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Abstract

The nature of solar wind turbulence at large scale is rather well understood in the theoretical framework of
magnetohydrodynamics. The situation is quite different at subproton scales where the magnetic energy spectrum
measured by different spacecraft does not fit with the classical turbulence predictions: a power-law index close to
−8/3 is generally reported, which is far from the predictions of strong and wave turbulence, −7/3 and −5/2,
respectively. This discrepancy is considered as a major problem for solar wind turbulence. Here, we show with a
nonlinear diffusion model of weak kinetic Alfvén wave turbulence where the cascade is driven by local triadic
interactions that a magnetic spectrum with a power-law index of −8/3 can emerge. This scaling corresponds to a
self-similar solution of the second kind with a front propagation following the law kf∼(t*−t)−3/4, with t<t*.
This solution appears when we relax the implicit assumption of stationarity generally made in turbulence. The
agreement between the theory and observations can be interpreted as an evidence of the nonstationarity of solar
wind turbulence at subproton scales.
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1. Introduction

The solar wind is a collisionless plasma characterized by
fluctuations of its primary fields over a huge range of
frequencies. One of the most spectacular properties reported
from in situ measurements is a spectrum of magnetic
fluctuations from frequencies f∼10−6 Hz to ∼100 Hz (Kiyani
et al. 2015) with a spectral break around fb∼1 Hz (Behan-
non 1978; Denskat et al. 1983; Leamon et al. 1998; Bourouaine
et al. 2012; Chen et al. 2014). This break separates the
magnetohydrodynamic (MHD) scales ( f<fb) from the sub-
proton scales ( f>fb) where ions and electrons are decoupled,
and where signatures of kinetic Alfvén waves (KAWs) can be
found (see, e.g., Sahraoui et al. 2010; Salem et al. 2012; Chen
et al. 2013). Note that signatures of other types of waves are
also found (see, e.g., Narita et al. 2011; Roberts & Li 2015).
Despite several years of studies, the nature of solar wind
turbulence at subproton scales remains under debate (in this
Letter we restrict our attention to scales greater than the
electron gyroscale). A reason is that the magnetic energy
spectrum reported is generally close to f−8/3 (Alexandrova
et al. 2012; Podesta 2013; Sahraoui et al. 2013), which is far
from the classical predictions of strong and (weak) wave
turbulence (Biskamp et al. 1996; Galtier & Bhattacharjee 2003;
Galtier 2006a, 2006b; Schekochihin et al. 2009; Voitenko & de
Keyser 2011; Galtier & Meyrand 2015; Cerri et al. 2016;
Passot et al. 2018) for which the power-law indices are −7/3
and −5/2, respectively.

A debate is also developed around the mechanisms of energy
dissipation. Although it seems necessary to heat the inter-
planetary collisionless plasma to explain its nonadiabatic
cooling (Richardson et al. 1995), the precise mechanism that
involves kinetic effects is still not totally understood. For
example, we do not know if some dissipation occurs in the
inertial range where a spectrum close to f−8/3 is found. A
possibility is that the latter power law is a spectrum predicted
by a classical turbulence theory modified by some kinetic
dissipation (see, e.g., Passot & Sulem 2015). Note that several

studies have been devoted to the question of solar wind heating
and the evaluation of the energy cascade rate at MHD scales,
which can be seen as a proxy for measuring the heating rate
(see, e.g., Sorriso-Valvo et al. 2007; Vasquez et al. 2007;
MacBride et al. 2008; Osman et al. 2011; Banerjee et al. 2016;
Hadid et al. 2017).
The Letter is organized as follows. In Section 2 we introduce

a model of KAW turbulence, first derived by Passot & Sulem
(2019), and its phenomenology. In Section 3 we present its
nonstationary solution, which is a self-similar solution of the
second kind. The numerical validation of our theory is given in
Section 4. A discussion is given in Section 5 about the
applications to solar wind turbulence at subproton scales. A
conclusion is finally proposed in the last section.

2. Model of KAW Turbulence

Nonlinear diffusion models are often used in the analysis of
both strong (Leith 1967; Connaughton & Nazarenko 2004;
Matthaeus et al. 2009; Thalabard et al. 2015) and weak wave
turbulence (Zakharov & Pushkarev 1999; Boffetta et al. 2009;
Galtier et al. 2019). These are mostly built by using
phenomenological arguments, but a rigorous treatment is
sometimes possible in the regime of wave turbulence. The
known examples are nonlinear optics (Dyachenko et al. 1992)
and MHD (Galtier & Buchlin 2010). In this case, the nonlinear
diffusion equations are derived by taking the strongly local
interaction limit of the kinetic equations; the latter equations
themselves being derived in a systematical way. Recently, such
a model has been proposed by Passot & Sulem (2019) for
KAW turbulence (a model also valid for oblique whistler
waves as explained in Galtier & Meyrand 2015) neglecting the
coupling to other types of waves. The derivation can be
qualified as semianalytical because the problem is fundamen-
tally anisotropic and in the final step of the derivation the
authors neglected the cascade along the uniform magnetic field
to find an expression for the nonlinear diffusion equation.
However, the parallel cascade is expected to be relatively weak
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and its absence cannot be seen as a drawback of the model.
Then, KAW turbulence is simulated numerically in the
presence of magnetic helicity in order to study the regime of
imbalanced weak turbulence (Passot & Sulem 2019). This type
of model gives in general good quantitative information about
the primary system because local interactions are in general the
main driver of the turbulence cascade.

Here, we shall use the diffusion equation proposed by Passot
& Sulem (2019) for weak KAW turbulence in the absence of
magnetic helicity. To be self-consistent (and for pedagogical
reasons) a new derivation is proposed by using only
phenomenological arguments. This method has the advantage
of explaining in a simple way the main physical ingredients
required to derive a nonlinear diffusion model for KAW
turbulence.

Since the leading nonlinear interaction of KAW is a three-
wave interaction (Galtier & Meyrand 2015; Passot &
Sulem 2019), the model is a second-order diffusion equation
of the type
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where E(k̂ ) is a one-dimensional magnetic energy spectrum, k̂
the perpendicular wavenumber, and ^Dk a diffusion coefficient
that eventually depends on the wavenumber k̂ . This equation
is constructed in such a way that it preserves the nonlinearity
degree with respect to the spectrum (quadratic in our case) and
its cascade and thermodynamic solutions. We neglect the
cascade along the strong uniform magnetic field B0 which
defines the parallel direction, hence the presence of only the
perpendicular (to B0) wavenumber k̂ . A dimensional analysis
of expression (1) gives
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where τ is the cascade time of weak wave turbulence; thus,
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where ò∼τKAW/τNL=1 is a small parameter and the
nonlinear time t ~ ^ ^ ^k k E k1NL

2( ( ) ). We obtain
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which leads to the following second-order diffusion equation
for KAW turbulence (Passot & Sulem 2019):
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where C is a positive constant.
The constant flux solutions can now be found. We define the

energy flux ΦE(k̂ ) as follows:
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and introduce the magnetic energy spectrum E(k̂ )= ^Ak x into
Equation (6) with A, a positive constant. We find
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The constant flux solutions are x=1, which corresponds to the
thermodynamic solution (zero flux), and x=−5/2 called the
Kolmogorov–Zakharov solution (Nazarenko 2011). In this case
we also find ΦE(k̂ )≡Φ0=(7/2) A2C, which is positive and
thus corresponds to a direct cascade. Therefore, we recover the
well-known solutions of the problem (Galtier & Bhattachar-
jee 2003; Galtier & Meyrand 2015; Passot & Sulem 2019).

3. Nonstationary Regime

Time-dependent solutions of the KAW turbulence
Equation (6) will be studied further analytically and numeri-
cally. We will demonstrate the existence of a nontrivial solution
(sometimes called anomalous scaling) in the sense that it
cannot be derived with the usual turbulence phenomenology or
theory. This property is related to the finite capacity of the
system, which is linked to the convergence of the integral

ò
+¥
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where ki is the scale of magnetic energy injection. This property
is satisfied when x<−1, a situation found in KAW
turbulence.
The nonstationary spectrum can be modeled as a self-similar

solution of the second kind (see, e.g., Falkovich & Shafar-
enko 1991; Thalabard et al. 2015), taking the form
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where τ=t* − t, and t* is a finite time at which the magnetic
energy spectrum reached the largest available wavenumber. By
introducing the above expression into (6) we find the condition

= +a b4 1. 11( )

A second condition can be found by assuming that E0(ξ)∼ξm

far behind the front. Then, the stationarity condition gives the
following relation:

+ =a mb 0. 12( )

Finally, the combination of both relations gives
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a
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The latter expression means that we have a direct relation
between the power-law index m of the spectrum and the law of
the front propagation that follows kf∼τ b. For example, if we
assume that the stationary solution—the Kolmogorov–
Zakharov spectrum—is established immediately during the
front propagation, then m=−5/2 and b=−2/3 (and
a=−5/3). In this case, the prediction for the front propaga-
tion is

~ - -k t t . 14f
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4. Numerical Simulation

We now study numerically the time evolution of the
magnetic energy spectrum described by the KAW turbulence
Equation (6) with C=1. A linear hyperviscous term of the
form h- ^ ^k E k6 ( ) is added to Equation (6) in order to introduce
a sink at small scale to avoid the development of numerical
instabilities at the final time of the simulation (t>t*) when the
stationary state establishes; we take η=10−16. A logarithmic
subdivision of the k̂ -axis is used with =k̂ 2i

i 8 and i an
integer varying between 0 and 160. Note that this resolution is
far too large to model the subproton scales where electron
inertia is neglected. This choice is, however, necessary to reach
a clear conclusion about the values of the power-law indices
(see below). The Crank–Nicholson and Adams–Bashforth
numerical schemes are implemented for the nonlinear and
dissipative terms, respectively. The initial condition (t=0)
corresponds to a spectrum localized at large scale with

~ -^ ^ ^E k k k kexp3
0

2( ) ( ( ) ) and k0=5. No forcing is added
at t>0. The time step is dt=2×10−13.

In Figure 1 we show the time evolution of the magnetic
energy spectrum from t=0 to t*. During this nonstationary
phase a clear power-law spectrum in ^

-k 8 3 is formed behind the
front. To check if this spectrum corresponds to the self-similar
solution of the second kind introduced above we show in
Figure 2 the front propagation kf(t). This front is defined by
taking E(k̂ )=10−15 from Figure 1: we then follow the point
of intersection between this threshold and the spectral tail.
From Figure 2 we can define the singular time t* at which the
front, in principle, can reach = +¥k̂ . Note that a similar
situation where the small scales are reached in a finite time is
also observed, e.g., in Alfvén wave turbulence (Galtier et al.
2000). The value t*=6.7537×10−7 is chosen. In Figure 2
(inset) we show kf as a function of t*−t: a clear power law is
observed over three decades with a power-law index of
−0.750. The negative value illustrates the explosive character
of the direct cascade of magnetic energy in KAW turbulence.
The different values measured are fully compatible with

= - = - = -a b m2, 3 4 and 8 3, 15( )

which therefore demonstrates the self-similar nature of the
nonstationary solution.
As displayed in Figure 3, the nonstationary phase is

characterized by a nonconstant energy flux ΦE(k̂ ) (computed
from the nonlinear terms): we start with a flux localized at
small wavenumbers that then develops toward smaller scales
without reaching a plateau. The solution does not correspond to
the constant flux solution derived analytically, but it is fully
compatible with the power-law solution ~ ^

-k 1 3 when we take
x=−8/3 in Equation (8).
Finally, in Figure 4 we show the temporal evolution for

t>t* of the energy spectrum and energy flux (inset),
respectively. The classical (stationary) wave turbulence
predictions are finally obtained with an energy spectrum in

^
-k 5 2 and a constant positive energy flux, as expected for a
direct cascade. This behavior is specific to a viscous simulation

Figure 1. Time evolution (every 1000dt) of the magnetic energy spectrum E
(k̂ ) from t=0 (blue) to t* (dark red). A ^

-k 8 3 spectrum emerges over three
decades.

Figure 2. Temporal evolution of the spectral front kf for t�t* in linear-
logarithmic coordinates (blue). A sharp increase of kf is observed from which
we can define precisely the singular time t*=6.7537×10−7. Inset: the
temporal evolution of kf as a function of t*−t (orange) in double logarithmic
coordinates. The black dashed line corresponds to (t*−t)−0.750. For comparison
two other values of t* are taken (green and blue).

Figure 3. Temporal evolution of the energy flux ΦE(k̂ ) in double logarithmic
coordinates for the same times as in Figure 1 (same conventions). The flux
follows a power law ~ ^

-k 1 3.

3

The Astrophysical Journal Letters, 880:L10 (5pp), 2019 July 20 David & Galtier



made in a finite box where the cascade cannot continue to
smaller scales: the energy accumulates at small scale until the
viscous term (proportional to the energy spectrum) becomes
nonnegligible and balances the energy flux coming from large
scale. This process affects the entire inertial range with a
modification of the power-law index. The final phase of the
simulation (not shown) corresponds to a self-similar decay of
the energy spectrum with the same power-law index (−5/2).

5. Solar Wind Turbulence at Subproton Scales

Solar wind turbulence at subproton scales (for frequencies
f>1 Hz) is characterized by a magnetic energy spectrum with
a power-law index close to −8/3 (Alexandrova et al. 2012;
Podesta 2013; Sahraoui et al. 2013). This scaling law does not
correspond to the classical prediction of strong turbulence (−7/
3) or weak wave turbulence (−5/2), which are obtained
phenomenologically or analytically, respectively, with different
types of model equations, and with different types of waves, in
the presence of anisotropy or not. After several years of
investigations, the possibility of having a power-law index
close to the data seemed to be impossible with the classical
turbulence theory (see, however, Boldyrev & Perez 2012;
Meyrand & Galtier 2013). For this reason, this problem is one
of the most important in space plasma physics. A natural
conclusion is that the observed power laws are the result of a
nontrivial turbulent dynamics that we still do not understand or
a physics involving ingredients other than turbulence.

In this Letter, we have shown with a nonlinear diffusion
model of weak KAW turbulence, which retains only local
interactions (Passot & Sulem 2019), that by relaxing the
implicit assumption of stationarity generally made in turbu-
lence to obtain predictions, a new solution—a self-similar
solution of the second kind—is possible for KAW turbulence.
It is characterized by a magnetic energy spectrum in ^

-k 8 3 that
coincides with in situ observations. In this nonstationary phase
the viscous dissipation is negligible. While the absence of
viscous dissipation should be considered as the right way to

tackle the problem of solar wind turbulence at subproton scales,
since the solar wind is a collisionless plasma and thus cannot
behave like a viscous fluid, we must nevertheless clarify the
meaning and the consequences of such assumption. The first
clear idea is that there is no reason to believe that dissipation at
kinetic scales should behave like that found in hydrodynamics;
Landau damping is a good example. According to our
interpretation the results obtained here are in favor of a kinetic
dissipation that does not produce a feedback on the inertial
range of KAW turbulence. This property is at odds with fluid
turbulence. We might also conclude that the kinetic dissipation
is simply negligible; however, the presence of kinetic
dissipation as a source of plasma heating seems to be necessary
to explain the slow (ion) temperature variation with the
heliocentric distance (Richardson et al. 1995). According to our
study, we can also think that the observation of a spectral index
close to −8/3 in the solar wind is a consequence of the
existence of a cascade at electron scale since in this case the
accumulation of magnetic energy found in our simulation is not
favored. The physics at electron scales is, however, quite
different: for example the magnetic energy is not an invariant
anymore (see, e.g., Meyrand & Galtier 2010). Then, the
feedback of these scales on the ion scales studied in this paper
is nontrivial. Note, finally, that the weak turbulence regime
studied in this Letter also provides a natural explanation to the
enigmatic non-Gaussian monoscaling observed at subproton
scales (Kiyani et al. 2009).

6. Conclusion

Our study reveals that the classical hypothesis of stationarity
to obtain any turbulence predictions may not be the best way to
understand solar wind turbulence at subproton scales. Instead,
the relaxation of this assumption opens a new type of solution
that is understood as a self-similar solution of the second kind.
On the basis of numerical simulations of a nonlinear diffusion
model of weak KAW turbulence we show that the main scaling
behavior observed with spacecraft—a power-law index close to
−8/3 for the magnetic energy spectrum—which has so far
resisted classical theoretical modeling, can be reproduced with
a fairly high accuracy. The nonstationary nature of solar wind
turbulence at subproton scales can be explained by an
imbalance between nonlinearities and kinetic dissipation, and
by the existence of a cascade at electron scales. The nature of
the kinetic dissipation in a collisionless plasma remains to be
explained in detail to fit these constraints.
The solar wind is the best example for studying unbounded

collisionless plasmas in astrophysics. It is quite challenging to
understand the behavior of such plasmas in the regime of
turbulence, but surprisingly some simplicity seems to emerge
from complexity with a fluid-like behavior (see, e.g., Meyrand
et al. 2019; Wu et al. 2019). Space missions like the Parker
Solar Probe and Solar Orbiter could also help in testing
theoretical ideas.
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