selection of conjugate points, based on photogram-
metric block adjustment (BAIM), Habib proposed a method
of feature extraction based on conjugate points and lines. This
method uses the expansion of variance covariance matrix to
enhance the linear feature points of data to achieve semi-
automatic calibration method [16]; Jiao realized the calibra-
tion of two LiDAR by using line feature matching [17]; Hebel
[18] and Lindenthal [19] proposed a calibration method based
on planar features by using region growth method and random
sample consistent segmentation method to extract planar fea-
tures; Gautam used the feature method to calibrate the GNSS
antenna, IMU, spectrometer and camera of the UAV platform
[20]. However, it is difficult to match scans due to the area
density data of LiDAR on the ground such as vehicles.

In recent years, with the development of intelligent
vehicles, commercial MLS has been applied to a wider range
of fields [20–22]. The ever-changing applications put for-
ward updated requirements for the reliability of the sys-
tem, more sensing data flow, high mobility, and wider field
of view [23, 24]. Qiu proposed heterogeneous sensor cal-
ibration for motion correlation analysis [25]. In order to
reduce labor consumption and get rid of site constraints, to
improve the flexibility of calibration, researchers have pro-
posed a series of feature-based field calibration methods.
Automatically extract features from the environment and use
them for data association. Liu added artificial targets with
special shapes to the scanning scene, constructed geomet-
ric constraints by using a called cone-column features and
adding surface construction constraints to get the calibration
parameters [26]. Guo obtained the calibration parameters of

2



Meas. Sci. Technol. 34 (2023) 085201 X Fan et al

the LiDAR–IMU system by fitting the self-made target ball
with LiDAR. Furthermore, a more robust calibration method
based on multiple features is proposed [27]. This calibration
method combines features of the ball, cylinder and plane in
the scanning data, to avoiding the possible nonlinear prob-
lem in few features. Lv et al further used the information
theory data filtering strategy to achieve a calibration method
without infrastructure such as benchmark labels [28]. Srin-
ara directly put the external parameter expression of each
epoch into the geographical reference equation and proposed
an INS/GNSS/LiDAR navigation system suitable for feature-
less environments [29]. The above methods will spend a lot of
calculation on feature extraction, and the calibration paramet-
ers is unstable due to the correctness of feature matching and
search.

A natural way for adaptive calibration in multiple scen-
arios is trajectory alignment. The different localization solving
principles based on IMU and LiDAR allow the error models
of trajectories to be independent and the residual optimiza-
tion between trajectories to be able to obtain convergent cal-
ibration parameters. Li et al [30] used GP (Gaussian process)
regression to model the independent timestamp delay of IMU,
but this method relies on the correlation of scanned data and
can only be effective in the pre-built map. Lv et al [31] pro-
pose a continuous time trajectory formula based on B-spline
to solve the problem of asynchronous measurement in high-
speed scenes. Kim introduced the manifold based pre integra-
tion method to generate the inertial propagation model of the
sensor coordinate system in the rigid body [1]; Le gentil et al
used IMU interpolation to compensate motion distortion [2].
In a structured environment, the IMU track uses Gaussian pro-
cess regression to model independent sampling timestamps,
then divides the point cloud into a structured plane and uses
octree management to associate environmental objects for
calibration [12]. On-site calibration refers to solving the spa-
tial relationship of sensors as parameters in the process of state
estimation, which requires rapid processing of large amounts
of data from multi-beam LiDAR and IMU. Lv et al proposed
a method based on batch processing by using the informa-
tion theory data screening strategy [28]; Kim proposed a cal-
ibration method based on optimization under the nonlinear
framework [1]; Keyetieu proposed a method for automatic-
ally selecting the most relevant LiDAR plane elements, which
spreads the uncertainty of each point to data selection and cor-
rection, and increases the robustness and computational effi-
ciency of the calibration method [32]. The sliding window
method is an incremental data processing method. The slid-
ing window method is an incremental method for processing
large amounts of data. Jiao implemented a odometer based
on sliding window [33]; Lee uses the pre-processing stage of
the sliding window to aggregate multi frame point clouds to
achieve the extraction and tracking of plane plates [34]; The
lic-fusion2 proposed by Zou is to add a sliding window filter
to the original work to achieve calibration [35]. There is also
a data-driven approach. Usayiwevu et al used the information
path planner based on maximizing information income to find
themost accurate acceptable path in the unknown environment
to achieve the calibration of spatial parameters [36]. However,

the drift from accelerometer and gyroscope of low-cost IMU
makes it difficult to match the trajectory, and the asynchronous
timestamp of multi-mode sensor also leads to the complex-
ity of solution. Positioning and scanning data contains more
noise, and the original methods are no longer applicable. Li
et al in [8] proposed a calibrationmethod for low-cost airborne
systems, estimated the boresight angles and carrier trajector-
ies at the same time, built dynamic grids with observations,
matched planar voxels with references, and optimized and
estimated the parameters of the LiDAR–IMU system. Pothou
proposed QA/QC (quality assurance/quality control) techno-
logy to evaluate the calibration results, and based on the least
square principle, determine the validity, accuracy and preci-
sion of different statistical tests for outlier monitoring in posi-
tioning and attitude data [37]. However, the research is limited
to the evaluation of simulation data sets.

The problems of the existing calibration methods are sum-
marized as follows:

1. Maintaining a specific calibration site makes these methods
not flexible enough

2. A large number of calculations in the process of feature data
association are difficult to implement on low-cost equip-
ment.

3. In feature extraction, the correctness of matching and
searching results is low, and the calculation of calibration
parameters is unstable.

To overcome these drawbacks, we propose a two-step
optimization method. The time synchronization method based
on GNSS hardware avoids the asynchronous problem of
timestamp. This method does not require specific artificial
facilities, and also avoids the computational burden and
instability due to feature matching.

3. Materials and methods

Due to above problems in the calibration of LiDAR and POS
on vehicle, a GNSS aided mapping method of LiDAR and
IMU is adopt. Based on the integrated navigation method we
design an online calibration method to estimate lever arm and
rotation. First, GNSS–RTK and IMU data are loosely coupled
based on Kalman filter to obtain the position and attitude of
the carrier in the global coordinate system. Continuous frames
point cloud data from LiDAR are matched by using occu-
pancy based method. The GNSS positioning result is used as
the initial position of inter frame matching. In order to reduce
the cumulative error of matching, a graph-based optimiza-
tion framework is adopted. A closed-loop constraints method
based on bundle adjust are used in the back-end optimization
to calculate continuous trajectory and corresponding reference
maps in the global coordinate framework. The global coordin-
ates and attitudes of vehicle are obtained through the syn-
chronized GNSS/IMU. The result of multiplying the carrier
attitudes, calibration parameters and LiDAR scans can corres-
pond to the reference map point by point, forming a constraint
condition. The sensor calibration is transformed into a nonlin-
ear optimization problem. Combined multiple data frames, the
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Figure 1. Pipeline of the proposed calibration method.

optimal calibration parameters are iteratively solved. As sub-
sequent experiments show, this method has high calculation
accuracy to meet the mapping requirements of MLS system.
The flow of this method is shown in figure 1.

This paper contains three coordinate systems: (1) LiDAR
coordinate {l} takes the laser transmitter as the origin. We
segment LiDAR scans based on sliding windows and take the
coordinate of first frame in each segment as sub map coordin-
ate {m}= {l0}. (2) IMU coordinate {b} takes the center of
the sensor as the origin and each axial direction parallel to the
accelerometer axial coordinate. In the calibration process of
data, multi-frame data is unified under the world coordinate
{w} based on thematching results. The purpose of this paper is
to find out the rotation and translation parameters Rbl between
{l} and {b} respectively.

The pipeline above three main parts: GNSS position con-
strained LiDAR–SLAM, loosely coupled GNSS/IMU Integ-
rated trajectory estimation and calibration parameter optimiz-
ation of map matching. The detailed calibration procedure is
implemented as follows.

3.1. LiDAR SLAM with GNSS position constraint

A LiDAR SLAM method of occupancy-based spatial raster
mapmatching is used in this paper. It is fast and robust to noise
because of structuring point cloud. As shown in the figure 2
below. The point cloud is described as a grid map and saved
as a pyramid of quadtree according to the resolution. In order
to store 3D spatial information, LiDAR scans are divided into
grids during map generation, each element in the grid is set as
a vector to save the occupancy of the corresponding elevation.
When a new laser scan comes available, the occupancies of
hit elements update according to the probability model. While
the occupancy for nearby unhit grids is obtained according
to the normal distribution curve of the distance to the nearest
hit grids. An occupancy raster of one frame is generated and
match witch a sub map for correlation scanning. Another new

cloud data becomes available, which occupancy raster is gen-
erated and matched to the associated sub map by CSM (correl-
ation scan matching). In CSM, the raster pm matching with sub
maps pl for obtaining LiDAR pose Posel,t is solved by max-
imizing the posterior probability distribution p(pl|pm,Posel,t).
The probability distribution of each point location in pl is
assumed independent, the above observation model is reduced
to equation (1).

p(zi|xi,m) =
∏
k

p(z(k)i |xi,m). (1)

The final score is the sum of all raster probability values
in the neighborhood. Information from IMU is taken as rough
pose, and final pose is search corresponding max score in {w}.

The searching process is accelerated by the pyramid map
structure, first matching on low resolution map. Then using
the result as the initial value for the next level of resolution
search matching. And searching for the best matching res-
ult until the best resolution of the leaf node is successfully
matched, obtaining the coordinates of the newly added points
within the sub-map under the local coordinate system as shown
in equation (2).

pm = pl ∗Rml,t. (2)

The pose of LiDAR under the local coordinate sys-
tem generated in the above process are Poselidar,t. Con-
tinuous pose sequence constitutes the trajectory Trjlidar =
[Poselidar,0, . . . ,Poselidar,t].

A robust Euclidean space loop closure detection method
and a BA (Bundle Adjustment) back-end optimization method
are incorporated to reduce the cumulative error of LiDAR
inter-frame matching. In loop closure detection method,
LiDAR scans are compress as key frames. And current scan
will be additionally compared with key frames to detect loop
closure. Construct a cost function for the positional constraints
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Figure 2. Algorithm of GNSS constrained SLAM for reference map.

between adjacent sub map and between loop closure frames.
And the cost function is solved by nonlinear optimization of
Gaussian Newton’s method to correct accumulated errors.

3.2. Loosely coupled trajectory estimation of POS

In order to obtain the position of carrier in global coordin-
ates, we take a combined navigation method based on GNSS–
RTK/IMU. This is a popular solution for high precision traject-
ories in open scenes. The structure is shown in the following
figure 3.

It combines GNSS–RTK and IMU data based on two-
filter smoothing method to obtain motion state x including the
carrier pose pw in the global coordinate system. As a pop-
ular sensor data fusion method, information of GNSS–RTK
and IMU are sent to the extended Kalman filter (EKF) and

backward Kalman filter (BKF) respectively, and their pro-
cess noises are obtained independent.Weighted average of two
error is used to correct the motion state x̂Sk.

In forward recursive Kalman filter, the process noises δxk
andmeasurement noise δzk are linearized to correct the motion
state.

The prediction and update of the forward recursive Kalman
filter obtain optimal estimation of process noise through iter-
ative processing.

To reduce inversion, the following definitions of variables
are added as MB = P−1

B , δyB = P−1
B δxB. BKF represents the

inverse dynamic process of motion noise from the current time
tk to the previous time tk−1.

According to the estimation of error state by EKF and
BKF, the optimal error estimation is obtained by weighting
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Figure 3. Trajectory estimation by EKF filter and RTS smooth.

and smoothing them to correct the motion state, and the error
covariance is not greater than the covariance of individual EKF
or BKF, as equations (3)–(5):

PSk = (M+
Fk+M−

Bk)
−1 (3)

x̂Sk = x̂+Fk− δx̂Sk (4)

δx̂Sk = PSkδ
̂̄y−Bk . (5)

The above plus and minus signs in subscript represent the
prediction and update of noise.

3.3. Optimization method based on map point matching

The coordinate of LiDAR scan is transferred from {l} to {b},
and a map in global coordinate is derived from carrier pose in
continuous time referenced in the second step, with the fol-
lowing equation (6):

pw = pl ∗Rbl ∗Rwb,t. (6)

The time delay from LiDAR to POS is synchronized by
GNSS–PPS. And the optimal calibration parameters Rbl is
estimated by nonlinear optimization method. The residual
error construct as equation (7) with the coordinate difference
of associated points between global map and LiDAR scan.

e= Rwm ∗ pm+Twm −Awb,t ∗ (Abl ∗ pl+Tbl )−Poseimu,t. (7)

Gauss–Newton iteration method is used to minimize the
deviation of the point coordinates between LiDAR and POS to
estimate the optimal calibration parameters, as equation (8):

e= B ∗ δX+L. (8)

These parameters in the above correspond to equations (9)
and (10):

B= pl ∗Rbl (9)

L=−pm ∗Rwm. (10)

According to the principle eTPe=min of least squares, the
following equations (11) and (12) can be listed:

BTPBδX+BTPL= 0 (11)

δX=−(BTPB)−1BTPL. (12)

4. Experiments

4.1. Equipment and environment

As shown in figure 4, we verify the effectiveness of the above
method by the self-developed MLS. It composed of the fol-
lowing modules: Bynav A1-H3 is a GNSS/IMU integrated
navigation module, which adopts GNSS dual antenna mode
and collects external real-time differential positioning service.
VLP-16 supports synchronization of GNSS–PPS and provides
LiDAR scan with 16 line resolution. Other parameters of the
equipment are shown in the table 1.

We achieve a non-linear optimization framework rely on
Ceres Solver and the visualization of trajectory and point cloud
map rely on the open source software Cloud-Compare.

We applied our proposed method for calibrating a MLS on
a roof terrace, as shown in figure 5. The terrace is a rectangular
platform; the width is 20 m and length is 40 m, which can be
considered a complicated case, including many detailed struc-
tures, like the open ground, ceiling, flat wall and protruding
pillars.

4.2. Experimental

The multi-source sensor based on software level time syn-
chronization method may get the wrong local optimal value
due to the lack of time benchmark. To guarantee the reliability
of the test, the satellite timestamp is added to LiDAR and IMU
by GNSS–PPS at the hardware level. It is a direct matching
solution suppose by VLP-16. VLP-16 contains a time counter
based on the internal crystal oscillator. When VLP-16 receives
a valid data from Bynav A1-H3, the counter is adjusted on
each PPS to keep the internal time consistent with UTC time,
and the time stamp will be carried when the data packet is
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Figure 4. Sensors are rigidly fixed on the trolley platform.

Table 1. Equipment type.

Type Model Frequency

IMU Bynav A1-H3 100 Hz
LiDAR VLP-16 10 Hz
GNSS Dual antenna 1 Hz

Figure 5. The scene open-air platform at night.

broadcast. The time delay of the system dropped to 1 ms.
The acquisition frequency of LiDAR and inertial measure-
ment unit is different. We interpolate the IMU trajectory with
high acquisition frequency to achieve point by point timestamp
alignment.

As shown in figure 6, the carrier made a highly maneuver-
able detour on the ground to fully converge the error of IMU.
GNSS used RTK positioning mode to obtain centimeter-level
precision global positioning results with frequency of 1 HZ in
the whole process. LiDAR scanned at a frequency of 10 Hz.
In order to ensure the accuracy of subsequent matching, point
clouds with scanning distance of 0.5 m–50 m are reserved as
feature points. We selected four segment scans from the con-
tinuous measurement data calibration. Each segment contains

100, 300, 500, and 600 frame scans, respectively. Calibration
is described in chapter 3. First, calculate the reference map
according to GNSS–LiDAR SLAM to obtain key points. For
single frame LiDAR data, key points match the reference map
to calculate calibration parameters; Calibration parameters are
iteratively optimized frame by frame using selected LiDAR
data. Based on the experimental data, the calibration method
is analyzed from the visual mapping effect and accuracy.

5. Results and discussion

Limited by the scanning principle, LiDAR motion measure-
ment is inevitably affected by motion distortion. In order
to minimize the influence of such irrelevant factors on the

7
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Figure 6. Carrier track and mapping, where in green dot represents the point cloud map of ground LiDAR, and black line represents the
track of carrier in reference map; the blue and magenta dots are the result of MLS mobile mapping.

Figure 7. Mapping results. (a) It is a point cloud map generated by rough spatial relations obtained by external measuring instruments, and
(b) is a point cloud map after calibration.

mapping results, we selected a trolley with a moving speed of
less than 1 m s−1 as the carrier, and selected the following 400
frame scanning data with a trajectory close to a straight line
from the scanning results to calculate the point cloud map. As
shown in figure 7, the mapping effect before and after calibra-
tion has been significantly improved, which proves the effect-
iveness of this calibration method.

The state-of-the-art method LiDAR-align is not suitable
for vehicle-mounted sensors because it requires highly non-
planar motions [38]. In order to evaluate the performance of
the algorithm, we compared proposed method with LI-Calib
based on absolute [31]. TLS (land laser scanning) with an
accuracy of 2 mm is used to collect calibration field data, and
use GPS-RTK static positioning to obtain the global coordin-
ates of reference points in the scene. The projection paramet-
ers from the reference point cloud to the global coordinates are
obtained through the reference point projection. By comparing
the absolute errors of the corresponding feature points of TLS
and MLS, the numerical accuracy of the proposed calibration
method and LI-Calib are evaluated.

As shown in figure 8, the static ground data (a) were
scanned by TLS and ground feature points, such as ground

bumps, wall corners, edge lighting, are extracted. Through
GNSS–RTK static observation, measure the global coordin-
ates of the target ball center and uniform ground feature
points as much as possible, so as to realize the splicing
between maps. Select the uniformly distributed target ball
center and feature points in the map, corresponding to their
local coordinates and global coordinates. The transform-
ation parameters of the coordinate system are calculated
through seven homonymous points, and the global coordin-
ates (b) of the static observation point cloud map are obtained.
The average residual error of the point transformation is
3.44 ∗ 10 ∧ (−4) m ∧ 2, which is higher than the accur-
acy of the scanner used in the mobile measurement sys-
tem and serves as an absolute reference for the accuracy
evaluation experiment.

In order to compare the calculation results of different solu-
tion data, we selected four representative data sets in the com-
plete path as shown in figure 9. The calibration parameters in
table 2 below are calculated respectively. Due to the first group
data contains 100 frames scans and the track is short, the LI-
Calib method cannot get a convergence calibration parameter
and is excluded.

8
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Figure 8. Reference point cloud map.

Figure 9. (a) selects 100 frame data with short moving distance, (b) is an arc of 200 frames, (c) the length is increased to 300 frames and
there is a segment with small turning radius, and (d) further increases the solution data to 400 frames.

Table 2. Calibration parameters of LiDAR and POS.

Trans X Trans Y Trans Z Pitch Roll Yaw

100 0.034 0.009 0.001 −0.327 −0.463 −1.604
— — — — — —

300 0.023 0.252 −0.003 −0.264 0.108 −3.237
0.041 0.025 −0.002 −0.350 0.208 −1.605

500 0.016 0.208 −0.005 −0.327 0.249 −2.271
0.020 0.025 −0.006 −0.283 0.105 −2.835

600 0.014 0.197 −0.005 −0.453 0.267 −1.773
0.005 0.210 −0.005 −0.347 0.210 −3.305

In order to intuitively compare the scanning accuracy, we
superimpose the mapping results after spatial correction with
the TLS data, and the results are shown in figure 10.

Because VLP-16 collects 300 000 points per second, it is
far greater than the number of GNSS–RTK static positioning
points. So we manually selected the corresponding key points

9
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Figure 10. Overlay of reference map and MLS measurement results. The cyan point cloud is the high-precision reference map of TLS, and
the orange point cloud is the mapping result of MLS from proposed method and the hyacinthine point cloud is the mapping result of MLS
from LI-Calib.

Table 3. RMS of manually extracted feature points from MLS and
reference map.

RMS (a) (b) (c) (d)

Our 0.37728 0.163094 0.0575 0.3183
LI-Calib — 0.30753 0.1875 0.3078

in the mobile scanning map and the reference map respect-
ively, made a difference in the coordinates of the correspond-
ing key points, and obtained the matching accuracy index
RMS using the least square method, as shown in the following
table 3.

Based on above experiments, the accuracy of the method
proposed in this paper is verified. Analysis of this method
as follows. It can get rough calibration results in (a) of short

trajectory, and (b) adds curve motion on this basis, the system
state error is constrained, the error decreases, and the mapping
accuracy is greatly improved. With the continuous increase of
(c) data, the calibration accuracy is further improved until (d)
data contains rapid rotation, and the accuracy starts to decline.

Based on the principle of the calibration method proposed
in this paper, only two frames of data that can be correlated
are required at least, but the matching results of two frames are
unreliable due to the existence of MLS system internal error.
On the one hand, the single scan point error of LiDAR has
randomness. The LiDAR error conforms to the normal distri-
bution, and the accumulated scan frame can effectively reduce
the random error of scanning. On the other hand, the match-
ing degree of each frame in the SLAMmethod is random.With
the increase ofmatching data, data with lowmatching progress
will inevitably be introduced, which will reduce the accuracy

10



Meas. Sci. Technol. 34 (2023) 085201 X Fan et al

of the sub map used for matching and cause the decline in
accuracy. In the future, the method of gross error detection will
be introduced, and the method with low matching degree will
be removed before the calibration parameters are calculated to
further improve the algorithm.

6. Conclusion

For low-cost MLS system, this paper proposes an incremental
online multi-sensor spatial parameter calibration method. This
method improves the effect of POS system error on calibration
results and overcomes the limitation of LiDAR feature miss-
ing. The basic principle of this method is: Constructing sub
map by LiDAR SLAM to realize frames data combination.
Then calculating the precise motion trajectory of the sensor
by GNSS/IMU integrated navigation method. While the calib-
ration parameters is get by matching LiDAR frames data with
the sub map, and is fine-tuned by optimizing as the data grows.
The RMS of the map in experimental results is 0.57 cm, which
is smaller than inherent noise of VLP-16. It shows that this
method can significantly improve the performance ofMLS and
make it meet the application requirements of mobile mapping.
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