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Abstract

The field-aligned anisotropy of the solar wind turbulence, which is quantified by the ratio of the parallel to the
perpendicular correlation (and Taylor) length scales, is determined by simultaneous two-point correlation
measurements during the time period 2001–2017. Our results show that the correlation scale along the magnetic
field is the largest, and the correlation scale in the field-perpendicular directions is the smallest, at both solar
maximum and solar minimum. However, the Taylor scale reveals inconsistent results for different stages of the
solar cycles. During the years 2001–2004, the Taylor scales are slightly larger in the field-parallel directions, while
during the years 2004–2017, the Taylor scales are larger in the field-perpendicular directions. The correlation
coefficient between the sunspot number and the anisotropy ratio is employed to describe the effects of solar activity
on the anisotropy of solar wind turbulence. The results show that the correlation coefficient regarding the Taylor
scale anisotropy (0.65) is larger than that regarding the correlation scale anisotropy (0.43), which indicates that the
Taylor scale anisotropy is more sensitive to the solar activity. The Taylor scale and the correlation scale are used to
calculate the effective magnetic Reynolds number, which is found to be systematically larger in the field-parallel
directions than in the field-perpendicular directions. The correlation coefficient between the sunspot number and
the magnetic Reynolds number anisotropy ratio is −0.75. Our results will be meaningful for understanding the
solar wind turbulence anisotropy and its long-term variability in the context of solar activity.

Unified Astronomy Thesaurus concepts: Solar wind (1534); Interplanetary turbulence (830); Magnetohydrody-
namics (1964); Space plasmas (1544); Solar activity (1475); Solar cycle (1487); Sunspots (1653)

1. Introduction

Plasma turbulence is a common phenomenon occurring in
nature, and the turbulence in the heliosphere plays a significant
role in several aspects of space plasma behaviors, such as high-
energy particle acceleration, solar wind generation, plasma
heating, galactic cosmic-ray modulation, and solar energetic
particle propagation (Kraichnan 1965; Belcher 1971; Mat-
thaeus & Goldstein 1982a, 1982b; Tu & Marsch 1995;
Chen 2016; He & Wan 2019). Recently, the anisotropy has
become one of the important aspects of the investigations of the
solar wind, especially of the solar wind turbulence (e.g.,
Horbury et al. 2012). The turbulence anisotropy may affect the
acceleration and transport of energetic particles, the heating of
plasmas, and the propagation of cosmic rays in the heliosphere
(Jokipii 1968a, 1968b; Jokipii & Hollweg 1970; Velli 2003;
Duffy & Blundell 2005; He 2015).

One task in the field of solar wind turbulence anisotropy is to
find a theoretical model for describing the turbulence
anisotropy. In the solar wind observations, there are several
types of fluctuation anisotropy, e.g., variance anisotropy,
energy transfer rate anisotropy, power anisotropy, and correla-
tion anisotropy (also known as spectral anisotropy or
wavevector anisotropy). Of most interest is the correlation

anisotropy (Duffy & Blundell 2005; Osman & Horbury 2007).
At present, there exist three models for the correlation
anisotropy, i.e., the “slab” model, the two-dimensional (2D)
model, and the slab+2D composite model. According to the
slab model, the correlation function decays in the directions
parallel to the mean magnetic field, but without field-
perpendicular variations. This means that the correlation
function has the shortest scales in the directions parallel to
the mean magnetic field and the longest scales in the field-
perpendicular directions. In contrast, the 2D model considers
that the correlation function decays only in the directions
perpendicular to the mean magnetic field. The slab+2D two-
component model was proposed by Matthaeus et al. (1990).
They found that the turbulence is not consistent with either the
slab model or the 2D model, but shows a “Maltese cross”
shape. Therefore, they used a superposition of the slab model
and the 2D model to interpret this phenomenon. Bieber et al.
(1996) took the ratio of the perpendicular to quasi-parallel
power spectra to quantify the anisotropy of the turbulence, and
showed that near 80% of the energy is in the 2D component
and 20% in the slab component. Further, Dasso et al. (2005)
found that in the fast solar wind and at the larger scale of the
inertial range, the correlation scales are longer in the field-
perpendicular directions than in the field-parallel direction (slab
model), whereas for the slow solar wind situation, the 2D
component is predominant. Later, a similar result was obtained
by Weygand et al. (2011). Despite that the two-component
model is a rather idealized model with drastic approximation, it
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can present the dominant properties of the solar wind
turbulence and provide a useful parameterization for the
anisotropy studies (Matthaeus et al. 1990; Bieber et al. 1996;
Dasso et al. 2005; Oughton & Matthaeus 2005; Osman &
Horbury 2007; Weygand et al. 2009, 2011; Horbury et al.
2012).
In most studies, a consensus conclusion can be found: the

correlation length scales of the turbulent eddies in the
directions parallel to the local mean magnetic field B0 are
much larger than those in the directions perpendicular to B0.
This indicates that the anisotropy of the correlation length
scales is dominated by the 2D model. However, this is not the
case for the dissipation scales. As the energy cascade proceeds
to smaller scales, and reaches the plasma microscales, such as
ion cyclotron (inertial) scales, electron cyclotron (inertial)
scales, and possibly even smaller scales, the dissipation and
heating processes are usually thought to take place. At
dissipation scales, the observations of correlation anisotropy
appear to be a little confusing (Chen 2016). On one hand,
Weygand et al. (2009) found that the Taylor scale, which is
related to the dissipation scale (Tennekes & Lumley 1972;
Weygand et al. 2005), is independent of the directions relative
to the mean magnetic field. On the other hand, some studies
showed that the slab component dominates the anisotropy near
the dissipation scales (Hamilton et al. 2008; Tessein et al. 2011;
Smith et al. 2012), while others argued that the 2D component
remains dominant (Chen et al. 2010; Sahraoui et al. 2010;
Narita et al. 2011; Comişel et al. 2014; Perschke et al. 2014).
Podesta (2009) also pointed out that the anisotropy near
dissipation scales exhibits an even more complex behavior. The
reason leading to this phenomenon might be that different
studies may use different techniques, and the distinct scale
ranges can influence the results as well. Another possible
reason, which will be tested in this work, is that the Taylor
scale is apt to be affected by the solar wind conditions in the
context of long-term variations.

Most of the previous work has been done with single-
spacecraft measurements and the frozen-in flow assumption
was usually used when the mean velocity was supersonic and
super-Alfvénic (Matthaeus et al. 1990; Bieber et al. 1996;
Oughton & Matthaeus 2005; Osman & Horbury 2007). This
situation has to some degree been improved in recent years due
to the increasing exploration missions in the near-Earth solar
wind. Multispacecraft analyses that can directly characterize
the turbulence anisotropy without invoking the frozen-in
approximation have achieved significant progress by employ-
ing modern techniques such as simultaneous two-point
correlation functions (Matthaeus et al. 2005). In this work,
we examine the correlation anisotropy in the solar wind
fluctuations during 2001 January to 2017 December, which
covers an entire solar cycle. The effects of solar activity on the
turbulence anisotropy are investigated. As usual, the anisotropy
is quantified by the ratio of the field-perpendicular to the field-
parallel correlation (Taylor) length scales. This Letter is
structured as follows. In Section 2, we provide a detailed
description of the method and procedure of the two-point
measurements. In Section 3, we calculate the correlation
(Taylor) length scale in each angular bin during different time
ranges, and discuss how the solar activity influence the
anisotropy of the space plasma turbulence. A summary of our
results will be provided in Section 4.

2. Methods and Procedure

In the simple scenario of homogeneous turbulence, the
means, variances, and correlation values of the fluctuations
should be independent of the choice of the coordinate system
origin (Batchelor 1953; Tennekes & Lumley 1972;
Barnes 1979; Batchelor 2000). For a magnetic field B(x,
t)= B0+ b, the mean is á ñ =B B0, the fluctuation is
b=B− B0, and the variance is s = á ñb2 2∣ ∣ . The two-point
correlation coefficient is

s
= á + ñr b x b x rR

1
. 1

2
( ) ( ) · ( ) ( )

Here r is the separation between the two points x and x+ r. For
homogeneity, R and B0 are independent of x. The á ñ... denotes
an ensemble average, which is determined by a suitably chosen
time-averaging procedure. The direction-averaged correlation
scale is defined as (Matthaeus et al. 2005)

ò=
¥

L R r dr. 2
0

( ) ( )

Therefore, an ansatz function form of R(r) can be derived from
Equation (2) as R(r)∼ e− r/ L; thus, R(r)= 1 for r= 0 and
R→ 0 for r→∞ . Similarly, the Taylor scale λ can be
determined from R(r) as well. The Taylor scale is the length
scale associated with the second-order expansion of the two-
point correlation function R(r) evaluated at zero separation.
That is to say, the Taylor scale is the radius of curvature of the
correlation function at the origin, and can be obtained from the
expression l~ -R r r1 2 2( ) ( ) (for more details, see
Matthaeus et al. 2005 and Weygand et al. 2007). With these
definitions, the effective magnetic Reynolds number can be
obtained from the following expression:

l
=R

L
. 3m
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2
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The magnetic field data used in this investigation were
measured by the triaxial fluxgate magnetometers on board
spacecraft Advanced Composition Explorer (ACE), Wind, and
Cluster during the time period from 2001 January to 2017
December. In our previous work, we have presented the
procedures for determining R(r), L, λ, and Rm

eff from multi-
spacecraft data, and have shown some novel results of these
scales during an entire solar cycle (Zhou et al. 2020). In this
work, we use sufficient samples to resolve the correlations into
angular bins that deviate from the direction parallel to the mean
magnetic field, and further investigate the relationship between
the correlation anisotropy and the solar activity.
In the analyses, we interpolate the spacecraft data (ACE-

Wind and Cluster) to 1 minute resolution to obtain the field
vectors at different positions. Note that the Cluster’s orbit was
in proximity to the magnetosphere. Therefore, the foreshock
waves were sometimes present in the solar wind measurements.
To reduce the influences of the foreshock waves, in our
investigations the magnetic field measurements from the
Cluster spacecraft in the solar wind are averaged to 1 minute
resolution, which is much longer than the longest period for ion
foreshock waves (approximately 30 s). Similar procedure for
processing Cluster data was adopted by Weygand et al.
(2007, 2011). The individual correlation estimates from the
ACE-Wind data are computed by averaging over 24 hr
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contiguous intervals of measurements. However, the correla-
tion estimates from the Cluster data are calculated by averaging
over 2 hr intervals of measurements, since the Cluster space-
craft do not remain in the solar wind for long periods. The
entire data set during 2001–2017 is divided into fifteen 3 yr
time periods (2001–2003, 2002–2004, K, 2014–2016,
2015–2017). In each 3 yr time period, the data intervals
(approximately five hundred 24 hr intervals for ACE-Wind data
and one thousand 2 hr intervals for Cluster data) are randomly
selected for calculating the correlation scales and the Taylor
scales. For a detailed description of the technical procedures,
we refer the reader to our previous work of Zhou et al. (2020).
In each data interval, we calculate the mean magnetic field by
averaging the magnetic field vector over the entirety of the data
interval, and further compute the magnetic field vector’s time-
averaged two-point correlation coefficients. This value is
assigned to the time-averaged separation distance between the
corresponding two spacecraft in the corresponding interval. We
then determine the average value of these separation values
along the field-parallel directions (x-axis) and the field-
perpendicular directions (y-axis) with respect to the mean
magnetic field, and assign it into the angular bin. Every angular
bin is 10° wide except the bin near the field-parallel direction,
which is set to be 30° wide (due to the consideration of the
fewer intervals close to the parallel direction of the mean
magnetic field). This angular division scheme is adopted from
Weygand et al. (2009, 2011). We note that using width of 20°
or 10° for the angular bin near the field-parallel direction will
not qualitatively affect the obtained values for the correlation
scales. Nevertheless, using the width of 20° or 10° for the
angular bin near the field-parallel direction will lead to some
negative (invalid) values of the obtained Taylor scales therein,
due to the limited valid data in the angular bin. Therefore, we
decide to use the width of 30° for the first bin (near the field-
parallel direction), as in Weygand et al. (2009, 2011).

As an example, the top panel of Figure 1 shows the
distribution of the data of the separation distances in the
directions parallel to and perpendicular to the mean magnetic
field during the divided time period 2005–2007, and the bottom
panel of Figure 1 displays the corresponding plot of the
correlation function contour. As we can see, the values of the
correlation coefficients vary more sharply in the field-perpend-
icular directions than in the field-parallel directions, which
indicates that the correlation length scales are the largest along
the mean magnetic field and the smallest in the field-
perpendicular directions (approximately 2D-dominant). The
ratio of the field-parallel to the field-perpendicular correlation
length scales is 1.63, which is similar to the result of
1.79± 0.36 proposed by Osman & Horbury (2007).

We obtain all the values of the correlation scale and the
Taylor scale in different angular bins during each divided time
period, and calculate the ratio of the field-parallel to the field-
perpendicular values. In this work, we use the sunspot number
as the indicator of the solar activity and solar cycle
(Parker 1979; Hathaway 2010). Then we can investigate the
solar-cycle variability of the anisotropy of the solar wind
turbulence.

3. Results and Discussion

3.1. Results

The top panel of Figure 2 shows the distribution of the
correlation length scales in different angular bins during the
time period 2001–2017. The values of the correlation length
scale are determined from the robust fittings of the correlation
function with the exponential form as discussed in Section 2.
As one can see, the correlation length scale decreases
systematically from the field-parallel to the field-perpendicular
directions. Based on these data, we further determine the ratio
of the parallel to the perpendicular correlation scales in each
divided time period, and calculate the smoothed results with the
Gaussian smoothing method for reducing the impact of extreme
values. The bottom panel of Figure 2 reveals the evolution of
the sunspot number and the ratio of the parallel to the
perpendicular correlation scales. The minimum ratio of the
parallel to the perpendicular correlation scales is 1.33, and the
maximum ratio is 1.70. The mean value of all the correlation

Figure 1. Top: distribution of the spacecraft separation distances in the field-
parallel and field-perpendicular directions during the years 2005–2007. The
dashed lines denote the boundaries of the angular bins, and the circles denote
the spacecraft separations within the corresponding angular bins. Bottom:
contour plot for the correlation function during the time period 2005–2007. The
color scale bar denotes the values of the corresponding correlation coefficients.
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scale ratios is 1.48, which is similar to the results provided in
Dasso et al. (2005) and Osman & Horbury (2007). As we can
see, all the correlation scale ratios are larger than 1. This result
indicates that in the solar wind turbulence, the correlation
length scale is anisotropic, and the 2D component is dominant.
The correlation coefficient between the sunspot number and the
anisotropy ratio of the correlation scale is 0.43, which suggests
that there exists a moderately positive correlation between the
solar activity and the anisotropy of the correlation length scales.
Therefore, the influence of the solar activity on the anisotropy
of the correlation length scales is moderate.

The top panel of Figure 3 displays the distribution of the
Taylor length scales. The values of the Taylor length scale in
each angular bin and during every divided time period are
determined from the Richardson extrapolation method dis-
cussed in Weygand et al. (2007). Dissimilar to the correlation
length scales shown in Figure 2, the Taylor length scales
present more complex variations across the different angular

bins. During the years 2001–2004, the Taylor length scales
along the mean magnetic field are slightly larger than those
along the field-perpendicular directions. During the years
2004–2017, however, the Taylor length scales are larger in
the field-perpendicular directions. In addition, the Taylor length
scales in the 40°–70° angular bins seem to be relatively larger.
In general, the three-dimensional (3D) diagram of the Taylor
length scales displays a “double-peak structure” in some
divided time periods. Based on these data, we can determine
the ratio of the parallel to the perpendicular Taylor length
scales, and can calculate the smoothed results with the
Gaussian smoothing method. The bottom panel of Figure 3
presents the evolution of the sunspot number and the ratio of
the parallel to the perpendicular Taylor length scales. The
minimum of the ratios of the parallel to the perpendicular
Taylor scales is 0.37, and the maximum is 1.16. The averaged
value of all the Taylor scale ratios is 0.68, which is similar to
the result 0.91± 0.45 implied in Weygand et al. (2009). As

Figure 2. Top: distribution of the correlation length scales in different angular
bins during the time period 2001–2017. The color scale bar on the right shows
the values of the correlation scales. Bottom: evolution of the sunspot number
and the ratios of the parallel to the perpendicular correlation scales during the
period 2001–2017. The squares denote the ratios of the correlation scales, and
the blue curve denotes the smoothed results of the ratios. The red histogram
denotes the sunspot number in the divided time ranges. The inset shows the
variations of the ratios of the correlation scales with the increase of the sunspot
number. The correlation coefficient between the sunspot number and the
anisotropy ratios of the correlation scales is 0.43.

Figure 3. Top: distribution of the Taylor length scales in different angular bins
during the time period 2001–2017. The color scale bar on the right shows the
values of the Taylor scales. Bottom: evolution of the sunspot number and the
ratios of the parallel to the perpendicular Taylor scales during the period
2001–2017. The diamonds denote the ratios of the Taylor scales, and the blue
curve denotes the smoothed results of the ratios. The red histogram denotes the
sunspot number in the divided time ranges. The inset shows the variations of
the ratios of the Taylor scales with the increase of the sunspot number. The
correlation coefficient between the sunspot number and the anisotropy ratios of
the Taylor scales is 0.65.
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shown, most of the Taylor scale ratios are smaller than 1, which
indicates that in the solar wind turbulence, the Taylor length
scale is generally anisotropic, and the slab component is
dominant. The correlation coefficient between the sunspot
number and the anisotropy ratio of the Taylor scale is 0.65.
This result suggests that there exists a relatively strong positive
correlation between the solar activity and the anisotropy of the
Taylor length scales.

The top panel of Figure 4 presents the distribution of the
effective magnetic Reynolds number. The values of the
effective magnetic Reynolds number in each angular bin and
during each divided time period are calculated by using
Equation (3). As shown in the previous results of Zhou et al.
(2020), the effective magnetic Reynolds number is closely
related with the solar activity. During the period 2001–2017,
the minimum and maximum values of the effective magnetic

Reynolds number are 96,467.7 and 692,071.1, respectively,
and the averaged value of the effective magnetic Reynolds
number is 302,827.4 (Zhou et al. 2020). For a clearer
illustration, here we use a logarithmic unit in presenting the
results of the effective magnetic Reynolds number. As one can
see, the effective magnetic Reynolds number in the field-
parallel directions is systematically larger than that in the field-
perpendicular directions, which means that the 2D component
is approximately dominant. The bottom panel of Figure 4
shows the evolution of the sunspot number and the ratio of the
parallel to the perpendicular effective magnetic Reynolds
number during the years 2001–2017. The minimum and
maximum ratios of the parallel to the perpendicular effective
magnetic Reynolds numbers are 1.09 and 1.27, respectively,
and the mean value of all the ratios of the effective magnetic
Reynolds number is 1.15, which is quite similar to the values of
∼1.14 computed from the results presented in Weygand et al.
(2009). The correlation coefficient between the sunspot number
and the anisotropy ratio of the effective magnetic Reynolds
number is −0.75, which indicates that there exists a relatively
strong negative correlation between the solar activity and the
anisotropy of the effective magnetic Reynolds number. That is
to say, the effective magnetic Reynolds number is less
anisotropic during a solar maximum.

3.2. Discussion

As shown in Figure 2, the anisotropy of the correlation
length scale is only weakly affected by the solar activity,
namely, the anisotropy of the correlation scale is relatively
stable during the whole solar cycle. In addition, the anisotropy
of the correlation length scales is dominantly controlled by the
2D component, which is consistent with the previous studies.
Due to the weak dependence on the solar activity, the
anisotropy values of the correlation scale investigated by
different authors during different phases of solar cycles usually
reveal the similar results.
Although consistent results can be found for the anisotropy

of the correlation scale, this is not the case for the anisotropy of
the Taylor (and/or dissipation) scale. At the Taylor and
dissipation scales, the observational investigations of the
correlation anisotropy usually present inconsistent results.
These conflicting results in the literature can be reconciled by
our findings in this work. As shown in Figure 3, the correlation
coefficient between the sunspot number and the ratio of the
field-parallel to the field-perpendicular Taylor length scales is
0.65, which indicates that the effects of the solar activity on the
correlation anisotropy near the Taylor scales are relatively
strong. Therefore, the anisotropy of the Taylor scale is
relatively unstable and varies with the declining and rise
activity phases of solar cycles. Specifically, the anisotropy of
the Taylor scale is 2D-component dominated during the strong
solar activity phases, and is slab-component dominated during
the weak solar activity phases. This finding suggests that the
long-term solar activity variations may significantly affect the
anisotropy of the Taylor scales. In addition, the 3D diagram of
the Taylor length scales in Figure 3 displays a “double-peak”
structure in some divided time ranges. The Taylor length scales
in the angular bins 40°–70° are relatively large. During the
years 2011–2015 (solar maximum), this phenomenon is more
pronounced.
The distribution of the correlation length scales does not

show obvious “double-peak” structure. Instead, it displays a

Figure 4. Top: distribution of the effective magnetic Reynolds number (in
logarithmic unit) in different angular bins during the time period 2001–2017.
The color scale bar on the right shows the values of the effective magnetic
Reynolds number in logarithmic unit. Bottom: evolution of the sunspot number
and the ratios of the parallel to the perpendicular effective magnetic Reynolds
number (logarithmic unit) during the period 2001–2017. The circles denote the
ratios of the effective magnetic Reynolds number, and the blue curve denotes
smoothed results of the ratios. The red histogram denotes the sunspot number
in the divided time ranges. The inset displays the variations of the ratios of the
effective magnetic Reynolds number with the increase of the sunspot number.
The correlation coefficient between the sunspot number and the anisotropy
ratios of the effective magnetic Reynolds number is −0.75.
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relatively small gradient in the angular bins 40°–70°, especially
at the solar maximum. Combining the behaviors of the
correlation scales and the Taylor scales, we can find that both
these scales show some unusual properties near the angle of
50°. To specifically investigate this interesting phenomenon,
we calculate the correlation coefficients between the sunspot
number and both the correlation length scales and the Taylor
length scales in each angular bin, and present the results in
Table 1. As we can see, the values of the correlation
coefficients for the correlation scales decrease when the
angular bins vary from 0°–30° (approximately field-parallel)
to 40°–60°. In the angular bins 40°–50° and 50°–60°, the
correlation coefficients become very small (i.e., 0.04± 0.09
and 0.05± 0.05). These nearly zero values indicate that the
correlation scales in these directions are not affected by the
solar activity. However, the correlation coefficient in the
angular bin 0°–30° (nearly field-parallel) is large (i.e.,
0.57± 0.03). This result suggests that the correlation scale in
the field-parallel direction is considerably affected by the solar
activity. This finding will be useful for understanding the
anisotropy of the correlation scales. For the Taylor scales, the
values of the correlation coefficients generally increase when
the angular bins vary from 0°–30° (nearly field-parallel) and
80°–90° (nearly field-perpendicular) to 50°–60°. Therefore,
near the angular bin 50°–60°, where the value of the correlation
coefficient is 0.95± 0.02, the Taylor scale is most easily
influenced by the solar activity. We note that in all directions
relative to the mean magnetic field, the solar activity
significantly influences the Taylor scales. This is one
manifestation of the complexity of the Taylor scale anisotropy.

In this work, we do not investigate the specific effects of
fast/slow solar wind on the correlation scale anisotropy and the
Taylor scale anisotropy, which is also an interesting topic in the
field of solar wind turbulence and was investigated by
Weygand et al. (2011). To compare with the results in
Weygand et al. (2011) and other relevant works in the context
of fast/slow solar wind may be the subject of our future work.
In this Letter, we primarily investigate the solar-cycle
variations of the anisotropy of Taylor scale and correlation
scale. Note that we mainly present the experimental observa-
tion results of the solar-cycle variations of the anisotropy in the
solar wind turbulence. A detailed discussion and explanation
regarding the physical mechanism of this phenomenon may be
one topic of our future work.

4. Summary

Based on the simultaneous two-point correlation function
measurements, in this work we investigate the solar-cycle
variations of the anisotropy of the correlation scales and the
Taylor scales in the solar wind turbulence. The magnetic field
data used in this investigation were measured by the triaxial
fluxgate magnetometers on board spacecraft ACE, Wind, and
Cluster during the period from 2001 January to 2017
December, which covers more than an entire solar cycle. The
data accumulated over a long time are sufficient to study the

effects of long-term solar activity on the anisotropy of the solar
wind turbulence. Generally, the correlation scale length
decreases with the relative angle between magnetic field
fluctuation and the average magnetic field, independent of the
solar activity. The averaged value of all the ratios of the
correlation scales is 1.48, which is similar to the results
presented in Dasso et al. (2005) and Osman & Horbury (2007).
The correlation coefficient between the sunspot number and the
anisotropy ratios of the correlation scales is 0.43, which
indicates that the influence of the solar activity on the
anisotropy of the correlation length scales is not so significant.
Furthermore, we find that the anisotropy of the correlation
scales is dominated by the 2D component. However, this is not
the case for the anisotropy of the Taylor (and/or dissipation)
scales. The minimum ratio of the parallel to the perpendicular
Taylor scales is 0.37, and the maximum ratio is 1.16. The
averaged value of all the ratios is 0.68, which is consistent with
the values of 0.91± 0.45 calculated from the results in
Weygand et al. (2009). The correlation coefficient between
the sunspot number and the anisotropy ratios of the Taylor
scales is 0.65, which indicates that the anisotropy of the Taylor
scales is relatively significantly affected by the long-term solar
activity. We further find that near/during the solar maximum,
the anisotropy of the Taylor scale is 2D-component dominated,
while near/during the solar minimum, the anisotropy of the
Taylor scale is slab-component dominated.
Using the Taylor scales and the correlation scales, we further

determine the value of the effective magnetic Reynolds number
for each angular bin. We find that the effective magnetic
Reynolds number in the field-parallel directions is system-
atically larger than that in the field-perpendicular directions,
which indicates that the 2D component is dominant. The
averaged value of all the ratios of the effective magnetic
Reynolds number is 1.15, which agrees well with the values of
∼1.14 calculated from the results shown in Weygand et al.
(2009). The correlation coefficient between the sunspot number
and the anisotropy ratios is −0.75, which implies that there
exists a relatively strong negative correlation between the solar
activity and the anisotropy of the effective magnetic Reynolds
number.
In addition, the correlation coefficient between the sunspot

number and the Taylor length scales is systematically larger
than that between the sunspot number and the correlation
length scales. This result means that the Taylor scale is more
easily influenced by the long-term solar activity than the
correlation scale. Furthermore, the correlation scales near the
field-parallel and field-perpendicular directions are most easily
affected by the solar activity among all the directions.
However, the Taylor scales in all directions relative to the
mean magnetic field are significantly influenced by the long-
term solar activity. These results will be very useful for better
understanding the anisotropy of the solar wind turbulence and
especially its solar-cycle variability.

Table 1
Values of Correlation Coefficients between Sunspot Number and Correlation Length Scales and Taylor Length Scales in Different Angular Bins during 2001–2017

0°–30° 30°–40° 40°–50° 50°–60° 60°–70° 70°–80° 80°–90°

Correlation scale 0.57 ± 0.03 0.31 ± 0.11 0.04 ± 0.09 0.05 ± 0.05 0.56 ± 0.05 0.65 ± 0.05 0.34 ± 0.09
Taylor scale 0.84 ± 0.03 0.81 ± 0.05 0.91 ± 0.03 0.95 ± 0.02 0.88 ± 0.05 0.89 ± 0.03 0.90 ± 0.02
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