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Abstract 

 
In this paper, a new concept of the fuzzy stability set of the first kind for multi-level multi-objective 

fractional programming (ML-MOFP) problems having a single-scalar parameter in the objective 

functions and fuzziness in the right-hand side of the constraints has been introduced. Firstly, A parametric 

ML-MOFP model with crisp set of constraints is established based on the �-cut approach. Secondly, a 

fuzzy goal programming (FGP) approach is used to find an �-Pareto optimal solution of the parametric 

ML-MOFP problem. Thus, the FGP approach is used to achieve the highest degree of each membership 

goal by minimizing the sum of the negative deviational variables. Finally, the fuzzy stability set of the 

first kind corresponding to the obtained �-Pareto optimal solution is developed here, by extending the 

Karush-Kuhn-Tucker optimality conditions of multi-objective programming problems. An algorithm to 

clarify the developed fuzzy stability set of the first for parametric ML-MOFP problem as well as 

Illustrative numerical example are presented. 

Original Research Article 
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1 Introduction 

 
Hierarchical optimization or multi-level mathematical programming (ML-MP) techniques are extensions of 

Stackleberg games for solving decentralized planning problems with multiple decision makers (DMs) in a 

hierarchical organization [1]. The basic concept of multi-level programming technique is that the first-level 

decision maker (FLDM) sets his/her goal and/or decision, and then asks each subordinate level of the 

organization for their optima, that calculated in isolation. The lower level decision makers’ decisions are 

then submitted and modified by the FLDM in consideration of the overall benefit for the organization the 

process continues until a satisfactory solution is reached [2,3]. ML-MP are common in government policies, 

competitive economic systems, supply chains, vehicle path planning problems, and so on [4]. During the 

past few decades, ML-MP [1,2,5] have been deeply studied and many methodologies have been developed 

for solving such problems. Baky [3] studied FGP algorithm for solving a decentralized bi-level multi-

objective programming problem. 

 

The solution of bi-level large scale quadratic programming problem with stochastic parameters in the 

constraints has been studied by Emam et al. [6]. Saad et al. [7] presented a method for solving a three-level 

quadratic programming problem where some or all of its coefficients in the objective function are rough 

intervals.  Pramanik and Roy [1] adopted fuzzy goals to specify the decision variables of higher level DMs 

and proposed weighted/ unweighted FGP models for solving ML-MP to obtain a satisfactory solution. 

Emam applied an interactive approach on bi-level integer multi-objective fractional programming problem 

[8]. Multi-level decision-making problems were recently studied by Chen and Chen [9]. 

 

Fractional optimization problem is one of the most difficult problems in the field of optimization. 

Optimization of the ratio of two functions is called fractional programming (ratio optimization) problem 

[10]. Indeed, in such situations, it is often a question of optimizing a ratio of output/employee, profit/cost, 

inventory/sales, student/cost, doctor/patient, and so on subject to some constraints [11]. Such type of 

problems in large hierarchical organizations of complex and conflicting multi-objectives formulate ML-

MOFP problems. Omran et al. [12] extended the fuzzy approach to solve a three-level fractional 

programming problem with rough coefficient in the constraints. 

  

In real world decision-making situations, mathematical programming models involving fuzzy parameters 

were viewed to be more realistic versions than the conventional one [9]. Therefore, the parameters involved 

in the right-hand side of the constraints of the parametric ML-MOFP problem are assumed to be 

characterized by fuzzy numbers. 

 

Osman [13] introduced the notions of the solvability set, stability set of the first kind (the set of all 

parameters corresponding to the efficient solution) and stability set of the second kind and analyzed these 

concepts for parametric convex programming. Stability of multi-objective non-linear programming problems 

with fuzzy parameters in the constraints was studied by Kassem and Ammar [14]. Saad [15] presented 

stability of proper efficient solutions in multi-objective fractional programming problems under fuzziness. 

Saad and Hughes [16], considered bicriterion integer linear fractional programs with single-scalar parameter 

in the objective functions. Recently, a parametric study on multi-objective integer quadratic programming 

problems under uncertainty has been presented by Emam [17]. 

 

Parametric programming investigates the effect of predetermined continuous variations in the objective 

function coefficients and the right-hand side of the constraints on the optimum solution [18]. In parametric 

analysis the objective function and the right-hand side vectors are replaced with parameterized function ���� and ����, where � and � are the parameter of variation. The general idea of parametric analysis is to 
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start with the �-Pareto optimal solution at � = �� �� � = �∗. Then by utilizing the Karush-Kuhn-Tucker 

(KKT) optimality conditions the fuzzy stability set of the first kind (the set of parameters for which the 

solution at at � = �� �� � = �∗ remain optimal and feasible) is determined [19].     
     

Different basic notions like solvability set and stability set of the first kind for parametric multi-objective 

programming have been studied in several papers. In the present research, these notions have been extended 

to introduce the fuzzy stability set of the first kind for parametric fuzzy ML-MOFP problems. The proposed 

parametric fuzzy ML-MOFP problem involves a single-scalar parameter in the objective functions and 

fuzzy parameters in the right-hand side of the constraints. Firstly, a numerical parametric ML-MOFP model 

is established based on a confidence level (�-level) then, a FGP approach is considered for finding an �-

Pareto optimal solution for such problem. In FGP approach, the membership functions for the defined fuzzy 

goals are developed. Also, in the proposed approach, membership goals of the objective functions are 

linearized. Then, the highest degree of each membership goals is achieved by minimizing the sum of the 

negative deviational variables. Secondly, after obtaining an �-Pareto optimal solution, the parametric FGP 

model is set up. Thus, based on the Kuhn-Tucker optimality conditions for multi-objective programming 

problems, we apply KKT conditions on the parametric FGP model of the parametric fuzzy ML-MOFP 

problem to formulate a system of equations. Then, the fuzzy stability set of the first kind, obtained from the 

reduced system of equations.  
 

The rest of this paper is organized as follows. Section 2 presents the parametric fuzzy ML-MOFP problems 

formulation and introduces its solution concepts. Section 3 explains the developed FGP approach for solving 

such problems. Section 4 proposes the fuzzy stability set of the first kind for parametric fuzzy ML-MOFP 

problems. An algorithm for obtaining the fuzzy stability set of the first kind for parametric fuzzy ML-MOFP 

problems is introduced in section 5. Illustrative example is given in section 6. This paper ends with some 

concluding remarks in section 7. 
 

2 Problem Formulation and Solution Concepts 

 
Multi-level programming problems have more than one decision maker (DM). A decision maker is located 

at each decision level and a vector of fractional objective functions, with single-scalar parameter �, need to 

be optimized. Consider the hierarchical system be composed of a t-level decision makers. Let the decision 

maker at the ���-level denoted by DM� controls over the decision variable �� = ����, ���, … , ��� ! ∈ #� , � =1,2, … , &. where� = ��(, �), … , �*� ∈ #�and � = ∑ ����,�  and furthermore assumed that 

 -���(, �), … , �*, �� ≡  -���, ��: #�0 ×  #�2 × … × #�3 → #5 ,      � = 1,2, … , &,                                �1� 
 

are the vector of fractional objective functions with single-scalar parameter � ∈ # for DM� , � = 1,2, … , &. 

Mathematically, parametric fuzzy ML-MOFP problem may be formulated as follows [1,2,5]: 
 

[(6* 7898:] 
 <�=�(   -���, �� =  <�=�( >?����, ��, ?����, ��, … , ?�@0��, ��A,                                                                  �2�  

             BℎDED �), �F, … , �*  GHIJDG   
 [)LM 7898:]  
 <�=�)   -���, �� =  <�=�) >?����, ��, ?����, ��, … , ?�@2��, ��A,                                                                  �3� 

 

                 ⋮ BℎDED �*  GHIJDG    
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 [ **P 7898:] 
 <�=�*   -���, �� =  <�=�* >?����, ��, ?����, ��, … , ?�@3��, ��A,                                                                    �4�        

       GRSTDU& &H  
 

� ∈ V��, �W� = X� ∈ #�Y Z [�\
�

\,� �]  ≤  S_`,   �] ≥ 0, �I = 1,2, … , <�c,                                                 �5� 

 where 
 ?�\��, �� = i�\��, ��j�\��� = ���] + P�]��� + ��\M�]� + l�\  ,   � = 1,2, … , &,   T = 1,2, … , m� .                                     �6� 

 

also ��], P�] , M�] ∈ #� , and ��\ , l�\  are scalars in addition to that �W  is an < -vector of fuzzy number 

characterized by any type of membership functions, such as triangular, trapezoidal, depending on DM's 

preference. o�  are the matrices of size < × �� , � = 1,2, … , & . It is customary to assume that j�\��� >0 ∀ � ∈ V��, �W� , and represents the multi-level convex constraints feasible choice set in the fuzzy 

environment. 

 

Definition 1 [19]. Let S_ be a fuzzy subset of # with membership function r�W . It is said that S_ is a fuzzy 

number if the following conditions are satisfied: 

 

• S_ is normal, i.e., there exists an � ∈ # such that rs_ ��� = 1, 

• rs_  is quasi-concave, i.e., rs_ �B� + �1 − B�u� ≥ <��vrs_ ���, rs_ �u�w for all B ∈ [0, 1], 
• rs_  is upper semicontinuous, i.e., v�: rs_ ��� ≥  �w is a closed subset of x for all � ∈ [0, 1], 
• The 0-level set S_� is a compact subset of x. 

 

Definition 2 [14]. The �-level set of the vector of fuzzy parameters S_, is defined as an ordinary set yz�S_! for 

which the degree of its membership function exceeds the level set � ∈ [0, 1], where: 

 yz�S_! = vS ∈ #5|r�W��� ≥  �w = v� ∈ [�S�z| , �S�z}]|r�W ≥ �, w 

 

Based on the parametric fuzzy ML-MOFP model �2� − �5� , with single-scalar parameter � ∈ #  in the 

objective functions and fuzzy parameters in the right hand side of the constraints. Let r�W , be the membership 

functions which represents the fuzziness in the corresponding vector �W . Thus, for a specified value of � = �∗ ∈ [0,1], estimated by all  DM, the parametric �-(ML-MOFP) problem reformulated as follow: 

 

[(6* 7898:] 
 <�=�(   -���, �� =  <�=�( >?����, ��, ?����, ��, … , ?�@0��, ��A,                                                                  �7�              

 BℎDED �), �F, … , �*  GHIJDG   
 [)LM 7898:]  
 <�=�)   -���, �� =  <�=�) >?����, ��, ?����, ��, … , ?�@2��, ��A,                                                                  �8� 

                ⋮ 
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BℎDED �*  GHIJDG    

 [ **P 7898:] 
 <�=�*   -���, �� =  <�=�* >?����, ��, ?����, ��, … , ?�@3��, ��A,                                                                    �9�      

         GRSTDU& &H  

 

� ∈ Vz��, �� = X� ∈ #�Y Z [�\
�

\,� �\  ≤  S` ,   �\ ≥ 0, S` ∈ rs_:��� ≥ �, I = 1,2, … <. c,                 �10� 

 

where the crisp system of constraints, in equation (10), at an �-level denoted by Vz which form a compact 

set. 

 

Definition 3. For any �(��( ∈ �V��z = v�(|� = ��(, �), … , �*� ∈ �V �zw� given by FLDM and  �)��) ∈�V��z = v�)|� = ��(, �), … , �*� ∈ �V �zw�  given by SLDM, if the decision variable �*��* ∈ �V��z =v�*|� = ��(, �), … , �*� ∈ �V �zw� is the �-Pareto optimal solution of the TLDM, then ��(, �), … , �*� is an �-feasible solution of the parametric �-(ML-MOFP) problem. 

 

Definition 4. If �∗ = ���∗ , ��∗ , … , ��∗� is an �-feasible solution of the parametric �-(ML-MOFP) problem; no 

other � -feasible solution� = ��� , … , �� � ∈ Vz  exist, such that ?�\��∗, ��� ≤ ?�\��, ���  with at least one 

strict inequality hold for T�T = 1,2, … , m��;  so ���∗ , ��∗ , … , ��∗�  is the � -Pareto optimal solution of the 

parametric �-(ML-MOFP) problem. 

 

Assuming that the parametric �-(ML-MOFP) problem has an �-Pareto optimal solution �∗ at ��.  

 

3 Fuzzy Goal Programming Approach of Parametric Fuzzy ML-MOFP 

Problems 

 
In the proposed FGP approach for parametric � -(ML-MOFP) in order to obtain the compromise 

(satisfactory) solution that is an �-Pareto optimal solution. The vector of objective functions for each DM 

is formulated as a fuzzy goal characterized by its' membership function r>� ���,��!A�� = 1,2, … , &�,�T = 1,2, … , m�� [1,2]. The model formulation and solution process are carried out at � = ��. 

 

3.1 Characterization of membership functions 

 
To define the membership functions of the fuzzy goals [3], each objective function's individual maximum is 

taken as the corresponding aspiration level, as follows: 

 R�\� = <�=�∈��  ?�\��, ���,     �� = 1,2, … , &�, � T = 1,2, … , m��,                                                                 �11� 

 

where R�\ �, give the upper tolerance limit or aspired level of achievement for the membership function of �T�� objective function at � = ��. Similarly, each objective function's individual minimum is taken as the 

corresponding aspiration level, as follows: 

 ��\� = <��=�∈��  ?�\��, ���,     �� = 1,2, … , &�, � T = 1,2, … , m��,                                                                  �12� 
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where ��\ �, give the lower tolerance limit or lowest acceptable level of achievement for the membership 

function of �T��  objective function. Assuming that the values of ?�\��, ��� ≥ R�\�, �� = 1,2, … , &�,� T = 1,2, … , m��, are acceptable and all values ?�\��, ��� ≤ ��\�, are absolutely unacceptable. And all values ��\� ≤ ?�\��, ��� ≤ R�\ � described by the membership function r>� ���,��!A = r�, as shown in Fig. (1), for 

the �T�� fuzzy goal [1]: 

 

r� =
���
��  1,                                �? ?�\��, ��� ≥ R�\�,           

 ?�\��, ��� − ��\ �R�\�– ��\� ,    �?  ��\� ≤ ?�\��, ��� ≤ R�\�, 0,                                    �? ?�\��, ��� ≤ ��\ �,              
   �� = 1, … , &�, � T = 1, … , m��,            �13�� 

 

 
 

Fig. 1. Membership functions of maximization type for ��]��, ���  

 

Following the basic concept of multi-level programming problems the first level decision maker sets his/her 

goals and/or decisions and then asks subordinate level for their optima [1-3]. Therefore, to study the fuzzy 

stability set of the first kind the vector of decision variables ��@ , �� = 1,2, … , & − 1�, �m = 1,2, … , ��� for the 

top levels are taken as binding constraints for the &��-level problem as follows: 

 ��� = ���∗               �� = 1,2, … , & − 1�,    �m = 1,2, … , ���,                                                                      �14� 

 

3.2 Fuzzy goal programming methodology 

 
In the decision-making context, each decision maker is interested in maximizing his or her own objective 

function; the optimal solution of each DM, when calculated in isolation, would be considered as the best 

solution and the associated value of the objective function can be considered as the aspiration level of the 

corresponding fuzzy goal [2]. In fuzzy programming approach, the highest degree of membership is one. So, 

for the defined membership function in equation (13), the flexible membership goals having the aspired 

level unity can be represented as follows [20]: 

 r� ��?�\��, ���� + ��\� − ��\� = 1,    �� = 1,2, … , &�,   �T = 1,2, … , m��,                                               �15�      

 

or equivalently as: 

  ?�\��, ��� − ��\�R�\�– ��\� + ��\� − ��\� = 1,    �� = 1,2, … , &�,   �T = 1,2, … , m��,                                             �16� 

 

where ��\� , ��\� ≥ 0 with ��\� × ��\� = 0, represent the under- and over- deviations, respectively, from the 

aspired levels [1,3,4]. 
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In the classical methodology of goal programming, the under- and over- deviational variables are included 

in the achievement function for minimizing them depends upon the type of the objective functions to be 

optimized [1,3]. Thus, considering the goal achievement problem at the same priority level, the equivalent 

proposed FGP model of the parametric �-(ML-MOFP) problem can be formulated as follows: 

 

<��  � = Z B�\�  ��\� + Z B�\� ��\� + ⋯ +@2
\,� Z B�\� ��\�@3

\,�
@0

\,� ,                                                                        �17� 

    GRSTDU& &H   
  ?�\��, ��� − ��\ �R�\�– ��\ � + ��\� − ��\� = 1,        �� = 1,2, … , &�, � T = 1,2, … , m��,                                          �18� 

 ��9 = ��9∗ ,                                                  �� = 1,2, … , & − 1�, �J = 1,2, … , �� �,                                    �19� 

 

Z [�\
�

\,� �]  ≤  S` ,                                       �I = 1,2, … <�,   �*9 ≥ 0,                                                         �20� 

 �S`�z| ≤ S` ≤ �S`�z},                                 �I = 1,2, … <�,                                                                          �21� 
 ��\�  × ��\� = 0, �� ��\� , ��\� ≥ 0,           �� = 1,2, … , &�,   �T = 1,2, … , m��,                                          �22� 

 

where � represents the achievement function consisting of the weighted under-deviational variables of the 

fuzzy goals. The numerical weights B�\� represent the relative importance of achieving the aspired levels of 

the respective fuzzy goals these values are determined as [20]: 

 B�\� = 1R�\�– ��\ � ,      �� = 1,2, … , &�, � T = 1,2, … , m��,                                                                           �23� 

 

3.3 Linearization of parametric membership goals 

 
It can be easily realized that the parametric membership goals in equation (13) are inherently non-linear in 

nature and this may create computational difficulties in the solution process. To avoid such problems, a 

linearization procedure is presented in this section. Following Pal et al. [11] the parametric �T�� membership 

goals with single-scalar parameter � can be presented as: 

 r� � >?�\��, ���A + ��\� − ��\� = 1,                     �� = 1,2, … , &�, � T = 1, … , m��,                                  �24� 

 y�\�?�\��, ���� − y�\��\� + ��\� − ��\� = 1,       BℎDED     y�\ = 1R�\� − ��\� ,                                      �25� 

 ?�\��, ��� = i�\��, ���j�\��� = �� �\ + P�]��� � + ��\M �\  � + l�\  , �� = 1,2, … , &�, � T = 1, … , m��,                         �26� 

 

Considering the expression of  ?�\��, ��� , the above goal in equation (25) can be represented as: 

 y�\ �� �\ + P�]��� � + ��\M �\  � + l�\ − y�\��\� + ��\� − ��\� = 1,                                                                             �27� 
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y�\[�� �\ + P�]��� � + ��\]  − y�\��\�[M �\� + l�\] + ��\� [M �\  � + l�\] − ��\� [M �\� + l�\] =[M �\� + l�\],  y�\[�� �\ + P�]��� � + ��\] + ��\� [M �\� + l�\] − ��\� [M �\� + l�\] = �1 + y�\��\�![M �\� + l�\],  y�\[�� �\ + P�]��� � + ��\]  + ��\� [M �\  � + l�\] − ��\� [M �\� + l�\] = y�\� [M �\  � + l�\],  
 

where  y�\� = �1 + y�\��\�!, 
 �y�\�� �\ + P�]��� − y�\� M �\�� + ��\� [M �\  � + l�\] − ��\� [M �\  � + l�\] = �y�\� l�\ − y�\��\�,  
 � �\� + ��\� [M �\ � + l�\] − ��\� [M �\  � + l�\] = ��],                                                                                   �28� 

 
Where 

 � �\ = �y�\�� �\ + P�]��� − y�\� M �\� �� ��] = �y�\� l�\ − y�\��\�, � = 1, … , &,   T = 1, … , m� ,          �29� 

 

Considering the method of variable change presented by Pal et al. [11], the goal expression in equation (28) 

can be linearized as follows. Letting j�\� = ��\� [M �\  � + l�\] and j�\� = ��\� [M �\� + l�\], then the linear form 

of expression in equation (28) is obtained as: 

 � �\ � + j�\� − j�\� = ��],                                                                                                                              �30� 

 

with j�\�, j�\� ≥ 0;  �� j�\� ×  j�\� = 0,  since ��\� , ��\� ≥ 0,  and M �\� + l�\ > 0 . Now, in decision making 

policy, minimization of ��\�  means minimization of  j�\� = ��\� [M �\� + l�\]  which is also non-linear. So, 

involvement of ��\� ≤ 1,  in the solution leads to impose the following constraint in the model of the 

problem: 

 j�\�[M �\  � + l�\] ≤ 1.                                                                                                                                           �31� 

 

Now, based on the simplest version of goal programming, the final proposed FGP model of the 

parametric �-(ML-MOFP) problem in model (17)-(22) becomes: 

 

 <��    � = Z B�\�  j�\� + Z B�\� j�\� + ⋯ +@2
\,� Z B�\� j�\�

@3
\,� ,@0

\,�                                                                     �32� 

 GRSTDU& &H   

 �y�\�� �\ + P�]��� − y�\� M �\ �� + j�\� − j�\� = �y�\� l�\ − y�\��\�          ∀ �, T                                         �33� 

 ��9 = ��9∗ ,                                     �� = 1,2, … , & − 1�,   �J = 1,2, … , �� !,                                               �34� 

 −M �\  � + j�\� ≤ l�\ ,                    �� = 1,2, … , &�,   �T = 1,2, … , m��,                                                      �35� 

 

Z [�\
�

\,� �]  ≤  S` ,                             �I = 1,2, … <�,    �*9 ≥ 0,                                                                 �36� 

 �S`�z| ≤ S` ≤ �S`�z},                      �I = 1,2, … <�,                                                                                     �37� 
 j�\�, j�\� ≥ 0,                                    �� = 1,2, … , &�, �T = 1,2, … , m��,                                                      �38� 
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Thus, the above FGP model provides the satisfactory solution ��  for the parametric � -(ML-MOFP) 

problem. 

 

4 The Fuzzy Stability Set of the First Kind for Parametric Fuzzy ML-

MOFP Problem   

 
Now, the main question is: Having solved the parametric �-(ML-MOFP) problem to what extents can its 

data with respect to � and � be changed without invalidating the efficiency of its �-Pareto optimal solution 

(compromise solution)? 

 

Thus the definition of the set of feasible parameters, solvability set and the fuzzy stability set of the first 

kind for parametric �-(ML-MOFP) problem is given as follows: 

  

Definition 5 [15]. The set of feasible parameters for the parametric �-(ML-MOFP) problem is defined by: 

 � = �S ∈ #5�S` ∈ yz�S_`!, � ∈ [0,1] �I = 1,2, … , <� and Vz��, S� ≠ ∅¡. 
 

Definition 6. The solvability set ¢ of the parametric �-(ML-MOFP) problem is defined by: 

 ¢ = £��, S� ∈ # × #5¤parametric � − �ML − MOFP�problem has an � − Pareto optimal solution.        ³.  
 

Definition 7. Suppose that �� be an �-Pareto optimal solution (compromise solution) of the parametric �-

(ML-MOFP) problem, then the fuzzy stability set of the first kind ´(���, �� corresponding to �� is defined 

by: 

 ´(���, �� = £��, S� ∈ # × #5¤�� is an � − Pareto optimal solution of parametric α− �ML − MOFP�problem ³.     
 

The fuzzy stability set of the first kind of the parametric �-(ML-MOFP) problem is the set of all parameters 

corresponding to one �-Pareto optimal solution [14,15]. It is easy to see that the fuzzy stability of the 

parametric � -(ML-MOFP) model (7)-(10) implies the stability of the parametric FGP model which is 

defined as follows: 

 

<��    � = Z B�\�  j�\� + Z B�\� j�\� + ⋯ +@2
\,� Z B�\� j�\�

@3
\,� ,@0

\,�                                                                      �39� 

 GRSTDU& &H 
 �y�\�� �\ + P�]�� − y�\� M �\�� + j�\� − j�\� = �y�\� l�\ − y�\��\�         ∀ �, T                                            �40� 

 ��9 = ��9∗ ,                                     �� = 1,2, … , & − 1�,   �J = 1,2, … , �� !,                                               �41� 

 −M �\  � + j�\� ≤ l�\ ,                    �� = 1,2, … , &�,   �T = 1,2, … , m��,                                                     �42� 

 

Z [�\
�

\,� �]  ≤  S` ,                             �I = 1,2, … <�,                                                                                     �43� 

 �*9 ≥ 0,                                          �J = 1,2, … , ���,                                                                                  �44� 
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�S`�z| ≤ S` ≤ �S`�z},                      �I = 1,2, … <�,                                                                                    �45� 
 j�\�, j�\� ≥ 0,                               �� = 1,2, … , &�, �T = 1,2, … , m��,                                                           �46� 

 

4.1 Utilization of the Karush-Kuhn-Tucker optimality conditions corresponding to 

parametric FGP model      

 
The Lagrangean function of parametric FGP model (39)-(46) follows as [16,19]: 

 

7 = ¶Z B�\�  j�\� + Z B�\� j�\� + ⋯ +@2
\,� Z B�\� j�\�

@3
\,�

@0
\,� · 

 + ¸�\ ¹�y�\�� �\ + P�]�� − y�\� M �\�� + j�\� − j�\� − �y�\� l�\ − y�\��\�º  + »�¼[��9 − ��9∗ ] 
 

− ½�¼�*9 + r�\�−M �\  � + j�\� − l�\� + J` ¶Z [�\
�

\,�  �\ − S`  · + ¾`[S` − �S`�z}]                               �47� 

 + ¿`[−S` + �S`�z| ] +  À�\�−j�\�� + Á�\�−j�\�� 
 

where ¸, », ½, r, J, ¾, ¿, À and Á  are the Lagrange multipliers. Then the Karush-Kuhn-Tucker necessary 

optimality conditions [16,19] corresponding to the parametric FGP model (39)-(45), which has the above 

Lagrangean function, will have the following form: 

 ÂyÂ�] = ¸�\�y�\�� �\ + P�]�� − y�\� M �\� + »�¼ − ½�¼ − r�\M �\ − Z J�[�\
5

�,� = 0, �T = 1,2 … , ��,        �48� 

 ÂyÂS` = −J` + ¾` − ¿` = 0,                                 �I = 1,2, … , <�,                                                             �49� 

 ÂyÂÃ�]� = B�\� +  ¸�\ + r�\ − À�\ = 0,                  �� = 1,2, … , &�,   �T = 1,2, … , m��,                              �50� 

 ÂyÂÃ�]� = − ¸�\ − Á�\ = 0,                                       �� = 1,2, … , &�,   �T = 1,2, … , m��,                           �51� 

 �y�\�� �\ + P�]�� − y�\� M �\�� + j�\� − j�\� − �y�\� l�\ − y�\��\� = 0,               ∀�, T                             �52� 

 ��9 − ��9∗ = 0,                                                        �� = 1,2, … , & − 1�,   �J = 1,2, … , �� !,                    �53� 

 −M �\  � + j�\� − l�\ ≤ 0,                                        �� = 1,2, … , &�,   �T = 1,2, … , m��,                        �54� 

 

Z [�\
�

\,� �] −  S` ≤ 0,                                              �I = 1,2, … <�,                                                             �55� 

 �S`�z| − S` ≤ 0,                                                       �I = 1,2, … <�,                                                            �56� 
 S` − �S`�z} ≤ 0,                                                     �I = 1,2, … <�,                                                             �57� 
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j�\�, j�\� ≥ 0,                                                          �� = 1,2, … , &�, �T = 1,2, … , m��,                                �58� 
 �*9 ≥ 0,                                                                  �J = 1,2, … , �� !,                                                          �59� 
 r�\�−M �\  � + j�\� − l�\� = 0,                            �� = 1,2, … , &�, �T = 1,2, … , m��,                                �60� 

 

J` ¶Z [�\
�

\,�  �\ − S` · = 0,                                    �I = 1,2, … , <�,                                                            �61� 

 ¾`[S` − �S`�z}] = 0,                                              �I = 1,2, , … , <�,                                                           �62� 
 ¿`[−S` + �S`�z| ] = 0,                                          �I = 1,2, , … , <�,                                                           �63� 
 À�\  j�\� = 0,                                                            �� = 1,2, … , &�, �T = 1,2, … , m��,                                �64� 

 Á�\  j�\� = 0,                                                            �� = 1,2, … , &�, �T = 1,2, … , m��,                                �65� 
 ½�¼�*9 = 0,                                                           �J = 1,2, … , �� !,                                                           �66� 
 ½, r, J, ¾, ¿, À, Á ≥ 0,         ��     ¸, » ∈ #,                                                                                               �67� 

 

where all the expressions of the Kuhn-Tucker conditions (47)-(67) are evaluated at the �-Pareto optimal 

solution ��of the parametric FGP model. Moreover, », ½, r, J, ¾, ¿, À and Á are the Lagrange multipliers. 

Solving the system of equations (47)-(67), the fuzzy stability set of the first kind ´(���, �� for parametric 

fuzzy multi-level multi-objective fractional programming problem with single-scalar parameter in the 

objective functions and fuzziness in constraints will be obtained. 

 

5 Algorithm for Determination of the Fuzzy Stability Set of the First 

Kind ´(���, �� 

 
Following the above discussion, an algorithm will be developed for obtaining the fuzzy stability set of the 

first kind ´(���, �� for parametric fuzzy ML-MOFP problem as follows: 

 

                           ´*ÄÅ8 Æ: HS&��  UH<ÇEH<�GD solution of &ℎD ÇEHSID< 

Step 1. Set the value of �, acceptable for all decision makers.  

Step 2. Postulate that � = �� at the first. 

Step 3. Compute the individual maximum and minimum values for each objective function. 

Step 4. Set the goals and the upper tolerance limits for each objective function in all levels, 

according to equations (11)-(12). 

Step 5. Evaluate the weights B�\� as defined in equation (23). 

Step 6. Set ℓ = 1, for the ��� level problem. 

Step 7. Formulate the membership functions r� = r�ℓ� >?ℓ\��, ���A  T = 1,2, … , mℓ, as in equation 

(13). 

Step 8. Do the linearization procedures for each parametric membership goal according to 

equations (28)-(30) at � = ��. 

Step 9. Solve the ℓ�� level FGP model to get the decision variables �ℓ¼ = �ℓ¼∗ .  
Step 10. If ℓ > & − 1, then go to the Step 11; otherwise set ℓ = ℓ+ 1, and go to Step 7. 

Step 11. Solve the final FGP model, as in equations (32)-(38). to get the α-Pareto optimal solution ��. 
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6 Illustrative Example 

 
To demonstrate the proposed algorithm for finding the fuzzy stability set of the first kind, consider the 

following parametric fuzzy ML-MOFP problem with single-scalar parameter in the objective functions and 

fuzziness in the right hand side of the constraints.  

 

[(6* 7898:]  
 <�=�(   É?����, �� = 2��� + �� + �1 − ���Ê + 5�� + 2�� + 4�Ê , ?����, �� = 6�� + �4 − ���� − ��Ê�� + 2�� + �Ê Ë, 
 BℎDED �), �F   GHIJDG 

 [)LM 7898:] 
 <�=�)  É?����, �� = �2 − ���� + 3��� − 2�Ê + 42�� + �� + �Ê , ?����, �� = 3��� − �3 + ���� + 4�Ê + 1�� + 2�� + �Ê Ë,  
 BℎDED �F   GHIJDG 

 [FÌM 7898:] 
 <�=�F   É?Ê���, �� = 7�� + �� − 1��� − 3�Ê�� + 3�� + 2�Ê ,    ?Ê���, �� = 6��� − �2 + ���� + 3�Ê + 2�� + 3�� Ë, 
 GRSTDU& &H 
 2�� + �� + �Ê ≤ S_�, �� − 2�� + 3�Ê ≤ S_�, �� + 2�� ≥ 3, �� ≥ 0, �� ≥ 0, �Ê ≥ 0. 
 

where, S_� and S_�, are fuzzy parameters and are characterized by the following triangular fuzzy numbers: S_� = �3,10,15�, S_� = �2,7,12�,.  
 

Stage I: finding the α-compromise solution of the parametric fuzzy ML-MOFP problem. 

 

For a desired value of �, assume that an �-level of 0.2 is accepted by the three level DMs then we get: 3 + 7� ≤ S� ≤ 15 − 5� and 2 + 5� ≤ S� ≤ 12 − 5�, choosing S� = 10 and S� = 8. Then assuming that 

the parametric �-(ML-MOFP) problem has an �-Pareto optimal solution �� at � = �� = 1.  

 

´*ÄÅ8 ÆÆ: determination of the fuzzy stability set of the Ïirst kind ´(���, Ñ� 

 

Step 12. Formulate the parametric FGP model (39)-(46). 

Step 13. Obtain the Lagrangian function, for the final FGP model, as in equation (47).  

Step 14.  Apply the Kuhn-Tucker optimality conditions to find, the fuzzy stability set of the first kind, 

equations (48)-(67). 

Step 15. Reduce the system of equations (48)-(67), to obtain the fuzzy stability set of the first kind ´(���, �� and Stop. 
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[(6* 7898:]  
 <�=�(   Ò?����� = 2�� + �� + 5�� + 2�� + 4�Ê , ?����� = 6�� + 3�� − �Ê�� + 2�� + �Ê Ó, 
 BℎDED �), �F  GHIJDG 
 [)LM 7898:] 
 <�=�)  Ò?����� = �� + 3�� − 2�Ê + 42�� + �� + �Ê , ?����� = 3�� − 4�� + 4�Ê + 1�� + 2�� + �Ê Ó,  
 BℎDED �F   GHIJDG 

 [FÌM 7898:] 
 <�=�F   Ò?Ê���� = 7�� − 3�Ê�� + 3�� + 2�Ê ,    ?Ê���� = 6�� − 3�� + 3�Ê + 2�� + 3�� Ó, 
 GRSTDU& &H 
 2�� + �� + �Ê ≤ 10, �� − 2�� + 3�Ê ≤ 8, �� + 2�� ≥ 3, �� ≥ 0, �� ≥ 0, �Ê ≥ 0. 
 

The individual maximum and minimum values are summarized in Table 1. The decided aspiration levels, 

upper tolerance limits and the weights B�\  are also given. 

 

Table 1. Individual maximum, minimum values, Ô�], Å�] and weights Õ�]  

 

  �((��� �()��� �)(��� �))��� �F(��� �F)��� <�  � ?�\���� 3.667 6 5.667 3.57 7 8.33 <��  � ?�\���� 0.3 0.125 0.226 -1.95 -0.93 -0.93 R�\ 3.7 6 5.7 3.6 7 8 ��\ 0.3 0.125 0.23 -1.95 -0.93 -0.93 B�\  0.294 0.17 0.183 0.18 0.126 0.112 

 

The coefficient of the linearized membership goals are presented in Table 2. 

 

Table 2. The coefficient of the linearized membership goals �� �]�Ö ÄLM  ��] 
 

 �((��� �()��� �)(��� �))��� �F(��� �F)��� �� �\�× Ø−0.512−1.91−4.4 Ù×
  Ø 0−1.53−1.19Ù×

 Ø−1.897−0.491−1.41 Ù×
  Ø−0.109−2.0180.071 Ù×

 Ø 0−2.64−2.138Ù×
  Ø−0.224−3.0240.336 Ù×

  

��] -1.47 0 -0.732 -0.18 0 -0.224 

 

Solve the first and the second level programming problems using FGP model to get ��� and ���. Thus, the 

final proposed FGP model for the parametric fuzzy ML-MOFP problem is obtained as: <�� � = 0.294j��� + 0.17j��� + 0.183j��� + 0.18j��� + 0.126jÊ�� + 0.112jÊ��  
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GRSTDU& &H −0.512�� − 1.91�� − 4.4�Ê + j��� − j��� = −1.47, 0�� − 1.53�� − 1.19�Ê + j��� − j��� = 0, −1.897�� − 0.491�� − 1.41�Ê + j��� − j��� = −0.732, −0.109�� − 2.018�� +   0.071�Ê + j��� − j��� = −0.18, 0�� − 2.64�� − 2.138�Ê + jÊ�� − jÊ�� = 0, −0.224�� − 3.024�� + 0.336�Ê + jÊ�� − jÊ�� = −0.224, −�� − 2�� − 4�Ê + j��� ≤ 0, −�� − 2�� − �Ê + j��� ≤ 0, −2�� − �� − �Ê + j��� ≤ 0, −�� − 2�� − �Ê + j��� ≤ 0, −�� − 3�� − 2�Ê + jÊ�� ≤ 0, −�� − 3�� + jÊ�� ≤ 0, 2�� + �� + �Ê ≤ 10, �� − 2�� + 3�Ê ≤ 8, �� + 2��  ≥ 3, �� = 3, �� = 0,  �Ê ≥ 0, j��� , j��� , j��� , j��� , j��� , j��� , j��� , j��� , jÊ�� , jÊ�� , jÊ�� , jÊ�� ≥ 0. 
 

Using Lingo programming, the � -compromise solution of the parametric fuzzy ML-MOFP problem is 

obtained at ����, ���, �Ê� � = �3,0, 0�. 

 

Stage II: determination of the fuzzy stability set of the first kind ´(���, �� 

 

To determine the fuzzy stability set of the first kind ´(���, �� of the parametric fuzzy ML-MOFP problem, 

the coefficients of the linearized membership goals in the parametric form are recalculated and summarized 

in Table 3. and Table 4 respectively. 

 

Table 3. The coefficients of the linearized membership goals  �� �] + P�]��Ö ÄLM  ��] 
 

  �((��, �� �()��, �� �)(��, �� �� �\ + P�]��× Ø −1.1 + 0.588�−1.91−4.11 − 0.294�Ù×
  Ø 0−1.36 − 0.17�−1.02 − 0.17�Ù×

 Ø−1.714 − 0.183�−1.04 + 0.549�−1.41 Ù×
  

��] -1.47 0 -0.732 

 

Table 4. The coefficients of the linearized membership goals �� �] + P�]��Ö ÄLM  ��] 
 

  �))��, �� �F(��, �� �F)��, �� �� �\ + P�]��× Ø−0.649 + 0.54�−1.838 − 0.18�0.071 Ù×
  Ø 0−2.77 + 0.126�−2.138 Ù×

 Ø−0.896 + 0.672�−2.912 − 0.112�0.336 Ù×
  

��] -0.18 0 -0.224 

 

Therefore, the stability of parametric fuzzy ML-MOFP problem implies the stability of the parametric FGP 

model which is defined as follows: 

 <�� � = 0.294j��� + 0.17j��� + 0.183j��� + 0.18j��� + 0.126jÊ�� + 0.112jÊ��  GRSTDU& &H �−1.1 + 0.588���� − 1.91�� − �4.11 + 0.294���Ê + j��� − j��� = −1.47, 
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0�� − �1.36 + 0.17���� − �1.02 + 0.17���Ê + j��� − j��� = 0, −�1.714 + 0.183���� + �−1.04 + 0.549���� − 1.41�Ê + j��� − j��� = −0.732, �−0.649 + 0.54���� − �1.838 + 0.18���� +  0.071�Ê + j��� − j��� = −0.18, 0�� + �−2.77 + 0.126���� − 2.138�Ê + jÊ�� − jÊ�� = 0, �−0.896 + 0.672���� − �2.912 + 0.112���� + 0.336�Ê + jÊ�� − jÊ�� = −0.224, −�� − 2�� − 4�Ê + j��� ≤ 0, −�� − 2�� − �Ê + j��� ≤ 0, −2�� − �� − �Ê + j��� ≤ 0, −�� − 2�� − �Ê + j��� ≤ 0, −�� − 3�� − 2�Ê + jÊ�� ≤ 0, −�� − 3�� + jÊ�� ≤ 0, 2�� + �� + �Ê − S� ≤ 0, �� − 2�� + 3�Ê − S� ≤ 0, �� + 2��  ≥ 3, 3 + 7� ≤ S� ≤ 15 − 5�, 2 + 5� ≤ S� ≤ 12 − 5�, �� = 3, �� = 0, �Ê ≥ 0,  j��� , j��� , j��� , j��� , j��� , j��� , j��� , j��� , jÊ�� , jÊ�� , jÊ�� , jÊ�� ≥ 0. 
 

The Lagrangean function of the above parametric FGP model follows as: 

 7 = 0.294j��� + 0.17j��� + 0.183j��� + 0.18j��� + 0.126jÊ�� + 0.112jÊ��  + ¸��[�−1.1 + 0.588���� − 1.91�� − �4.11 + 0.294���Ê + j��� − j��� + 1.47]  +¸��[0�� − �1.36 + 0.17���� − �1.02 + 0.17���Ê + j��� − j��� ]  +¸��[−�1.714 + 0.183���� + �−1.04 + 0.549���� − 1.41�Ê + j��� − j��� + 0.732] +¸��[�−0.649 + 0.54���� − �1.838 + 0.18���� + 0.071�Ê + j��� − j��� + 0.18] +¸Ê�[0�� + �−2.77 + 0.126���� − 2.138�Ê + jÊ�� − jÊ�� ] +¸Ê�[�−0.896 + 0.672���� − �2.912 + 0.112���� + 0.336�Ê + jÊ�� − jÊ�� + 0.224] +»�[�� − 3] + »�[�� − 0] + r��[−�� − 2�� − 4�Ê + j��� ] + r��[−�� − 2�� − �Ê + j��� ] +r��[−2�� − �� − �Ê + j��� ] + r��[−�� − 2�� − �Ê + j��� ] +rÊ�[−�� − 3�� − 2�Ê + jÊ�� ] + rÊ�[−�� − 3�� + jÊ�� ] + Ú�[2�� + �� + �Ê − S�] +Ú�[�� − 2�� + 3�Ê − S�] + ÚÊ[−�� − 2�� + 3] + ¾�[S� − 15 + 5�] + ¾�[S� − 12 + 5�] +¿�[−S� + 3 + 7�] + ¿�[−S� + 2 + 5�] + ½[−�Ê] + À��[−j��� ] + Á��[−j��� ] +À��[−j��� ] + Á��[−j��� ] + À��[−j��� ] + Á��[−j��� ] + À��[−j��� ] + Á��[−j��� ] +ÀÊ�[−jÊ�� ] + ÁÊ�[−jÊ�� ] + ÀÊ�[−jÊ�� ] + ÁÊ�[−jÊ�� ]. 
 

where, �, ¸��, ¸��, ¸��, ¸��, ¸Ê�, ¸Ê�, »�, »� ∈ #,  and r��, r��, r��, r��, rÊ�, rÊ�, Ú�, Ú�, ÚÊ, ¿�, ¿�, ¾�, ¾�, ½ ≥ 0  also À��, À��, À��, À��, ÀÊ�, ÀÊ�, Á��, Á��, Á��, Á��, ÁÊ�, ÁÊ� ≥ 0  are the Lagrange multipliers. 

Therefore, the Kuhn-Tucker necessary optimality conditions corresponding to the parametric FGP model 

follows as: 

 Â7Â�( = �−1.1 + 0.588��¸�� − �1.714 + 0.183��¸�� + �−0.649 + 0.54��¸�� +�−0.896 + 0.672��¸Ê� + »� − r�� − r�� − 2r�� − r�� − rÊ� − rÊ� + 2Ú� +Ú� − Ú� = 0, 
 Â7Â�) = −1.91¸�� − �1.36 + 0.17��¸�� + �−1.04 + 0.549��¸�� − �1.838 + 0.18��¸�� +�−2.77 + 0.126��¸Ê� − �2.912 + 0.112��¸Ê� + »� − 2r�� − 2r�� − r�� − 2r�� −3rÊ� − 3rÊ� + Ú� − 2Ú� − 2ÚÊ = 0,  
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Â7Â�F = −�4.11 + 0.294��¸�� − �1.02 + 0.17��¸�� − 1.41¸�� + 0.071¸�� − 2.138¸Ê� +0.336¸Ê� − 4r�� − r�� − r�� − r�� − 2rÊ� + J� + 3J� − ½ = 0,    
 Â7ÂS� = −Ú� + ¾� − ¿� = 0, Â7ÂS� = −Ú� + ¾� − ¿� = 0, Â7Âj��� = 0.294 + ¸�� + r�� − À�� = 0,      Â7Âj��� = −¸�� − Á�� = 0, Â7Âj��� = 0.17 + ¸�� + r�� − À�� = 0,     Â7Âj��� = −¸�� − Á�� = 0,              Â7Âj��� = 0.183 + ¸�� + r�� − À�� = 0,    Â7Âj��� = −¸�� − Á�� = 0,              Â7Âj��� = 0.18 + ¸�� + r�� − À�� = 0,   Â7Âj��� = −¸�� − Á�� = 0, Â7ÂjÊ�� = 0.126 + ¸Ê� + rÊ� − ÀÊ� = 0,          Â7ÂjÊ�� = −¸Ê� − ÁÊ� = 0,           Â7ÂjÊ�� = 0.112 + ¸Ê� + rÊ� − ÀÊ� = 0,           Â7ÂjÊ�� = −¸Ê� − ÁÊ� = 0,          r��[−�� − 2�� − 4�Ê + j��� ] = 0,        �. D.   r�� = 0,   r��[−�� − 2�� − �Ê + j��� ] = 0,          �. D.   r�� = 0,   r��[−2�� − �� − �Ê + j��� ] = 0,          �. D.   r�� = 0,        r��[−�� − 2�� − �Ê + j��� ] = 0,           �. D.   r�� = 0,         rÊ�[−�� − 3�� − 2�Ê + jÊ�� ] = 0,         �. D.   rÊ� = 0,   rÊ�[−�� − 3�� + jÊ�� ] = 0,                     �. D.   rÊ� = 0, J�[2�� + �� + �Ê − S�] = 0,                    �. D.   Ú� = 0,   J�[�� − 2�� + 3�Ê − S�] = 0,                 �. D.   Ú� = 0,  ÚÊ[−�� − 2�� + 3] = 0,                            �. D.  ÚÊ ≠ 0, ¾�[S� − 15 + 5�] = 0,                              �. D.  ¾� = 0,  ¾��[S� − 12 + 5�]� = 0,                           �. D.   ¾� = 0, ¿�[−S� + 3 + 7�] = 0,                            �. D.   ¿� = 0, ¿�[−S� + 2 + 5�] = 0,                            �. D.   ¿� = 0, ½[−�Ê] = 0,                                                 �. D.    ½ ≠ 0,        À��[−j��� ] = 0,                                            �. D.   À�� = 0,  Á��[−j��� ] = 0,                                            �. D.  Á�� ≠ 0,  À��[−j��� ] = 0,                                            �. D.   À��  ≠ 0,   Á��[−j��� ] = 0,                                            �. D.  Á�� ≠ 0,   À��[−j��� ] = 0,                                            �. D.  À�� = 0,  
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Á��[−j��� ] = 0,                                            �. D.   Á�� ≠ 0,  À��[−j��� ] = 0,                                            �. D.    À�� = 0,   Á��[−j��� ] = 0,                                            �. D.    Á�� ≠ 0,  ÀÊ�[−jÊ�� ] = 0,                                            �. D.   ÀÊ� ≠ 0,  ÁÊ�[−jÊ�� ] = 0,                                            �. D.    ÁÊ� ≠ 0,  ÀÊ�[−jÊ�� ] = 0,                                            �. D.    ÀÊ� = 0, ÁÊ�[−jÊ�� ] = 0,                                            �. D.    ÁÊ� ≠ 0,  −�� − 2�� − 4�Ê + j��� ≤ 0, −�� − 2�� − �Ê + j��� ≤ 0, −2�� − �� − �Ê + j��� ≤ 0, −�� − 2�� − �Ê + j��� ≤ 0, −�� − 3�� − 2�Ê + jÊ�� ≤ 0, −�� − 3�� + jÊ�� ≤ 0, 2�� + �� + �Ê − S� ≤ 0, �� − 2�� + 3�Ê − S� ≤ 0, −�� − 2�� + 3 ≤ 0, 3 + 7� ≤ S� ≤ 15 − 5�, 2 + 5� ≤ S� ≤ 12 − 5�, �� = 3, �� = 0,  �Ê ≥ 0,  j��� , j��� , j��� , j��� , j��� , j��� , j��� , j��� , jÊ�� , jÊ�� , jÊ�� , jÊ�� ≥ 0. 
 

Solving the above system of equations we get: ¸�� = −0.294, ¸�� = −0.183, ¸�� = −0.18, ¸Ê� =−0.112, −0.17 ≤ ¸�� ≤ 0, −0.126 ≤ ¸Ê� ≤ 0, Á�� = 0.294, Á�� = −¸��, Á�� = 0.183, Á�� = 0.18,  ÁÊ� = −¸Ê�, ÁÊ� = 0.112 and  »�, »� ∈ #  also, r�� = r�� = r�� = r�� = rÊ� = rÊ� = Ú� =Ú� =  ¾� = ¾� = ¿� = ¿� = À�� = À�� =  À�� =  ÀÊ� = 0, and À��, ÀÊ�, ½, ÚÊ ≥ 0. 
 

The above system of equations is reduced to the following system of equations: 

 �−1.1 + 0.588��¸�� − �1.714 + 0.183��¸�� + �−0.649 + 0.54��¸�� + �−0.896 + 0.672�� ¸Ê� + »� − ÚÊ = 0, −1.91¸�� − �1.36 + 0.17��¸�� + �−1.04 + 0.549��¸�� − �1.838 + 0.18��¸�� + �−2.77 +0.126�)¸Ê� − �2.912 + 0.112��¸Ê� + »� − 2ÚÊ = 0,   
 �−4.11 − 0.294��¸�� − �1.02 + 0.17��¸�� − 1.41¸�� + 0.071¸�� − 2.138¸Ê� + 0.336¸Ê� − ½ = 0,  
 

Therefore, the fuzzy stability set of the first kind for the parametric fuzzy ML-MOFP problem of the 

numerical example is given by: 

 

´��3,0, 0, �� = Û� ∈ #,     � ∈ [0,1]Ü3.679 + [−0.281 − 0.34¸�� + 0.126¸Ê�]� − 2.38¸�� − 4.91¸Ê�+»� + »� − 3JÊ − ½ = 0,      »�, »� ∈ #, JÊ, ½ ≥ 0,                           −0.17 ≤ ¸�� ≤ 0,   − 0.126 ≤ ¸Ê� ≤ 0,                                             3 + 7� ≤ S� ≤ 15 − 5�, 2 + 5� ≤ S� ≤ 12 − 5�.                 Ý 

 

7 Conclusion and Summary 

 
In the present research, the fuzzy stability set of the first kind for the parametric fuzzy ML-MOFP problem 

has been presented. Some basic stability notions like the set of feasible parameters and the solvability set 

have been defined for such problem. Moreover, FGP approach has been extended to find an �-Pareto 

optimal solution for parametric fuzzy ML-MOFP problem. In FGP approach, the membership functions for 
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the defined fuzzy goals are developed. Also, in the proposed approach, linearization of membership goals of 

the objective functions is presented. Then, the highest degree of each of these membership goals is achieved 

by minimizing the sum of the negative deviational variables. After obtaining the compromise solution, the 

Lagrangian function is formulated. To obtain the fuzzy stability set of the first kind, the Kuhn-Tucker 

necessary optimality conditions are developed. A procedure has been suggested for the determination of the 

fuzzy stability set of the first kind for such problem.  

 

Several open points for research in the area of parametric ML-MOFP problems, from our point of view, to 

be studied in the future. Some of these points are given in the following: 

 

1. Interactive algorithm is needed for dealing with parametric fuzzy multi-level multi-objective 

fractional programming with fuzzy demands. 

2. Interactive algorithm is needed for dealing with parametric rough multi-level multi-objective 

fractional programming. 

3. Fuzzy goal programming algorithm is required for treating parametric multi-level multi-objective 

fractional in rough environment. 
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