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ABSTRACT 
 
Aims: The aim of this study is modeled the ratios of export to imports data in Turkey by using 
nonparametric regression methods. 
Study Design: This was Spline, Bayesian Spline and Penalized Spline Regression modeling study. 
Place and Duration of Study: Turkish Statistical Institute. The ratios of export to import data 
consist of sixty-seven month periods (May 2007 to November 2012). 
Methodology: In this study, distribution graph of ratios of export to import between 2007 to 2012 
years in Turkey is modeled using spline and Bayesian spline regression methods. The results of 
these regression models are compared. Then Penalized spline regression is examined with 
Bayesian approach and models are established for the different values of the smoothing parameter 
which obtained using prior distributions. We proposed a new smoothing parameter using the 
information content of normal distribution. Under the assumption of the coefficients of basis 
functions are normally distributed, the new smoothing parameter (λ*) is defined as the ratio of the 
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information content of normal distribution. 
Results: When we compared the spline and Bayesian spline regression models, both models were 
shown similar characteristics. The coefficients of β and b parameter vectors were very similar and 
the coefficients of determination of two models were obtained same. But, the standard errors of 
parameter estimations of Bayesian spline regression were smaller than spline regression models. 
For this reason, we conclude that Bayesian spline regression model parameter estimation is more 
reliable then spline regression model. We also compared penalized Bayesian spline models using 
different penalty terms. The different models on the same data set have been set up using different 
value of λ. From the results, observe that the absolute value of the coefficients of basis functions 
decrease as the penalty term 1/λ increase. Also, the coefficient of determination of the model 
gradually diminishes. In addition, we proposed a new smoothing parameter using the information 
content of normal distribution. According to results, small changes in λ* have made drastic changes 
in smoothing of the model. So, we conclude that λ* is more sensitive than traditional smoothing 
parameter (λ).  
Conclusion: We investigated the three most common nonparametric regression models, which are 
called spline, Bayesian spline and penalized Bayesian spline, discussing advantages and 
disadvantages of them using real data. We conclude that Bayesian spline regression model 
parameter estimation is more reliable than other models. In addition, we conclude that λ* is more 
sensitive than traditional smoothing parameter (λ). 
 

 
Keywords:  Spline regression; bayesian spline regression; penalized bayesian spline regression; 

smoothing parameter. 
 

1. INTRODUCTION 
 
There are basically two different philosophical 
approaches in science statistics. The classical 
(Frequentist) approach and Bayesian approach. 
In the past, while the Bayesian approach has 
always been powerful, it has not always been 
practical. This is due in large part to the relatively 
high computational overhead of performing the 
integrations and summations which lie at the 
heart of the Bayesian approach. In recent years 
Bayesian methods have become widespread in 
many areas such as data analysis and 
regression analysis. The availability of fast 
computers allows the required computations to 
be performed in reasonable time, and thereby 
makes the benefits of a Bayesian treatment 
accessible to an ever broadening range of 
applications.  
 
The need for parsimonious statistical models is 
well-known and parametric models are often a 
convenient method for achieving parsimony. 
However, nonparametric models exist because 
there are many examples where parametric 
models do not provide a suitable fit to the data. 
The main advantage of nonparametric over 
parametric models is their flexibility. In the 
nonparametric framework the shape of the 
functional relationship between covariates and 
the dependent variables is determined by the 
data, whereas in the parametric framework the 

shape is determined by the model. 
Semiparametric modelling allows a researcher to 
have the best of both worlds: the parametric and 
the nonparametric. Those features of the data 
that are suitable for parametric modelling are 
modeled that way and nonparametric 
components are used only where needed.  
 
The Bayesian inference for nonparametric 
models enjoys the flexibility of nonparametric 
models and the exact inference provided by the 
Bayesian inferential machinery. It is this 
combination that makes Bayesian nonparametric 
modeling so attractive [1,2]. In this work, we 
address the problem of nonparametric and semi 
parametric regression methods in the framework 
of the Bayesian approach. The flexibility of these 
methods has a great advantage in the modeling. 
Nonparametric and semi parametric regression 
methods have been discussed extensively in the 
statistics literature. Some of the studies for these 
regression models can be listed as 
[3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19]. In 
this study, distribution graph of ratios of export to 
import between May 2007 and November 2012 is 
modeled using spline and Bayesian spline 
regression methods. The model is constructed 
using R Language programming. The results of 
these regression models are compared. Then 
Penalized spline regression is examined with 
Bayesian approach and models are established 
for the different values of the smoothing 
parameter which obtained using prior 
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distributions. Finally, we proposed a new 
smoothing parameter using the information 
content of normal distribution. Under the 
assumption of the coefficients of basis functions 
are normally distributed, the new smoothing 
parameter (λ*) is defined as the ratio of the 
information content of normal distribution. 
 

2. MATERIALS AND METHODS  
 
2.1. Bayesian Regression 
 
In the classical regression, the distribution of X is 
assumed to provide no information about X the 
conditional distribution of y given X [20]. But 
Bayesian regression, the distribution of the 
independent variables is included the likelihood 
function. For this reason regarding distribution of 
the independent variable is eliminated with 
proportional expression. As a result, Bayesian 
regression does not deal with the distribution of 
the independent variable. The mathematical 
presentation of this situation is given below. 

 
Let ψ denote the distribution of X. If prior 
distribution is independent, β1, β2,…, βk , σ

2
 and 

ψ, we can write this equation  
   �(�, �, ��) = �(�)�(�, ��)                        (1) 
 

Then, posterior distributions can be divided two 
factors,  

 �(�, �, ��|�, 
) = �(�|�)�(�, ��|�, 
)   (2) 
 

Since the distribution of the independent 
variables is included the likelihood function, we 
can write proportional equation is given below 

  
 �(�, �, ��|�, 
) = �(�|�)�(�, ��|�, 
)  (3) 
 
Therefore, Bayesian regression is not interested 
with the distribution of vector X. In linear 
regression, the model that relates observations 
and parameters is written 

    
 
|�, ��, �~�(��, ���)                                        (4) 

 
and 
 

�(
|�, ��, �) = ( �
����)�/�exp �− �

��� (
 − ��)′(
 − ��)�  (5) 

 
Bayesian regression analysis begins with a prior 
distribution. Since a non informative prior 
distribution assigns the same probability to each 

possible value of the parameters, it is most 
commonly used in linear regression. A non 
informative prior distribution that is commonly 
used for linear regression is 
 

 �(�, �) ∝ �
�                                            (6) 

 
We are obtained the posterior distribution of β 
given σ

2
 using the likelihood function and prior 

distributions. The posterior distribution is given in 
equation (7). 

  
�(�, �|
, �) ∝ �

�� ! exp �− �
��� "#$� + &� − �'(′�′�&� − �'()�       (7) 

 

where #*� = (
 − ��)′ (
 − ��) and # = + − ,. 

 
The marginal posterior probability distribution of 
β is derived by integrating the posterior 
distribution of β given σ

2 
is as follows. 

   
�(�|
) = - �(�, �|
).� = - �(�|�, 
)�(�|
).�∞

/
∞

/     (8) 

 

�(�|
) ∝ [1 + �
2 (� − �')′ 3′3

4� (� − �')]6(7 8)
�         (9) 

    
A similar process can be follow for σ

2
. The 

marginal posterior distribution of σ
2
 (i.e. the 

integral over all possible values of β of the joint 
distribution of β and σ

2
) is 

 

�(�|
) = - �(�, �|
).�∞

6∞                         (10) 

 

 �(�|
) ∝ �
�8 ! exp 9− 24�

��� :                        (11) 

 

2.2 Spline Regression 
 
Spline Regression model is a semiparametric 
regression method that reveals relationships 
between variables which can be called. This 
regression method is generally preferred when 
classical methods like linear, quadratic and cubic 
are not good results. Nowadays, it is used often 
from time dependent data sets to economy fields. 
The following are the general form of the spline 
regression model. 
 

;(<=) = �/ + ��<+ . . . +�?<? + ∑ AB(< − CB)D?EBF�  (12) 

 
Where CE are fixed and known knots, Gare the 

number of knots, �/, ��, … , �?,,A�, A�, … , AE are 

unknown regression coefficients in the model. 
Also, � indicate the degree of spline regression 
model and (x-tk)+

p
 statement is included as basis 

function in the model. An important characteristic 
of function (x-tk)+

p
 is that equal to 0 value as 
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minimum and it is positive definite. If the value of 
independent variable is smaller than knot value; 
the value of function will be equal to 0. 
Otherwise, if the value of independent variable is 
greater than knot value, the value of function will 
be equal to the degree of pth of the value of 
independent variable minus knot value [21].

 

 
Spline regression method disintegrates the data 
set with respect to knots and a function is 
obtained for each segment. It continues to 
analysis by way of these segments. Then, the 
degree of the spline is determined such as linear, 
quadratic; and analysis is performed. 
 

2.3 Penalized Spline Regression 
 
Penalized spline regression models are a 
popular statistical tool for curve fitting problems 
due to their flexibility and computational 
efficiency. It is a nonparametric regression 
technique that relies on principles of statistical 
theory to minimize the possibility of overfitting [2]. 
The basic idea behind penalized regression 
methods is to quantify the notion of roughness of 
a curve through a suitable penalty functional and 
then to pose the estimation problem in a way that 
makes explicit the necessary compromise 
between bias and variability in curve fitting. 
Spline regression needs to choose the number of 
knots and their positions but estimation is 
sensitive to this choice. Penalized spline 
regression is used a penalization parameter (λ), 
which is related to the fluctuations of the 
regression function, to reduce the impact of this 
choice. Consider the regression model; 
 
= = ;(<=) +  I=                                            (13) 

 
Where m(.) is a smooth function it is defined as, 
 ;(<; K) =  �/ + ��� + ∑ AL(< − G=L)DELF�      (14) 

 
Where K = (�/, ��, A� … , AE). The aim of the 
regression analysis to estimate the regression 
function M, where N(O|�) = ;(<). Here, we 
directly solve for the function M that minimizes the 
following objective function, a penalized version 
of the least squares objective: 
 

∑ P
= − ;(<=)Q��=F� +  �
R KST                         (15) 

 
The first term captures the fit to the data, while 
the second penalizes curvature. Here, U is the 
smoothing parameter, the selection of theU 
smooth parameter is of great importance in 

penalized spline regression. The case U =0 corresponds to the unconstrained case. 
Increasing the value ofUdown weights the 
influence of the knots and gives a less rough fit. 
If we takeU to be very large, then the effect of the 
knots diminishes and the least-squares line is 
approached. There exist some methods for 
choosingU and the knot locations from the data. 
 
In (15), D is a known positive semi-definite 
penalty matrix. It is defined as follows; 
 

T = W0(?D�)×(?D�) 0(?D�)×E
0E×(?D�) Σ

6� Y                          (16) 

 

3. RESULTS AND DISCUSSION 
 
Export and import constitute a country’s foreign 
trade. Assessment can be made about the 
country’s economic situation by examining 
foreign trade statistics. One of these statistics is 
the ratio of export to import. In this study, 
monthly changes in ratios of export to import of 
Turkey between the years 2007-2012 were 
examined with spline, Bayesian spline and 
penalized Bayesian spline models. Examining 
the distribution chart of data, ratios of export to 
import show a wavy distribution between the 
years 2007-2012. In models where the 
distribution is wavy, it is more advantageous to 
use nonparametric and semiparametric 
regression rather than a single model.  
 

In this study, monthly changes in ratios of export 
to import of Turkey between the years 2007-2012 
were examined with spline, Bayesian spline and 
penalized Bayesian spline models. This chapter 
presents an application to compare the 
performance of spline, Bayesian spline and 
penalized Bayesian spline models on this data 
set.  
 

Our aim compares the performance of spline 
regression and Bayesian Spline regression 
model in terms of their value of coefficient of 
determination. So is to demonstrate how to use 
the penalty term in Bayesian approach and make 
a new proposal on penalty term. 
 

The models are illustrated with an application to 
ratios of export to import data set given in Turkish 
Statistical Institute (TUIK). These data consist of 
sixty-seven month periods (May 2007 to 
November 2012).In this model the dependent 
variable (Y) and independent variable (X) are 
denoted by the ratios of export to import and 
months, respectively. 
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To knots to determine, Adaptive Spline 
Regression method was used. With this method, 
knots that minimize the lack of fit and the number 
of its are determined. Thus, in this data set we 
reached interior knots given by (17, 49, 53, 57) 
and the degree of the spline is one. Using the R 
code and then uses least squares to construct 
the regression model for ratios of export to import 
data set. The results of spline regression are 
given in Table 1. 
 
From the Table 1, intercept, the coefficient of 
independent variable and coefficient of the basis 
functions in the model were obtained. Coefficient 
of determination (R-Squared) for this model is 
obtained 0.6691. All of these coefficients are 
statistically significant. According the value of F-
statistic, the model is valid. The graph of this 
model is given in Fig. 1. 
 
Then, we applied Bayesian spline regression 
analysis for same data set. Prior distributions are 
determined for each parameter which is 
considered as random variables in the model. 
Parameters and it’s a prior distributions are 
summarized in (17). 
 
= = �/ + ��< + ∑ AB(< − CB)D+ I=ZBF��/, ��~�(0, 10[)

AB~�(0, 10[)
          

I=~�(0, �\�)
(17) 

 
 
The different prior distribution can be selected for 

variance in the literature. In this analysis, the 
distribution of precision parameter τε= (σε )

-2
was 

taken a gamma distribution. This is because 
variance will have the inverse gamma distribution 
conjunction with select the gamma distribution for 
precision parameter and conjugate structure 
have created while getting the posterior 
distribution. Using the WinBUGS code then 
construct the Bayesian spline regression model 
for ratios of export to import data set. There are 
three different stages of WinBUGS program. 
These are, writing code for interest model, 
loading data and creating the initial values for the 
parameters respectively. The burn-in period, 
which was used to eliminate the effect of the 
initial values, was consisted 2000 iterations in 
this example. The reason is that the number of 
iterations used in literature reviews based on. 
The results of Bayesian spline regression are 
given in Table 2. 
 
The values related to the posterior distribution 
such as posterior mean, posterior median, MC 
error, 2.5% and 97.5% quantiles were obtained. 
MC error is used to decide the parameters 
convergence or not. If this value is smaller than 
0.05 we can decide parameter convergence. MC 
values of all parameters in Bayesian Spline 
Regression model is smaller than 0.05. So we 
were decided that parameters of the models 
convergence. The R-Squared of the model was 
obtained 0.6697. The graph of Bayesian spline 
regression model is given in Fig. 2. 
 

 
Table 1.  The results of spline regression 

 
Coefficients Estimate Std. error t value Pr(>|t|) 
(Intercept) 70.5783 2.0850 33.850 <2e-16*** X -1.0270 0.1634 -6.285 3.86e-12*** b� 1.7940 0.2119 8.466 6.91e-09*** b� -5.7076 0.8489 -6.723 6.91e-09*** b_ 7.2988 1.6698 4.371 4.89e-05*** bZ -3.1246 1.2499 -2.500 0.0151* 

Residual standard error: 4.475 on 61 degrees of freedom; Multiple R-squared:  0.6691, Adjusted R-squared:  0.6419; F-
statistic: 24.66 on 5 and 61 DF, p-value: 1.698e-13 

 

Table 2.  The results of bayesian spline regression 
 

Node Mean Sd MC error 2.5% Median 97.5% Start Sample 
Beta[0] 70.57 1.831 0.0129 66.93 70.57 74.16 2001 20000 
Beta[1] -1.027 0.144 0.001075 -1.307 -1.028 -0.742 2001 20000 
b1 1.795 0.187 0.001448 1.427 1.796 2.16 2001 20000 
b2 -5.703 0.750 0.005345 -7.175 -5.704 -4.2 2001 20000 
b3 7.285 1.471 0.01035 4.343 7.279 10.16 2001 20000 
b4 -3.113 1.097 0.007845 -5.294 -3.111 -0.943 2001 20000 
Sigmaeps 3.924 0.315 0.002527 3.364 3.903 4.602 2001 20000 
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When we compared the two regression models, 
both models were shown similar characteristics. 
The coefficients of β and b parameter vectors 
were very similar and the coefficients of 
determination of two models were obtained 
same. Where there are lots of data such as this 
data set, Bayesian and classical approach 
eventually results in the same conclusion. But in 
this comparison, the standard errors of 
parameter estimations of Bayesian spline 
regression were smaller than spline regression 
models. For this reason, we conclude that 
Bayesian spline regression model parameter 
estimation is more reliable then spline regression 
model. 
 
Akaike information criterion (AIC) [22] is the one 
of the most popular information criteria in the 
literature. These information criterias are often 
used model selection and variable selection in 
Bayesian analysis. To investigate this further we 
computed the value of the AIC for the spline 
regression model and for the Bayesian spline 
regression model results are presented in Table 
3. The results show that the spline regression 
model provides a better fit to the data in terms of 
lower AIC. 
 
The penalty term, λ=(σb

2
) ⁄ (σε

2
) which was 

restrict fluctuations of m̂ was added to Bayesian 
spline model. The coefficient of determination 
and regression coefficients of this model were 

obtained for different penalty term 1/λ. The 
results are given in Table 4. 

 
From the Table 4, observe that the absolute 
value of the coefficients of basis functions 
decrease as the penalty term 1/λ increase. Also, 
the coefficient of determination of the model 
gradually diminishes. Another point is that if 1/λ 
is large, then the effect of the knots diminishes 
and the model approaches to the least-squares 
line. The selection of the smooth parameter 
λ=τε/τβ=(σb

2
)⁄(σε

2
) is of great importance in 

penalized Bayesian spline regression. The small 
value of λ corresponds over smoothing. The 
large value of λ corresponds under smoothing. 
 
In this study, we proposed a new smoothing 
parameter using the information content of 
normal distribution. Under the assumption of the 
coefficients of basis functions are normally 
distributed, the new smoothing parameter is 
defined as the ratio of the information content of 
normal distribution,  
 

(λ
*
=log2[σb(2πe)

(1/2)]
]/log2[σε (2πe)

(1/2)]
). 

 
We calculated the coefficient of determination 
and regression coefficients for penalized 
Bayesian regression model to investigate the 
performance of the new smoothing parameter. 
The results are given in Table 5. 

 

 
 

Fig. 1. The spline regression model of data using the manually-selected knots (17, 49, 53, 57) 
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Fig. 2. The bayesian spline regression model of data using the manually-selected knots (17, 49, 

53, 57) 
 

Table 3. The values of AIC for spline and bayesian spline regression 
 

Model AIC 
Spline regression 398.637 
Bayesian spline regression 406.726 

 
Table 4. Penalized bayesian spline regression model for different λ 

 
Parameter 1/λ=0.85 1/λ=2.25 1/λ=17.1 1/λ=267.6 
b1 1.736 1.689 1.47 0.764 
b2 -4.583 -4.239 -2.456 -0.755 
b3 5.518 4.311 1.352 -0.146 
b4 -2.003 -1.302 -0.003 -0.006 
σε

2
 20.912 21.669 58.339 357.588 

σb
2
 24.581 9.610 3.411 1.336 

R2 0.612 0.575 0.458 0.211 

 
Table 5. Penalized Bayesian spline regression model for different λ* 

 
Parameter 1/λ*=1 1/λ*=1.164 1/λ*=1.695 1/λ*=2.79 
b1 1.726 1.692 1.472 0.7641 
b2 -4.737 -4.212 -2.465 -0.7558 
b3 5.293 4.257 1.364 -0.1454 
b4 -1.876 -1.273 -0.006 -0.0057 
σε

2
 21.169 21.734 58.125 356.454 

σb
2
 21.603 9.437 3.433 1.336 

R2 0.604 0.578 0.460 0.212 

 
According to Table 5, small changes in λ

*
 have 

made drastic changes in smoothing of the model. 
So, we conclude that λ

*
 is more sensitive than λ. 

If the amount of information contained of the 
distribution of basis functions increases, the 
value of 1/λ

*
 decreases. It corresponds under 

smoothing. If the information contained of the 
distribution of error term decreases, the value of 
1/λ

*
 increases. This situation corresponds over 

smoothing. 
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4. CONCLUSION 
 
This study has been mainly motivated by the 
increased research activity in applied and 
methodological aspects of the nonparametric 
regression approach. We presented the three 
most common nonparametric regression models, 
which are called spline, Bayesian spline and 
penalized Bayesian spline, discussing 
advantages and disadvantages of them 
representations. In addition, we proposed a new 
smoothing parameter using the information 
content of normal distribution for penalized 
Bayesian spline regression model. The data 
application included in this study concerned 
ratios of export to import data set given in Turkish 
Statistical Institute (TUIK). Application is used to 
compare the performance of the regression 
models to that of the splines and different penalty 
terms. 
 
When we compared the spline and Bayesian 
spline regression models, both models were 
shown similar characteristics. The coefficients of 
β and b parameter vectors were very similar and 
the coefficients of determination of two models 
were obtained same. But, the standard errors of 
parameter estimations of Bayesian spline 
regression were smaller than spline regression 
models. For this reason, we conclude that 
Bayesian spline regression model parameter 
estimation is more reliable then spline regression 
model. AIC is often used model selection and 
variable selection in Bayesian analysis. To 
investigate this further we computed the value of 
the AIC for the spline regression model and for 
the Bayesian spline regression model. The 
results show that the spline regression model 
provides a better fit to the data in terms of lower 
AIC. 
 
We also compared penalized Bayesian spline 
models using different penalty terms. The 
different models on the same data set have been 
set up using different value of λ. From the 
results, observe that the absolute value of the 
coefficients of basis functions decrease as the 
penalty term 1/λ increase. Also, the coefficient of 
determination of the model gradually diminishes. 
Another point is that if 1/λ is large, then the effect 
of the knots diminishes and the model 
approaches to the least-squares line. The 
selection of the smooth parameter λ is of great 
importance in penalized Bayesian spline 
regression. The small value of λ corresponds 
over smoothing. The large value of corresponds 
under smoothing. 

In this study, we proposed a new smoothing 
parameter using the information content of 
normal distribution. Under the assumption of the 
coefficients of basis functions are normally 
distributed, the new smoothing parameter (λ*) is 
defined as the ratio of the information content of 
normal distribution. According to results, small 
changes in λ* have made drastic changes in 
smoothing of the model. So, we conclude that λ* 
is more sensitive than traditional smoothing 
parameter (λ). If the amount of information 
contained of the distribution of basis functions 
increases, the value of λ* decreases. It 
corresponds under smoothing. If the information 
contained of the distribution of error term 
decreases, the value of 1/λ* increases. This 
situation corresponds over smoothing. We 
conclude that the proposed smoothing parameter 
provides a better insight into the different levels 
of penalization terms that imposed the smoothing 
for spline curve. This can be useful for prior 
distribution inflection within a Bayesian inference 
framework. 
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