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Abstract

Future, large-scale, exoplanet direct-imaging missions will be capable of discovering and characterizing Earth-like
exoplanets and star systems like our solar system. However, a telescope capable of detecting Earth-like exoplanets
would also be sensitive to a myriad of non-Earth-like exoplanets in the exoplanet population with the same
instantaneous planet–star separation (s) and planet–star difference in magnitude (Δmag). Here, we consider the
solar system as a previously unexplored exosystem, viewed by an external direct-imaging observer for the first
time. We find that an external observer could see as many as six (s, Δmag)-coincidence locations between the
Earth and other solar system planets. We determine locations of (s, Δmag)-coincidence of solar system planets
using realistic planet phase functions and planet properties. By varying system inclinations, we found 36%–69% of
inner planet orbits and 1%–4% of outer planet orbits share at least one (s, Δmag)-coincidence with the Earth.

Unified Astronomy Thesaurus concepts: Direct imaging (387); Exoplanet astronomy (486); Exoplanet systems
(484); Solar system (1528)

1. Introduction

Future exoplanet direct-imaging missions seek to both
discover and spectrally characterize Earth-like exoplanets
(HabEx Study Team 2019). Spectral characterizations of
Earth-like exoplanets with coronagraphs or starshades take
substantially more time than detection observations. Detection
observations are designed to maximize detection probability
while minimizing integration time (Keithly et al. 2020). HabEx
Study Team (2019) considers a planet to be detected when the
planet has signal-to-noise ratio greater than 7. These observa-
tions are planned to be made with coronagraphs, over a portion
of the visible spectrum (565± 56 nm; Keithly et al. 2020)
where most planet–star flux ratios are largest (Madden &
Kaltenegger 2018). Between three and four detection observa-
tions are required to fit a single detected planet’s semimajor
axis, eccentricity, and inclination with sufficient certainty to
identify the planet as within the Habitable Zone and justify a
follow-up spectral characterization (Guimond & Cowan 2019;
Horning et al. 2019). HabEx Study Team (2019) optimizes and
plans observations of Earth analogs in isolation, assuming no
other planets exist in the system or that the Earth-like planet
can be distinctly identified from the other planets when it is first
detected. Considering other non-Earth-like planets like this
introduces a planet classification confusion problem when other
planets are included as exemplified by the Neptune–Earth false-
positive Monte Carlo study in Guimond & Cowan (2018).

In this Letter, we focus on the first direct image of solar
system planets where only estimates of the planet–star
separation (s) and planet–star difference in magnitude (Δmag)
for detected planets are measured. We assume each of the
exoplanets detected are spatially resolved. Even if the limited
information collected indicates an exoplanet has an (s, Δmag)
characteristic of an Earth-like exoplanet, it is not possible to
discern with certitude that the exoplanet is Earth-like. While

orbit fitting of multiple simultaneously detected and resolved
exoplanets could preclude this, it is possible for multiple
exoplanets to be detected and the Earth-like exoplanet be
indiscernible from non-Earth-like exoplanets.
While the set of potential planets around a host star has a broad

diversity and the habitability classification is broadly defined, we
choose to study the classification confusion problem of our own
solar system treated as an exosystem. We are motivated to do this
for multiple reasons. The decadal survey seeks insight and
answers as to how our solar system was formed and how it fits
into the vast collection of other planetary systems (National
Research Council 2011a). The abundance or rarity of planetary
systems similar to the solar system is currently unknown
(National Research Council 2011b; Committee on Exoplanet
Science Strategy 2019). Future exoplanet direct-imaging missions
will have the capability to discover solar-system-like star systems
(HabEx Study Team 2019). Engineers are motivated to design
future telescopes to the most strict requirements stemming from
the challenges of detecting Earth-like exoplanets, meaning many
other types of exoplanets in the star system will also be detected
(HabEx Study Team 2019). Third, we know more about the solar
system planets than any other planets in the galaxy thanks to the
multitude of missions and studies of these bodies.
For this analysis, we make several simplifying assumptions

about the solar system planets. First, we assume the planets are
spherical, allowing us to use their volumetric mean radius (R).
Second, we assume the combination of the geometric albedo (p)
and phase function to be sufficient to describe the fraction of
incident light reflected. We use the high-order polynomial model
fit planetary phase functions from Mallama & Hilton (2018) to
account for the unique reflective properties of each body. Third,
we assume the planets have circular orbits. As we can see from
Table 1, with the exception of Mercury, the eccentricities (e) are
small (0.05). An eccentricity of 0.05 would change apoastron
and periastron by ∼5%, thus maximally changing the net
planetary flux by ∼10%. Assuming circular orbits allows
substantial simplification of the s and Δmag functions. Fourth,
we assume all planets lie in a common system angular
momentum plane. Table 1 contains the inclinations of solar
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system planets from the ecliptic, each varying by a few degrees.
This would affect some (s, Δmag)-coincidences, particularly
between interior and exterior planets. We include a summary of
the planet parameters used in this work in Table 1.

Using this model for the solar system, we will show that an
external observer would find that many of our planetary bodies
have multiple points of (s, Δmag)-coincidence along their
orbits. In Section 2 we present the underlying planet
photometric and astrometric models and how we combine
them to get continuous phase curves spanning the entire range
of phase angles. Appendix contains the melded planet phase
curves derived from Mallama & Hilton (2018). In Section 3 we
show our process for finding the locations of (s, Δmag)-
coincidences and inclination deviations from edge-on where
intersections still occur. Finally, in Section 4, we calculate the
fraction of solar systems where a given planet has (s, Δmag)-
coincidence with Earth.

2. s–Δmag Curves

Our goal is to find the fraction of inclined solar systems that
could have (s,Δmag)-coincidence between any two planets. To
do this, we first need a method for finding the (s, Δmag)-
coincidence points between any two solar system planets.

We start with the general equation for Δmag given in
Equation (3) of Brown (2005). By assuming the orbits are
circular (e= 0), this simplifies to

bD = - Fp
R

a
mag 2.5 log . 110
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The geometric albedo (p) and planetary volumetric mean radius
(R) can be substituted in from Table 1 for each planet. This
results in Δmag as a function of the planet phase function (Φ)
and phase angle (β).

The phase angles are limited by the common system
inclination (i). The global β extrema are in the edge-on
(i= 90°) system, but the β extrema for any given inclination
are

b =   i90 . 2extrema ( )
In this work, we use the high-order, parametric, polynomial

fit phase functions from Mallama & Hilton (2018) to cover a
large portion of the phase angle space for most planets. Where
the polynomial fit would be extrapolated beyond measured data
and is therefore unreliable, we substitute in the Lambert phase
function from Equation (4) of Brown (2005) first presented in
Sobolev (1975). To make these parametric phase functions
usable in a continuous optimization method, we “meld” the
phase functions together using parameterized hyperbolic
tangent functions. The smallest phase angle where melding

between the planet’s phase function and the Lambert phase
function occurs is 130°, for Jupiter. The phase functions of
inner solar system planets span nearly the entire range of phase
angles. The limits of the model fit planet phase functions are
included in the Appendix.
We selected the hyperbolic tangent function to join

parametric phase function components together because it
allows us to create a melded phase function with smooth
transitions and is differentiable over the entire range. The tanh
is a curve ranging from−∞< x<∞where =¥ xlim tanhx ( )
1, = --¥ xlim tanh 1x ( ) , and = =xtanh 0 0( ) . We convert
this into two separate equations used to transition between the
“start” and “end” of an individual parametric model. The first is
modified to ensure =-¥ f xlim 0x ( ) and =¥ f xlim 1,x ( )
used to “start” a model. The second is modified to ensure

=-¥ f xlim 1x ( ) and =¥ f xlim 0,x ( ) used to “end” a
model. We also add two constants unique to each planet in
order shift the model transition midpoint with A and adjust the
transition slope with B to get

= +
-

f x A B
x A

B
, , 0.5 0.5 tanh , 3start

⎛
⎝

⎞
⎠

( ) ( )

= -
-
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x A

B
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The melding of phase functions introduces small, negligible errors
at β= 0° and β= 180°. The melded phase functions are shown in
Figure 1 along with the typically used Lambert phase function.
Brown (2005) took the general planet–star separation

equation and reduced it into a function of phase angle, by
adding our circular orbit simplification we get

b=s a sin . 5( ) ( )
We plot the Δmag versus s curves for each solar system

planet in Figure 2 at varying inclinations with HabEx angular
measurement uncertainty of σWA= 0.05 mas at 10 pc and
Δmag uncertainty derived from HabEx Study Team (2019) to
be σΔmag= 0.145. This photometric uncertainty assumes a
signal-to-noise ratio of 7 will be achieved on every planet and
is achievable across the entire Δmag range of the planets. We
plot the measurement uncertainty bounds by sampling Δmag
and s over β and plotting the resulting 1σ bounds in Figure 2(a)
and 3σ in Figures 2(b)–(f). The Δmag versus s curves in
Figure 2(a) show 21 different locations where planet pairs have
coincidence in the edge-on system. As the system inclination
changes from edge-on to face-on in Figures 2(b)–(f), we see the
number of intersections and visible range of the planets
decrease. These Δmag versus s curves give us the core
components required to find the (s, Δmag)-coincidence for any
give planet pair.

Table 1
Tabulated Volumetric Mean Radius (R), Semimajor Axis (a), Geometric Albedo (p), Eccentricity (e), and Inclination (i) of Solar System Planets

Planet Name R (km) (Archinal et al. 2018) a × 10−9 (m) (Seidelmann 1992) p (Seidelmann 1992) e (Seidelmann 2006) i (°) (Seidelmann 1992)

Mercury (☿) 2439.7 57.91 0.142 0.20563069 7.00487
Venus (♀) 6051.8 108.21 0.689 0.00677323 3.39471
Earth (⊕) 6371.0 149.6 0.434 0.01671022 0
Mars (♂) 3389.92 227.92 0.150 0.09341233 1.85061
Jupiter (♃) 69911 778.57 0.538 0.04839266 1.30530
Saturn (♄) 58232 1433.53 0.499 0.05415060 2.48446
Uranus (♅) 25362 2872.46 0.488 0.04716771 0.76986
Neptune (♆) 24622 4495 0.442 0.00858587 1.76917
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3. (s, Δmag)-coincidence Points

We cannot solve for (s, Δmag)-coincidence using conven-
tional root-finding techniques because the underlying equations
are nonlinear, their combination is underconstrained, and we do
not know good initial guesses of the (s, Δmag)-coincidence
points. This problem has three degrees of freedom: the phase
angle of each planet (βs and βl for the interior and exterior
planet, respectively) and the inclination of the common orbital
plane. We only have the Δmag and s constraint equations
making this problem underconstrained. To circumvent this
issue, we formulate the problem as a constrained minimization
problem and include i as a constraint on βs and βl.

In our optimization formulation, we minimize the absolute
difference between the Δmag values of each planet, Δmag
error. We additionally require both planets have the same

planet–star separation. For each planet–star separation, there
are two associated Δmag values. The larger Δmag, and
therefore the dimmer side, occurs where β> 90°. The smaller
Δmag, and therefore the brighter side, occurs where β< 90°.
When optimizing, it is not possible for βs or βl to cross the
infinite slope point of the Δmag versus s curve. We therefore
formulate four separate optimization initial conditions and
phase angle constraints associated with the portions of the
phase curve the interior and exterior planets could have
coincidence on: where the interior–exterior planets are
brighter–dimmer, brighter–brighter, dimmer–dimmer, and
dimmer–brighter, which we label as Qä {0, 1, 2, 3}.
Therefore, there are four sets of initial guesses of (βs,0,βl,0) to
test the optimization process, which we differentiate with
Qä {0, 1, 2, 3}:

Figure 1. Melded solar system planet phase functions.
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Figure 2. Δmag vs. s plots of solar system planets for varying star system inclinations with separation lines at working angles of 45 and 150 mas at 10 pc. The
1σΔmag = 0.01% and 1σs = 5 mas (HabEx Study Team 2019) are plotted in (a). The 3σ bounds are plotted in (b)–(f) for varying inclinations: (b) i = 90°; (c) the
Earth–Saturn intersection where i � 87°. 8; (d) the Earth–Mercury intersection where i � 69°. 0; (e) the Earth–Mars intersection occurring where i � 64°. 7; (f) the Earth–
Venus intersection occurring at i � 46°. 3. Additional Earth–Uranus and Earth–Neptune intersections occur at i = 1°. 0 and i = 1°. 7, respectively, and can be seen in (a)
and (b). The phase functions for these planets are included in the Appendix. Planet radius, geometric albedo, and orbital radius are as in Table 1. Note that Saturn’s
Δmag calculation omits the light contribution from the rings which can quadruple the brightness (Dyudina et al. 2005).
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The 0.3 and 0.7 values were selected to create a midpoint value
between the minimum and maximum possible β for the interior
and exterior planet.

Algorithm 1. Minimum Δmag error producing phase angles

Input: i, as, al, Rs, Rl, ps, pl, bs,0, bl,0, and Q
Output: b s* and b l*, the optimal planet phase angles of the small as and large

al planet respectively

b b
arg min

,s l

b bF - Fp
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We run Algorithm 1 over each unique pair of solar system
planets and each constraint associated with Qä {0, 1, 2, 3}.
Some of these optimization processes do not successfully
terminate. This occurs when the inclination constraints do not
allow the separation constraint to be satisfied. While other
optimization formulations may successfully terminate via
convergence to a minimum error solution, not all minimum
error solutions are locations of (s,Δmag)-coincidence. We apply
a threshold, defining planet pairs with |Δmags−Δmagl|< 10−5

as coincident. This selection forces the omission of the Mars–
Uranus intersection despite the two planets having a substantial
region of overlapping uncertainty, but still includes the Earth–
Saturn intersection. Table 2 contains the s and Δmag of
coincidence as well as the phase angles of the interior and
exterior planet. Only the Mars–Jupiter pair has two (s, Δmag)-
coincidence points. There are only five instances where (s,
Δmag)-coincidence occurs over a phase angle region using the
Lambert phase function. They occur for Jupiter at Jupiter–
Neptune, Jupiter–Uranus, Mars–Jupiter (1), and Mars–Jupiter (2)
as well as Saturn–Neptune.
With these phase angles of coincidence, we can calculate the

deviations from edge-on inclinations where the solar system no
longer has (s,Δmag)-coincidence for any given planet pair. We
define these critical inclination deviations as (δicrit,±). They can
be found by

d b b
b b
=    -

 -
i 90 min min , 180 ,

min , 180 . 7
s s

l l

crit, [ ( )
( )] ( )

4. Fraction of Affected Solar Systems

We consider the Earth’s Δmag versus s curve in Figure 2,
which we take as representative of the highest scientific priority
exoplanet type. The Earth’s curve crosses those of Mercury,
Neptune, Uranus, Mars, Venus, and Saturn (within the 3σ
uncertainty region). Furthermore, the critical inclinations in
Table 3 indicate (s, Δmag)-coincidence persists across a broad
range of inclinations.
When simulating a multitude of inclined star systems, we

randomly sample inclinations such that the probability density
function is =f i isin 2i ( ) ( ) following after Brown (2005),
Savransky et al. (2009), and Keithly et al. (2020). Since we are
assuming circular orbits, we can calculate the percentage of

Table 2
Planet–Planet Coincidence Locations

Δmag s (au) βs (deg) βl (deg) δicrit (deg) P1σs P1σl P2σs P2σl P3σs P3σl

Mercury–Venus 25.41 0.26 42.18 158.94 21.06 7.8 4.7 14.7 9.6 20.5 13.9
Mercury–Earth 27.72 0.36 111.84 158.94 21.06 4.8 3.7 9.6 7.8 14.5 11.4
Mercury–Mars 26.57 0.38 81.16 14.54 14.54 3.3 2.2 6.7 4.4 11.5 6.7
Mercury–Uranus 26.13 0.36 67.06 1.06 1.06 3.6 0.0 7.3 0.0 11.1 0.0
Mercury–Neptune 27.2 0.38 99.27 0.73 0.73 5.8 0.0 11.5 0.0 16.1 0.0
Venus–Earth 23.15 0.72 92.46 46.27 46.27 7.9 5.5 14.8 11.0 21.7 15.9
Venus–Saturn 22.72 0.69 73.37 4.15 4.15 5.1 0.1 10.2 0.2 16.6 0.3
Earth–Mars 26.6 0.65 139.34 25.32 25.32 4.7 3.9 9.5 7.6 14.2 11.0
Earth–Saturn 22.8 0.29 17.06 1.75 1.75 2.5 0.5 4.9 1.0 7.5 1.4
Earth–Uranus 26.13 0.76 130.77 2.26 2.26 5.1 0.0 10.2 0.1 15.0 0.1
Earth–Neptune 27.12 0.53 148.27 1.0 1.0 3.6 0.0 7.2 0.0 10.8 0.0
Mars–Jupiter (1) 27.48 1.48 76.61 163.45 16.55 4.1 0.9 7.9 2.2 11.2 3.3
Mars–Jupiter (2) 32.98 0.27 169.67 176.99 3.01 0.8 0.3 1.6 0.5 2.4 0.7
Mars–Uranus 26.2 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.2 0.4 0.3
Mars–Neptune 27.22 1.38 65.07 2.64 2.64 3.5 0.2 7.5 0.4 11.0 0.5
Jupiter–Saturn 22.83 4.58 118.24 28.58 28.58 1.8 0.7 3.6 1.4 5.5 2.0
Jupiter–Uranus 26.1 2.18 155.24 6.52 6.52 0.7 0.3 1.4 0.6 2.1 0.9
Jupiter–Neptune 27.19 1.58 162.36 3.01 3.01 0.5 0.2 1.0 0.4 1.5 0.5
Saturn–Uranus 26.19 5.47 145.21 16.55 16.55 0.6 0.3 1.2 0.6 1.8 0.9
Saturn–Neptune 27.27 4.35 153.02 8.32 8.32 0.4 0.2 0.9 0.4 1.3 0.6
Uranus–Neptune 27.66 19.16 93.89 39.61 39.61 4.9 0.2 7.8 0.4 9.1 0.6

Note. The planet–star difference in magnitude, Δmag, planet–star separation s in au, phase angle of the interior planet (βs) in deg, phase angle of the exterior planet
(βl) in deg, maximum system inclination where intersections occur (δicrit) in deg of the planet–planet coincidence, the probability the smaller semimajor axis planet is
within nσ of the intersection point (Pnσs) in %, and the same probability for the larger semimajor axis planet (Pnσl). Rounding means probabilities of 0 are less
than 0.05%.
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randomly generated solar systems where any solar system
planet will have (s, Δmag)-coincidence with the Earth by
integrating over the inclination probability density function,

òd d d=
d

d
- +

-

+ P i i i i i
1

2
sin . 8

i

i

crit, crit,
crit,

crit,

( ) ( ) ( )

This distribution of inclinations peaks at i= 90° (edge-on) and
has minimums at i= 0° and i= 180°. We compute these
probabilities and compile them in Table 3.

Table 3 shows the fraction of solar systems with (s, Δmag)-
coincidence independent of instrument capabilities. We can
determine which intersecting planet pairs are visible to an
instrument by comparing the Δmag and s of intersection with
the instrument limited Δmag (Dmaglim) and working angle
limits at a star distance. For the Earth’s (s, Δmag)-coincidence
referenced in Table 3, an instrument with a contrast of 10−10

and inner working angle of 45 mas at 10 pc would only be able
to see Earth’s coincidence with Venus. As we can see from
Table 2, increasing the limiting Δmag of a telescope
exacerbates the potential for planet-type confusion by including
more instances of (s, Δmag)-coincidence. Assuming the same
instrument as in Table 3, only the Earth–Venus, Venus–Saturn,
and Jupiter–Saturn coincidences are detectable. If, at some
point in the future, a contrast of 10−11 with an inner working
angle of 30 mas were achievable; then 15 intersections could be
observable in solar system analogs.

Assuming a system produces (s, Δmag)-coincidence
between two planets, we can compute the probability a planet
randomly located along its orbit is within nσ of the coincidence
point. We randomly sample inclinations from f ii ( ) between the
critical inclination limits and randomly distribute these planets
uniformly in time along their orbit. s and Δmag of each
randomly sampled planet can be computed and we can find the
fraction of these planets within the nσ uncertainty region of the
(s, Δmag)-coincidence point. This fraction is the fraction of an
orbit the planet spends within this uncertainty region and is
converted into the percentages in Table 2. In all cases, the
probability of the larger semimajor axis planet being within the
uncertainty bounds is less than the probability of the smaller
semimajor axis planet being within the measurement uncer-
tainty bounds (Pnσl< Pnσs). The maximum probability of
coincidence is between Venus–Earth followed by Mercury–
Venus, Mercury–Earth, and Earth–Mars. If a planet from a
solar-system-like star system at the (s, Δmag)-coincidence of
Earth with either Uranus or Neptune is detected, it is ∼150×
more likely that the planet is an Earth than a Uranus or
Neptune. In general, the probabilities of either planet being
within the instrument uncertainty bounds are within an order of
magnitude of one another. Only the instances of Mercury–
Uranus, Mercury–Neptune, Venus–Saturn, Earth–Uranus, and
Earth–Neptune have occurrence disparities greater than an
order of magnitude.

5. Conclusion

Future exoplanet direct-imaging missions must make multi-
ple observations to differentiate between Earth-like exoplanets
and the myriad of other planets in the population. We took
phase functions derived from a variety of deep space missions
to create melded phase functions of solar system planets. We
showed that up to 21 cases of (s, Δmag)-coincidence between
planet pairs exist in the solar system. We additionally showed
how an Earth can have the same (s, Δmag)-coincidence with
up to six other solar system planets. We found the inclination
range where each solar system planet could still have
coincidence with another planet. We found 36%–69% of inner
solar system planets and 1%–4% of outer solar system planets
share (s, Δmag)-coincidence with Earth. While the Nancy
Grace Roman Space Telescope would only be capable of
seeing coincidences between Earth and Venus, further
improvement in instrument contrast and inner working angles
will exacerbate the planet confusion problem.

This work was funded by the Science Investigation Team of
the Nancy Grace Roman Space Telescope under NASA grant
NNX15AB40G.

Appendix
Solar System Planet Phase Functions

Here, we combine the phase functions extracted from the
model fit visual magnitude functions (Vmag) of each solar
system planet in Mallama & Hilton (2018) using the
parameterized hyperbolic tangent functions to meld parametric
phase functions into a continuous phase function. In β ranges
where a phase curve model for the planet is unavailable, we
“fill in the gaps” by substituting in the Lambert phase function
(Equation (4) from Brown 2005).
In general, we have knowledge of the phase function over

most of the β range for Earth and planets interior to Earth. The
phase date we have for planets exterior to Earth are limited to
the phase angles observable by Earth and the ranges imaged via
various flybys. The regions generally requiring melding with
the Lambert phase function to span the β range are in excess of
130° and are where the planet is dimmest and least detectable.
Mercury’s phase function is given by

b b b

b b
b b

- F = ´ - ´

+ ´ - ´
+ ´ - ´

- -

- -

- -

2.5 log 6.3280 10 1.6336 10

3.3644 10 3.4265 10

1.6893 10 3.0334 10
A1

10
2 3 2

5 3 7 4

9 5 12 6

( ( ))

( )

☿

It spans the entire β range and does not require melding.
Venus’s phase function is separated over two regions. The

first,

bF

= b b b b- - ´ + ´ - ´ + ´- - - -
10 ,

A2

int, ,1

0.4 1.044 10 3.687 10 2.814 10 8.938 103 4 2 6 3 9 4

( )

( )

♀
( )

is defined from 0°� β� 163°.7. The second,

bF

= b b- - + ´ -
10 , A3

int, ,2

0.4 2.81914 8.39034 10 3 2

( )
( )

♀
( ))

is defined over the region 163°.7� β� 179°. The parametric
phase functions have minor discontinuities that we account for

Table 3
The Percent of Solar Systems where Each Respective Planet Having Any (s,

Δmag)-coincidence with Earth

Neptune Saturn Uranus Mercury Mars Venus

% of Solar
Systems

1.7% 3.0% 3.8% 36.0% 42.7% 72.2%

Note. Assumes circular orbits and coplanar planet orbits.
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by adding a constant to and scaling the second parametric
phase function into

b

b

F = F 

´ +
F F 

F  - F 

-
F  F 
F  - F 

163 .7

1
163 .7

163 .7 179

163 .7 163 .7

163 .7 179
. A4

int, ,3 int, ,1

int, ,2 int, ,1

int, ,2 int, ,2

int, ,2 int, ,2

int, ,2 int, ,2

⎜

⎟

⎛
⎝

⎞
⎠

( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( )

♀ ♀

♀ ♀

♀ ♀

♀ ♀

♀ ♀

Finally, we meld Φint,♀,1(β) and Φint,♀,3(β) together using the
hyperbolic tangents to arrive at Venus’s melded phase function

b b b
b
b b
b
b

F = =  =  F
+ =  = 
´ =  =  F
+ = 

=  F + ´ -

f A B

f A B

f A B

f A

B

, 163 .7, 5

, 163 .7, 5

, 179 , 0 .5

, 179 ,

0 .5 2.766 10 . A5L

end int, ,1

start

end int, ,3

start
4

( ) ( ) ( )
( )

( ) ( )
(

) ( ) ( )

♀ ♀

♀

The phase function for Earth spans the range of β and is

bF = b b
Å

- - ´ + ´- -
10 . A60.4 1.060 10 2.054 103 4 2( ) ( )( )

Mars’s phase function is separated over two regions. The
first,

bF = b b- -10 , A7int, ,1
0.4 0.02267 0.0001302 2( ) ( )♂

( ( ))

is valid from 0°� β� 50°. The second,

bF = b b- - +10 , A8int, ,2
0.4 0.02573 0.0003445 2( ) ( )♂

( ( ))

is valid over 50° < β� 180°. We need to normalize Φint,♂,2(β)
to account for discontinuities between the two phase functions
and arrive at the corrected second phase function of

b bF = F  F  F50 50 . A9int, ,3 int, ,1 int, ,2 int, ,2( ) ( ) ( ) ( ) ( )♂ ♂ ♂ ♂

Combining these two phase functions, we get Mars’s melded
phase function

b b b
b b

F = =  =  F
+ =  =  F
f A B

f A B

, 50 , 5

, 50 , 5 . A10
end int, ,1

start int, ,3

( ) ( ) ( )
( ) ( ) ( )

♂ ♂

♂

In the original formulation from Mallama & Hilton (2018),
both parametric Vmag functions of Mars vary depending upon
the rotational and orbital longitude of the planet. We assume
the average of these correction terms, which are both 0.

The phase function for Jupiter is defined over two separate
regions. The first is

bF = b b- - ´ + ´- -
10 . A11int, ,1

0.4 3.7 10 6.16 104 4 2( ) ( )♃
( ( ))

The second is

b b
b b
b b

F = - 

-  - 
+  - 

1 1.507 180

0.363 180 0.062 180

2.809 180 1.876 180 . A12

int, ,2

2 3

4 5

( ) ( )
( ) ( )
( ) ( ) ( )

♃

We offset Φint,♃,2(β) accounting for the the last valid value of
Φint,♃,1(β) to arrive at the modified second phase function of

b
b

F = F 
- F  + F

12

12 . A13
int, ,3 int, ,1

int, ,2 int, ,2

( ) ( )
( ) ( ) ( )

♃ ♃

♃ ♃

We then combine the phase functions for Jupiter to get

b b b
b
b b
b b

F = =  =  F
+ =  = 
´ =  =  F
+ =  =  F

f A B

f A B

f A B

f A B

, 12 , 5

, 12 , 5

, 130 , 5

, 130 , 5 . A14L

end int, ,1

start

end int, ,3

start

( ) ( ) ( )
( )

( ) ( )
( ) ( ) ( )

♃ ♃

♃

The phase function for Saturn is complicated by measure-
ments of the planet obfuscated and augmented by the rings that
have a unique phase function from the planet. The phase
function of Saturn without the rings is defined over two
separate regions. The first,

bF = b b- - ´ + ´- -
10 , A15int, ,1

0.4 3.7 10 6.16 104 4 2( ) ( )♄
( ( ))

is based on Earth observations valid from 0°� β� 6°.5. The
second,

bF

= b b b b- ´ + ´ - ´ + ´- - - -
10

A16

int, ,2

0.4 2.446 10 2.672 10 1.505 10 4.767 104 4 2 6 3 9 4

( )

( )

♄
( ( ))

is defined over the range 6°� β� 150°. By properly adjusting
the discontinuity between the first and second phase functions,
we arrive at

b
b

F = F 
- F  + F

6 .5

6 .5 . A17
int, ,3 int, ,1

int, ,2 int, ,2

( ) ( )
( ) ( ) ( )

♄ ♄

♄ ♄

We combine the phase functions for Saturn to get

b b b
b
b b
b b

F = =  =  F
+ =  = 
´ =  =  F
+ =  =  F

f A B

f A B

f A B

f A B

, 6 .5, 5

, 6 .5, 5

, 150 , 5

, 150 , 5 . A18L

end int, ,1

start

end int, ,3

start

( ) ( ) ( )
( )

( ) ( )
( ) ( ) ( )

♄ ♄

♄

Uranus has a unique phase function due to the inclination of
the pole’s rotational axis, but only has one phase function. We
assume a subsolar latitude of− 82°, which makes Uranus as
bright as possible by adding a 0.0689 correction to the phase
function (the minimum correction occurs at 82° and adds
−0.0689). The phase function for Uranus is

bF = b b- + - + -10 , A19e e
int,

0.4 0.0689 6.587 3 1.045 4 2

( ) ( )( ( ))

valid over the range 0°� β� 154°. The combined phase
function model for Uranus is

b b b
b b

F = =  =  F
+ =  =  F
f A B

f A B

, 154 , 5

, 154 , 5 . A20L

end ind,

start

 ( ) ( ) ( )
( ) ( ) ( )

Neptune has two phase functions, one based on Earth
measurements that cover such a small range of phase angles
that we ignore it and use the phase curve from Voyager 2
radiometer measurements. Neptune’s one phase function is

bF = b b- ´ + ´- -
10 , A21int,

0.4 7.944 10 9.617 103 5 2( ) ( )♆
( )

and is valid over the range 0°� β� 133°.14. The combined
phase function for Neptune is therefore

b b b
b b

F = =  =  F
+ =  =  F
f A B

f A B

, 133 .14, 5

, 133 .14, 5 . A22L

end int,

start

( ) ( ) ( )
( ) ( ) ( )

♆ ♆

7

The Astrophysical Journal Letters, 919:L11 (8pp), 2021 September 20 Keithly & Savransky



ORCID iDs

Dean Robert Keithly https://orcid.org/0000-0002-8543-2894
Dmitry Savransky https://orcid.org/0000-0002-8711-7206

References

Archinal, B. A., Acton, C. H., A’Hearn, M. F., et al. 2018, CeMDA, 130, 22
Brown, R. A. 2005, ApJ, 624, 1010
Committee on Exoplanet Science Strategy 2019, Exoplanet Science Strategy

(Washington, DC: National Academies Press),
Dyudina, U. A., Sackett, P. D., Bayliss, D. D. R., et al. 2005, ApJ, 618, 973
Guimond, C. M., & Cowan, N. B. 2018, AJ, 155, 230
Guimond, C. M., & Cowan, N. B. 2019, AJ, 157, 188
HabEx Study Team 2019, HabEx Final Report (Pasadena, CA: Jet Propulsion

Laboratory) https://www.jpl.nasa.gov/habex/pdf/HabEx-Final-Report-
Public-Release-LINKED-0924.pdf

Horning, A., Morgan, R. M., & Nielson, E. 2019, Proc. SPIE, 11117,
111171C

Keithly, D. R., Savransky, D., Garrett, D., Delacroix, C., & Soto, G. 2020,
JATIS, 6, 027001

Madden, J. H., & Kaltenegger, L. 2018, AsBio, 18, 1559
Mallama, A., & Hilton, J. L. 2018, A&C, 25, 10
National Research Council 2011a, Vision and Voyages for Planetary Science in

the Decade 2013–2022 (Washington, DC: National Academies Press),
National Research Council 2011b, Panel Reports—New Worlds, New

Horizons in Astronomy and Astrophysics (Washington, DC: National
Academies Press),

Savransky, D., Kasdin, N. J., & Cady, E. 2009, PASP, 122, 401
Seidelmann, K. P. 1992, Explanatory Supplement to the Astronomical

Almanac (Mill Valley, CA: Univ. Science Books)
Seidelmann, K. P. 2006, Explanatory Supplement to the Astronomical

Almanac (Mill Valley, CA: Univ. Science Books)
Sobolev, V. V. 1975, Light Scattering in Planetary Atmospheres (Amsterdam:

Elsevier)

8

The Astrophysical Journal Letters, 919:L11 (8pp), 2021 September 20 Keithly & Savransky

https://orcid.org/0000-0002-8543-2894
https://orcid.org/0000-0002-8543-2894
https://orcid.org/0000-0002-8543-2894
https://orcid.org/0000-0002-8543-2894
https://orcid.org/0000-0002-8543-2894
https://orcid.org/0000-0002-8543-2894
https://orcid.org/0000-0002-8543-2894
https://orcid.org/0000-0002-8543-2894
https://orcid.org/0000-0002-8711-7206
https://orcid.org/0000-0002-8711-7206
https://orcid.org/0000-0002-8711-7206
https://orcid.org/0000-0002-8711-7206
https://orcid.org/0000-0002-8711-7206
https://orcid.org/0000-0002-8711-7206
https://orcid.org/0000-0002-8711-7206
https://orcid.org/0000-0002-8711-7206
https://doi.org/10.1007/s10569-017-9805-5
https://ui.adsabs.harvard.edu/abs/2018CeMDA.130...22A/abstract
https://doi.org/10.1086/429124
https://ui.adsabs.harvard.edu/abs/2005ApJ...624.1010B/abstract
https://doi.org/10.1086/426050
https://ui.adsabs.harvard.edu/abs/2005ApJ...618..973D/abstract
https://doi.org/10.3847/1538-3881/aabb02
https://ui.adsabs.harvard.edu/abs/2018AJ....155..230G/abstract
https://doi.org/10.3847/1538-3881/ab0f2e
https://ui.adsabs.harvard.edu/abs/2019AJ....157..188G/abstract
https://www.jpl.nasa.gov/habex/pdf/HabEx-Final-Report-Public-Release-LINKED-0924.pdf
https://www.jpl.nasa.gov/habex/pdf/HabEx-Final-Report-Public-Release-LINKED-0924.pdf
https://doi.org/10.1117/12.2529741
https://ui.adsabs.harvard.edu/abs/2019SPIE11117E..1CH/abstract
https://ui.adsabs.harvard.edu/abs/2019SPIE11117E..1CH/abstract
https://doi.org/10.1117/1.JATIS.6.2.027001
https://ui.adsabs.harvard.edu/abs/2020JATIS...6b7001K/abstract
https://doi.org/10.1089/ast.2017.1763
https://ui.adsabs.harvard.edu/abs/2018AsBio..18.1559M/abstract
https://doi.org/10.1016/j.ascom.2018.08.002
https://ui.adsabs.harvard.edu/abs/2018A&C....25...10M/abstract
https://doi.org/10.1086/652181
https://ui.adsabs.harvard.edu/abs/2010PASP..122..401S/abstract

	1. Introduction
	2. s–Δmag Curves
	3.(s, Δmag)-coincidence Points
	4. Fraction of Affected Solar Systems
	5. Conclusion
	AppendixSolar System Planet Phase Functions
	References



