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ABSTRACT 
 
The process of species accumulation, during progressive sampling, results in the regular, monotonic 
increase of the number of recorded species with sampling size. On the contrary, the numbers f1(N), 
f2(N), f3(N), …, fx(N) of those species recorded 1-, 2-, 3-, …, x-times at sampling-size N all show non-
monotonic variations with N. The major characteristic elements of this non-monotonic variations 
(namely: the maximum reached at ∂fx (N)/∂N = 0 and the inflexion point at ∂

2
fx (N)/∂N

2
 = 0) provide 

interesting cues regarding the degree of advancement of sampling completeness. Such cues yet 
remain undetectable however along the regular, monotonic increase of the species accumulation 
curve itself. Although usually unrecorded, the variations of the fx(N) may yet be computed and, 
accordingly, the associated cues above thereby made available in practice. This computation 
involves the Taylor expansion of the fx(N), making use of recently derived mathematical properties of 
the species accumulation process. For common practice, focus is placed upon the variations of the 
fx(N) of lower-orders (i.e. f1(N), f2(N), f3(N), f4(N)), which is sufficient to disclose information of particular 
relevance in assessing the progress of sampling towards completeness. 
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1. INTRODUCTION 
 
The progressive sampling of an assemblage of 
objects (and, in particular, an assemblage of 
species) is accounted for numerically by the so-
called accumulation (or discovery) curve. The 
“species accumulation curve” typically shows a 
very simple shape, monotonically increasing, at a 
regularly decreasing pace, all along the course of 
progressive sampling. The process of species 
accumulation, however, is less simple than would 
be suggested by this simple shape. In fact, it is 
upon the numbers of singletons, doubletons,… x-
tons, of those species respectively recorded 
once, twice,… x-times, that the sampling 
operation plays a direct role. Thus, progressive 
sampling results, at first, in the definite – and, as 
will be seen below, partly coordinate – variations 
of the numbers of singletons, doubletons,…, x-
tons.  From this point of view, one may say, 
metaphorically, that sampling in act plays directly 
on the “keyboard” of the x-tons. In turn, the 
resulting regular growth of the species 
accumulation curve along progressive sampling 
is only the consequence (the cumulative result) 
of these combined variations of the numbers of 
singletons, doubletons, …, x-tons. 
  
Thinking this way might appear as a pure verbal 
or conceptual exercise, unnecessarily focusing 
upon the underlying details at the origin of the 
simple shape peculiar to any species 
accumulation curve. This, however, is not the 
case.  
 
The priority consideration of the values and 
variations of the numbers f1, f2, f3,…, fx, of 
singletons, doubletons, tripletons, …, x-tons, 
indeed has major practical importance, 
especially, as concerns the degree of 
advancement (completeness) of the sampling 
procedure. As a well-known example, most 
nonparametric estimators of the number of still 
unrecorded species (in particular “Chao” and the 
“Jackknife” series at different orders) are entirely 
based upon the values of the numbers fx of 
species currently recorded x-times (considering 
the smallest values of x). In addition, beyond the 
values taken by the fx at a given sampling-size, 
the variations of the fx with sampling-size may be 
highly informative about the degree of 
advancement of the sampling process. And this 
is of more particular interest when considering 
the fx of lowest order x, which primarily concern 

the least abundant species, that make the bulk of 
those species remaining to be recorded. 
 

More specifically, the progress of sampling may 
be considered either: 
 

-  classically and globally, by the estimated 
ratio of sampling completeness (ratio R0/St 
between the number, R0, of currently 
recorded species and the estimated total 
species richness, St, of the sampled 
assemblage of species); 

- less classically and more analytically, by 
examining the trend of variation of each of 
the fx (N) with increasing sampling-size N 
(focusing of course on the smallest values 
of x) at the current point of advancement of 
the considered sampling. 

 
Admittedly, both approaches are complementary 
rather than mutually exclusive and, in current 
practice, the first, classical approach is likely 
expected to remain paramount. Yet, departing 
momentarily from the entire range of species to 
focus more specifically on the least abundant 
ones – which become progressively decisive for 
the further improvement of completeness of an 
ongoing sampling – is also of substantial interest. 
 
Hereafter, we will concentrate on the 
determination of the trends of variations of each 
of the fx (N) (in practice f1(N), f2(N), f3(N), f4(N)) with 
increasing sampling-size N. Meanwhile, essential 
general mathematical rules that (i) govern the 
variations of the fx (N) with sampling-size N and (ii) 
establish a narrow linkage between the 
successive fx(N), will be highlighted. 
 

2. PRELIMINARY: THE SUCCESSIVE 
DERIVATIVES OF THE NUMBER OF X-
TONS WITH RESPECT TO SAMPLING-
SIZE  

 
The successive derivatives, ∂

x
R(N)/∂Nx

, of the 
Species Accumulation Curve R(N) satisfy the 
following general equation: 
 

∂
x 
R(N)/∂Nx

  =  (-1)
x-1

 fx (N) /CN, x                   (1)  
 
with R(N) as the number of currently recorded 
species, fx (N) as the number of x-tons and CN, x  = 
N!/x!/(N-x)! as the number of combinations of x 
items among N.  A detailed proof of this general 
theorem is provided in Appendix. 



 
 
 
 

Béguinot; AIR, 10(6): 1-14, 2017; Article no.AIR.35223 
 
 

 
3 
 

Leaving aside the very beginning of sampling (of 
no practical relevance here), the sampling-size N 
rapidly exceeds widely the numbers x of practical 
concern, so that, in practice, CN, x  ≅  x! / N

x
.  

Accordingly, the preceding equation may be 
simplified as: 
 

∂x R(N)/∂Nx = (– 1)x-1 (x!/Nx).fx (N)                 (2) 
 

This relation has a general relevance because its 
derivation does not require any specific 
assumption relative to the particular shape of the 
distribution of species abundances in the 
sampled assemblage of species. Accordingly, 
equations (1) and (2) actually constrain the 
theoretical expressions of any kind of theoretical 
Species Accumulation Curves. 
 

From equation (2) it comes: 
 

fx (N)  = (– 1)
x-1 

(N
x
/x!).[∂

x 
R(N)/∂Nx

 ]               (3) 
 

The derivation of equation (3), according to 
sample size N, then gives: 
 

∂fx(N)/∂N = (– 1)x-1.{x.Nx-1.[∂xR(N)/∂Nx] + 
Nx.[∂x+1R(N)/∂Nx+1]} /x!    

       
By applying equation (2) to the expressions of 
[∂

x
R(N)/∂Nx

] and [∂
x+1 

R(N)/∂Nx+1
], it comes: 

          
∂fx (N)/∂N  =  [ x.fx (N) – (x+1).fx+1 (N) ]/N         (4) 

 

Equation (4) thus provides the expression of the 
first derivative of  the number fx (N) at any given 
sample-size N, in terms of the recorded values 
taken by fx (N) and fx+1 (N) at sampling-size N. 
    
In turn, the second derivative of fx (N) is obtained 
by further operating a new derivation of equation 
(4): 
 

∂2fx (N)/∂N2 = – [ x.fx (N) – (x+1).fx+1 (N) ]/N2 + 
[x.∂fx (N)/∂N – (x+1).∂fx+1 (N)/∂N]/N 

 
Replacing the derivatives ∂fx (N)/∂N and ∂fx+1 (N)/∂N 
by their values according to equation (4) yields: 
 

∂
2
fx (N)/∂N

2
 = [– x.fx (N) + (x+1).fx+1 (N) + x

2
.fx (N) – 

(x+1).(2x+1).fx+1 (N) – (x+1).(x+2).fx+2 (N)]/N
2 

 
and, finally: 
 

∂2fx (N)/∂N2 = [(x2 – x).fx (N) – (2x2 + 2x).fx+1 (N)  
+ (x

2
 + 3x + 2).fx+2 (N)]/N

2
                             (5) 

 
Equation (5) thus provides the expression of the 
second derivative of  the number fx (N) at any 

given sample-size N, in terms of the recorded 
values taken by fx (N), fx+1 (N) and fx+2 (N) at 
sampling-size N.  
   
In turn, iteratively operating new derivations of 
equation (5) would provide successively the 
derivatives of fx (N) at any higher order. As a 
general rule, the expression of the ith derivative of 
fx (N), ∂

i
fx (N)/∂N

i
, involves the recorded values of 

the (i+1) numbers fx (N), fx+1 (N), fx+2 (N), fx+3 (N),… fx+i 

(N), that is: 
 

∂
i
fx (N)/∂N

i
 = (1/N

i
).gi(fx (N), fx+1 (N), fx+2 (N), fx+3(N), 

…, fx+i (N))                                                   (6)                                              
  

where gi(fx (N), fx+1 (N), fx+2 (N), fx+3 (N),… fx+i (N)) is a 
linear function, with integer coefficients, of fx (N), 
fx+1 (N), fx+2 (N), fx+3 (N),… fx+i (N). 
 

As they result from relationship (2) above, the 
equations (4), (5) and (6) – defining ∂fx (N)/∂N, 
∂

2
fx(N)/∂N

2
 and, more generally, ∂

i
fx(N)/∂N

i
 – 

thereby benefit from the same general relevance 
and, thus, are valid for all kinds of theoretical 
Species Accumulation Curves. 
 

As shown below, the possibility of defining the 
successive derivatives of fx (N) in terms of the 
(easily recorded) values of the fi (N) at sampling-
size N has important theoretical and practical 
consequences. This makes possible: 
 

(i)  to disclose the narrow mathematical 
linkage that actually exists between all the 
successive fx (N) : indeed, the shape of any 
fx(N), being entirely defined by its 
successive derivatives, ∂

i
fx(N)/∂N

i
, is, 

thereby, entirely connected to the 
corresponding values taken by all the 
following fi (N) (i.e. for i > x); 

(ii)  to characterize quantitatively the main 
successive stages of variation of the fx (N) 
(especially those of lowest orders 
(singletons, doubletons,…)  with increasing 
sampling-size N, thus providing useful 
complementary clues to appreciate the 
level of progress in sampling the less 
abundant species within the assemblage. 

 

3. THE THREE MAIN STAGES OF 
VARIATION OF THE NUMBER OF 
SPECIES RECORDED x-TIMES (x-
TONS) ALONG PROGRESSIVE 
SAMPLING 

 
As might be anticipated, the number fx (N) of 
species recorded x-times is expected (Fig. 1): 
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(i)   to continuously grow, at first, with 
increasing sample-size N, then  

(ii)   to pass by a maximum (at a sampling-size 
N’ such that ∂fx (N)/∂N = 0) and, finally,  

(iii)  to decrease and ultimately reach 
asymptotically the zero level.  

 
Moreover, being finally asymptotic, the 
decreasing part of the curve is thus expected to 
pass by a point of inflection (at a sampling-size 
N” such that ∂

2
fx (N)/∂N

2
 = 0). The variation of any 

fx (N) with N, during progressive sampling, may 
thus be sequenced according to three 
successive stages (I, II, III), separated by two 
threshold values, N’ and N”, of sampling-size N.  
 

3.1 The Sampling-size Threshold at 
Which the Number of x-tons Passes 
by a Maximum and Begins to 
Decrease 

 

When fx(N) reaches its maximum, the first 
derivative ∂fx(N)/∂N falls to zero and then, 
according to equation (4), it comes: 
 

[ x.fx (N) – (x+1).fx+1 (N) ]/N  = 0 
 

that is: 
   fx+1 (N)  =  [x/(x+1)].fx (N)  when ∂fx (N)/∂N = 0    (7) 
 

Thus, the number of x-tons, fx(N), reaches its 
maximum at a sampling-size N’ such that the 
number of (x+1)-tons (fx+1(N’)) at N’ is exactly 
[x/(x+1)] times the number of x-tons (fx (N’)) at N’. 
Accordingly, f2 (N)  =  ½ f1 (N) when f1 (N) is at its 
maximum at N = N’ ; f3 (N)  =  2/3 f2 (N) when f2 (N) is 
at its maximum, at N = N’ ; f4 (N)  =  3/4 f3 (N) when 
f3 (N) is at its maximum and so on…  

 
Equation (7) highlights a first – partial – link 
between two successive fx (N) (fx (N) and fx+1 (N)). 
This iterative linkage eventually connects, step 
by step, the whole series of the fx (N). Fig. 2 
provides a graphical representation of this 
iterative connection for the five first x-tons: f1 (N), 
f2(N), f3 (N), f4 (N), f5 (N). 

 
In practice, the variation of the fx (N) with 
sampling-size N have rarely been published, 
which would allow to compare theory and 
records. To our knowledge, such records have 
only been carried on and published fourth [1-4] 
and for singletons and doubletons only. As 
expected, all these four references confirm the 
theoretical prediction: the recorded co-variations 
of f1 (N) and f2 (N) always are in fair agreement with 
equation (7), namely f2 (N)  =  ½ f1 (N) when f1 (N) 
reaches its maximum. 

 

 
 

Fig. 1. Typical sketch of variation of the number fx(N) of x-tons (species recorded x-times) with 
increasing sampling-size N. The first derivative, ∂fx(N) /∂N, falls to zero at point ‘m’ (at N = N’) 
and the second derivative, ∂²fx(N) /∂N², falls to zero at point ‘i’ (at N = N”). Three successive 

stages of variation of fx(N) are thus delimited: at first, a rapid increase (stage I), then a 
decrease at an accelerating rate (stage II) and, at last, a decrease at a decelerating rate 

(“asymptotic decrease”: stage III). Points ‘m’ and ‘i’ correspond respectively to the maximum 
and the inflection of the curve fx(N) 
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Fig. 2. Graphical representation of the connection between fx (N) and fx+1 (N), i.e. between the 
maximum value of fx (N) and the corresponding value taken by fx+1 (N) at the same sampling-size. 
Adapted from [5]. This figure highlights the “linkage pattern” between the successive curves 
fx(N) imposed by the constraining relationship (7), according to which fx+1 (N) reaches exactly 

[x/(x+1)] times the value of fx (N) when the latter reaches its maximum, at N = N’ 
 

3.2 The Sampling-size Threshold at 
Which the Number of x-tons Begins 
Its Decelerating Decrease 
(“asymptotic decrease”) 

 
After having reach its maximum value at 
sampling-size N’, fx (N) then enters a decreasing 
phase. At first, this decrease is at an accelerated 
pace (stage II) and then at a decelerating pace 
(stage III), in accordance with the final 
asymptotic vanish. The transition between stages 
II and III is characterised by an inflection point, 
where ∂2

fx(N)/∂N
2
 falls to zero. According to 

equation (5), it comes: 
 

[(x
2
 – x).fx (N) – (2x

2
 + 2x).fx+1 (N) + (x

2
 + 3x + 

2).fx+2 (N)] = 0                                               (8) 
 
Thus, the number of x-tons, fx (N), begins its 
second, decelerated, asymptotic decrease when 
the sampling-size reaches a value N” such that 
the numbers fx (N), fx+1 (N) and fx+2 (N) satisfy 
equation (8). 
 
3.3 The Particular Case of the Numbers of 

Singletons and Doubletons 
 
According to equation (8), the number of 
singletons, f1 (N), begins its asymptotic decrease 

when the sampling-size N reaches a value such 
that – 4.f2 (N) + 6.f3 (N) = 0. Now, from equation (7), 
this value of N also corresponds exactly to the 
step when f2 (N) reaches its maximum. Therefore, 
the number of singletons always enters its last, 
decelerated decreasing phase (step ‘i') precisely 
when the number of doubletons reaches its 
maximum value (step ‘m’). This is a new 
remarkable connection between the two first fx (N). 
 

4. THE NARROW MATHEMATICAL 
CONNECTION THAT LINKS THE 
SUCCESSIVE x-TONS (NUMBERS OF 
SPECIES RECORDED x-TIMES)  

 

4.1 Main Mathematical Linkage 
 
As already stated at section 2, the variations of 
the number fx (N) during progressive sampling are 
narrowly linked to the variations of all the fj (N) of 
higher order, i.e. for all j > x : equation (6). This 
may be more explicitly highlighted by considering 
the expression of the Taylor expansion of fx (N).  
According to the general formulation of Taylor 
expansion, the variations of fx (N) in a range [N–δ , 
N+δ] around the sampling-size N, may be written 
as: 
 

fx (N + δ)  =  fx (N) + Σi = 1 to ∞ [(∂ifx (N)/∂Ni).(δi/i!)]. 
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In turn, the general relationship (6) allows to 
express the i

th
 derivative, ∂

i
fx (N)/∂N

i
, in terms of 

the recorded values of the (i+1) numbers fx (N), 
fx+1 (N), fx+2 (N), fx+3 (N),… fx+i (N) : 
 

∂
i
fx (N)/∂N

i
 = (1/N

i
).gi(fx (N), fx+1 (N), fx+2 (N), fx+3(N), 

… fx+i (N))           
 
Accordingly, the Taylor expansion of fx (N) may be 
written as a function of the values taken by the 
series of the fj (N) for j > x: 
 

fx (N + δ)  =  fx (N) + Σi = 1 to X [(1/Ni).gi (fx (N), fx+1 (N), 
fx+2 (N), fx+3 (N),…, fx+i (N)) ].(δ

i
/i!)                     (9) 

 
with: 
 

-    gi  as a linear function of the fx (N), fx+1 (N), 
fx+2 (N), fx+3 (N),… fx+i (N), with integer 
coefficients  

-   X as the number of individuals of the most 
abundant species that has been recorded 
at the currently reached sampling-size N.       

 
Equation (9) thus highlights the general 
expression of the narrow mathematical linkage 
that exists between all the successive fx (N) and, 
more precisely, between the variation of fx (N) 
around the current sampling-size N and the 
corresponding values that are taken, at 
sampling-size N, by the series of fi (N), for i > x. 
 
In particular, considering the Taylor expansion of 
fx (N) at order 2 (which is sufficient, in practice, to 
encompass the bulk of the local variations of fx 

(N)), it comes: 
 

fx (N + δ)  ≈  fx (N) + [ x.fx (N) – (x+1).fx+1 (N) ].(δ/N)                       
+ [(x

2
 – x).fx (N) – (2x

2
 + 2x).fx+1 (N) + (x

2
 + 3x + 

2).fx+2 (N)].(½ δ2/N2)                                    (10) 
 
Note that, similarly, a Taylor expansion of the 
Species Accumulation Curve, R(N), within a 
neighbourhood [N–δ , N+δ] of the sampling-size 
N, has already been derived: see reference [6]. 
The Taylor expansion of R(N) is: 
 

R(N+δ) = R(N) + Σi = 1 to ∞ [∂
i
R(N)/∂Ni

].(δ
i
/i!) 

 
Replacing the successive derivatives by their 
expressions, according to equation (1) leads to: 
 

R(N+δ) = R(N) + Σi = 1 to ∞ [(– 1)
i-1 

(i!/N
i
).fi (N)].(δ

i
/i!) 

 
that is: 
 

R(N+δ) = R(N) + Σi = 1 to ∞ (– 1)i-1 (δ/N)i.fi (N)   

In practice: 
 

R(N+δ) = R(N) + Σi = 1 to X (– 1)i-1 (δ/N)i.fi (N)    (11) 
 

with X as the number of individuals of the most 
abundant species that have been recorded at the 
current sampling-size N.       
 

4.2 An Additional Mathematical Linkage 
 

Still an additional mathematical linkage between 
the successive fx(N) may be unveiled by 
considering the intersection between fx(N) and 
fx+1(N), i.e. when sampling size N is such that 
fx+1(N) becomes equal to fx(N). From equation (4) 
it comes immediately: 
 

∂fx (N) / ∂N  =  – fx(N) / N    for sampling size N 
such that fx+1(N) = fx(N)                             (12) 

 

Accordingly, this demonstrates: 
 

-  that fx+1(N) intersects fx(N) when the latter 
has already reached its decreasing phase 
(since fx(N) / N is essentially positive); 

-  that the slope (decreasing rate) of fx(N) at 
this intersection point is equal in module 
and opposite in sign to the ratio fx(N) / N, 
thus resulting graphically in a remarkable 
geometrical property, as shown in Fig. 3, 
with angle IBA being equal to angle IAB 
(the triangle AIB is isosceles). 

 

5. DISCUSSION 
 

The numbers f1, f2, f3, …, fx, of singletons, 
doubletons, …, x-tons (species respectively 
recorded 1-, 2-, 3-, …, x-times) vary, of course, 
with sampling-size N. Each number fx(N) 
successively shows three phase of variation with 
N: a growth period (I), then an accelerated 
decreasing period (II) and, at last, a decelerated 
decreasing period (III), eventually ending 
asymptotically to zero (Fig. 1). The thresholds 
values N’ and N”, which delimit these three 
stages, are dependent on x (the larger x, the 
larger are N’ and N”), but these three stages of 
variation along progressive sampling remain 
characteristic of the variation of any number fx (N), 
whatever the value x, that is for any x-ton. In 
spite of this common general scheme, each 
number fx (N) varies, however, at its own pace 
during progressive sampling. Yet, it has been 
demonstrated above that the respective 
variations of the different numbers fx are far from 
being entirely independent from each-other. On 
the contrary, remarkable connections have been 
unveiled between them. These connections 
appears explicitly by considering the Taylor 
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expansion of the number fx (N) (equations (9) and 
(10)) which shows that the variations of fx (N) in a 
neighbourhood of N depend on the values taken 
by the series of the fi (N), for i > x. In other words, 
the variations of the number of species recorded 
x-times are connected to the numbers of species 
recorded still more frequently during sampling. 
Some important consequences of these 
connections are highlighted graphically at Figs. 2 
and 3. 
 

All these considerations might seem, at first, of 
pure speculative interest. However, they can also 
address more pragmatic concerns. 
 

Thus, for example, the degree of sampling 
completeness is usually quantified by the ratio 
between the number of recorded species and the 
(estimated) total species richness of the sampled 
assemblage of species. According to this 
common approach, the scope is, first of all, 
focused on what has already been recorded. Yet, 
an alternative (complementary) approach, 
however, would consist to focus upon what is still 
to be recorded. That is to say, focus may 
relevantly be placed, first and foremost, on those 
species that are, statistically, the least abundant 
in the sampled assemblage. In this second 
perspective, it is those numbers of species only 
recorded few (i.e. the x-tons with low values of x: 
singletons, doubletons, tripletons,…) that feature 
more relevantly informative. For example, it is 
this kind of approach that is implicitly considered 
in the generally accepted view that a survey may 
be considered virtually complete as soon as the 
recorded number f1 of singletons has fallen to 
zero.  
 

In accordance with the preceding point of view 
(and for the bulk of practical surveys of 
biodiversity, that have not reached quasi-
exhaustivity), the relevant question to be 
addressed is: what are the values and, more 
importantly, what are the trends of variation of 
the numbers f1(N), f2(N), f3(N),… of singletons, 
doubletons, tripletons,… around the currently 
achieved sampling-size. Answering this question 
becomes highly meaningful as soon as sampling 
progress has reached such a level that it is only 
the least abundant species of the sampled 
assemblage that mainly contribute to f1, f2, f3, … 
 

To provide an illustration of the interest and 
practical significance of this proposition, four 
examples are considered hereafter, involving 
four local surveys of butterfly fauna in different 
suburban localities around Jhansi (India) [7]. For 
each survey, the variations of the numbers f1(N), 
f2(N), f3(N), f4(N), of those species respectively 

recorded 1-, 2-, 3-, 4- times are computed 
around the corresponding achieved sampling-
size N0 of each survey, using the Taylor 
expansion of fx (N) at order 2 (equation (10)). That 
is, the Taylor expansion (equation (10)) is 
implemented with the values of f1, f2, f3, f4, 
recorded at the end of the achieved sampling 
(i.e. for N = N0): Figs. 4 to 7 (N.B.: more precisely 
and in order to reduce the influence of drawing 
stochasticity on the as-recorded values of the 
numbers fx, their distribution is, at first, 
smoothened by regression of the as-recorded 
distribution of the fx versus x : see reference [7] 
for details on this point). 
 

* Fig. 4 is for butterfly survey at “Parichha Dam” 
(estimated sampling completeness 65%): 
referring to Fig. 1, the numbers f1, f2, f3, f4 at the 
currently achieved sampling-size N0, are at 
stages II, I, I, I, respectively. That is, at N0, the 
number of singletons begins to decrease while 
the numbers of doubletons, tripletons and 
quadrupletons are still growing. 
 

* Fig. 5 is for butterfly survey at “Jhansi 
University Campus” (estimated sampling 
completeness 90%): referring to Fig. 1, the 
numbers f1, f2, f3, f4, at the currently achieved 
sampling-size N0, are at stages III, III, II, I, 
respectively. That is, at N0, the numbers of 
singletons and doubletons have already begun 
their last asymptotic decreasing phase, while the 
number of tripletons has entered its accelerated 
decreasing phase and the number of 
quadrupletons is still increasing. 
 

* Fig. 6 is for butterfly survey at “Narayan Bagh” 
(estimated sampling completeness 92%): 
referring to Fig. 1, the numbers f1, f2, f3, f4, at the 
currently achieved sampling-size N0, are at 
stages III, III, III, II, respectively. That is, at N0, 
the numbers of singletons, doubletons and 
tripletons have already begun their last 
asymptotic decreasing phase while the number 
of quadrupletons has entered its accelerated 
decreasing phase. 
 

* Fig. 7 is for butterfly survey at “Bundelkhand 
Institute Engeneering & Technology Campus” 
(quasi exhaustive survey): referring to Fig. 1, the 
numbers f1, f2, f3, f4, at the currently achieved 
sampling-size N0, are at stages III, II, ≈ m, I, 
respectively. That is, at N0, the number of 
singletons has already begun its last asymptotic 
decreasing phase, the number of doubletons has 
entered its accelerated decreasing period, the 
number of tripletons has just approximately 
reached its maximum and, at last, the number of 
quadrupletons is still increasing. 
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Fig. 3. Typical sketch of variation, with increasing sampling-size N, of the number fx(N) of x-
tons  and  the number fx+1(N) of (x+1)-tons. Both curves intersect at point I. A remarkable 

mathematical property, at the intersection between fx(N) and  fx+1(N), is that, there, the slope 
(decreasing rate) of fx(N) is equal in module and opposite in sign to the ratio fx(N)/N. This results 
in a remarkable geometrical property: the equality of angles IAB and IBA; in other words, the 

triangle AIB is isosceles 
 

       
 

Figs. 4, 5, 6, 7. Variations of the numbers f1, f2, f3, f4, of species respectively recorded 1-, 2-, 3-, 
4- times according to sampling-size N around the currently achieved sample-size N0. The 

variations of the fx(N) are computed using a limited Taylor expansion (equation (10)) around the 
size, N = N0, of the actually achieved sampling. That is, the Taylor expansion (equation (10)) is 
implemented with the values of f1, f2, f3, f4, as recorded at the end of the sampling carried out 

(i.e. for N = N0) – Fig. 4: “Parichha Dam” ; Fig.5 “Jhansi Univ. Campus” ; Fig. 6: “Narayan 
Bagh” ; Fig. 7: “Bundelkhand Institute Eng. & Techn. Campus” 

Further comments in text. 
 
Thus, as expected, there is a general trend for 
the numbers fx (N) to pass the successive steps of 
their variations (stages I, m, II, i, III) in 
accordance with increasing level of sampling 
completeness. For example, at 65% 
completeness (“Parichha Dam”), the numbers f1, 

f2, f3, f4, are at stages II, I, I, I, respectively, while, 
at 92% completeness (“Narayan Bagh”), the 
numbers f1, f2, f3, f4, have already reached stages 
III, III, III, II, respectively. Yet, this correlation 
remains rather loose, as is exemplified, by 
comparing “B.I.E.T. Campus” to “Narayan Bagh”: 
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f1, f2, f3, f4, are at stages III, II, ≈ m, I, for the 
quasi exhaustive  sampling of “B.I.E.T. Campus” 
while f1, f2, f3, f4, are at more advanced stages 
(III, III, III, II), for the 92% completeness sampling 
of “Narayan Bagh”. 
 
This loose correlation, however, is not surprising. 
Indeed, the degrees of advancement of the 
variations of the fx(N) along their successive 
stages are not only related to the global level of 
sampling completeness (R0/St) but are still 
dependent also upon the level of unevenness of 
species abundance distribution in the sampled 
assemblage. At any given level of sampling 
completeness, the more uneven is the species 
abundance distribution, the slower will be the 
degree of advancement of the fx(N) in the 
passage of the successive steps of their 
variations. 
 
This highlights the fact that the stages of 
variations respectively reached by f1, f2, f3, f4, 
deserves consideration alongside the usual 
sampling-completeness ratio R0/St. Taking into 
account the stages of variations respectively 
reached by f1, f2, f3, f4, actually provides non-
trivial, truly complementary information regarding 
the degree of advancement of the sampling 
process.  
 
To close this topic, a more laconic and synthetic 
presentation of the degree of advancement in the 
survey of the least abundant species of the 
sampled assemblage may simply consist in 
displaying the “score” of those fx(N) that have 
already overstepped their respective maximum 
‘m’ and enter their decreasing stages (II or III), at 
the currently reached sampling-size N0.  Thus, 
for the four preceding surveys, the scores are as 
follows: for “Parichha Dam”: f1 ; for  “Jhansi 
University Campus”: f1, f2, f3 ; for “Narayan 
Bagh”: f1, f2, f3, f4 ; for “B.I.E.T. Campus”: f1, f2. 
 

6. CONCLUSION 
 
Although looking quite simple, the monotonic 
process of species accumulation during 
progressive sampling is, in fact, far less trivial. 
Indeed, at any given sampling-size, the process 
of species accumulation is the cumulated result 
of quite a more convoluted underlying process, 
involving the non-monotonic variations of each of 
the numbers fx(N) of species recorded x-times. 
Moreover, although partially connected with each 
other, the variations of each of the fx(N) progress, 
however, at different paces, in a relative 
independence from each other in this respect. 

Disclosing the respective variations of each of 
the fx(N) is, thus, quite a non-trivial issue, which 
has yet been successfully addressed above.  
 
In particular, the general expression of the 
variations of the fx(N) has been appropriately 
derived, using a Taylor expansion approach. 
Beyond the speculative aspects of the question - 
at the very heart of the detailed understanding of 
species accumulation rates along progressive 
sampling - more practical aspects have also 
been addressed. In particular, accounting for the 
variations of the low-orders fx(N), (such as f1(N), 
f2(N), f3(N), f4(N)) proves especially significant 
regarding the degree of advancement of ongoing 
surveys. This is so because the further 
improvements of sampling completeness 
progressively involve the recording of less and 
less abundant species, which primarily influence 
the low-orders fx(N). The Taylor expansion of the 
numbers f1(N), f2(N), f3(N), f4(N), … around the 
currently reached sampling-size may thus cast 
more relevant light upon the effective progress of 
an ongoing survey and thus provide an additional 
and complementary tool to accurately evaluate 
the degree of sampling efficiency. 
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APPENDICES 
 

A1 - Derivation of the constraining relationship between ∂
x
R(N) / ∂N

x
   and  fx(N) 

 
The shape of the theoretical Species Accumulation Curve is directly dependent upon the particular 
Species Abundance Distribution (the “S.A.D.”) within the sampled assemblage of species. That 
means that beyond the common general traits shared by all Species Accumulation Curves, each 
particular species assemblage give rise to a specific Species Accumulation Curve with its own, unique 
shape, considered in detail. Now, it turns out that, in spite of this diversity of particular shapes, all the 
Species Accumulation Curves are, nevertheless, constrained by a same mathematical relationship 
that rules their successive derivatives (and, thereby, rules the details of the curve shape since the 
successive derivatives altogether define the local shape of the curve in any details). Moreover, it turns 
out that this general mathematical constraint relates bi-univocally each derivative at order x,  
∂xR(N)/∂Nx, to the number, fx(N), of species recorded x-times in the considered sample of size N. And, 
as the series of the fx(N) are obviously directly dependent upon the particular Distribution of Species 
Abundance within the sampled assemblage of species, it follows that this mathematical relationship 
between ∂xR(N)/∂Nx  and fx(N), ultimately reflects the indirect but strict dependence of the shape of the 
Species Accumulation Curve upon the particular Distribution of the Species Abundances (the so 
called S.A.D.) within the assemblage of species under consideration. In this respect, this constraining 
relationship is central to the process of species accumulation during progressive sampling, and is 
therefore at the heart of any reasoned approach to the extrapolation of any kind of Species 
Accumulation Curves. 
 

This fundamental relationship may be derived as follows. 
 
Let consider an assemblage of species containing an unknown total number 'S' of species. Let R be 
the number of recorded species in a partial sampling of this assemblage comprising N individuals. Let 
pi be the probability of occurrence of species 'i' in the sample This probability is assimilated to the 
relative abundance of species ‘i' within this assemblage or to the relative incidence of species ‘i' (its 
proportion of occurrences) within a set of sampled sites. The number Δ of missed species 
(unrecorded in the sample) is Δ = S – R. 
 

The estimated number Δ of those species that escape recording during sampling of the assemblage is 
a decreasing function Δ(N) of the sample of size N, which depends on the particular distribution of 
species abundances pi: 
 

Δ(N)  = Σi (1-pi)
N  

                                                                                                                  (A1.1) 
 
with Σi  as the operation summation extended to the totality of the 'S' species 'i' in the assemblage 
(either recorded or not) 
 
The expected number fx of species recorded x times in the sample, is then, according to the binomial 
distribution: 
 

fx =  [N!/X!/(N-x)!] Σi [(1-pi)
N-x

 pi
x 
]   = CN, x  Σi (1-pi)

N-x
 pi

x 
                                                     (A1.2)  

 
with CN, x  = N!/X!/(N-x)!  
 

We shall now derive the relationship between the successive derivatives of R(N), the theoretical 
Species Accumulation Curve and the expected values for the series of ‘fx’.  
 
According to equation (A1.2): 
 

► f1 = N Σi [(1-pi)
N-1 pi] = N Σi [(1-pi)

N-1 (1- (1-pi))]  = N Σi [(1-pi)
N-1] - N Σi [(1-pi)

N-1(1-pi))]  = N Σi [(1-
pi)

N-1
] - N Σi [(1-pi)

N
].  

     
Then, according to equation (A1.1) it comes: f1 = N (Δ(N-1) - Δ(N))  = - N (Δ(N) - Δ(N-1)) = - N (∂ Δ(N)/∂N) = - 
N Δ'(N)    
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where Δ'(N) is the first derivative of  Δ(N) with respect to N. Thus:  
   

f1 =  - N Δ'(N)     ( = - CN,1  Δ'(N)  )                                                                                          (A1.3) 
 

Similarly: 
 

►   f2 = CN, 2 Σi [(1-pi)
N-2 pi²]     according to equation (A1.2) 

= CN, 2 Σi [(1-pi)
N-2

 (1- (1-pi²))]   = CN, 2  [Σi [(1-pi)
N-2

] - Σi [(1-pi)
N-2

(1- pi²)]] 
= CN, 2 [Σi [(1-pi)

N-2] - Σi [(1-pi)
N-2(1- pi)(1+ pi)]]  = CN, 2 [ Σi [(1-pi)

N-2] - Σi [(1-pi)
N-1(1+ pi)]] 

= CN, 2 [(Δ(N-2) - Δ(N-1)) - f1/N ]     according to equations (A2.1) and  (A1.2) 
= CN, 2 [- Δ'(N-1) - f1/N]  = CN, 2  [ - Δ'(N-1) + Δ'(N)]   since  f1 = - N Δ'(N)     (cf. equation (A1.3)). 
= CN, 2 [(∂ Δ'(N)/∂N)] = [N(N-1)/2] (∂² Δ(N)/∂N²) = [N(N-1)/2] Δ''(N) 

 

where Δ''(N) is the second derivative of  Δ(N) with respect to N.    Thus: 
 

f2  =  [N(N-1)/2]  Δ''(N)     =  CN, 2  Δ''(N)                                                                                    (A1.4) 
 

►   f3 = CN, 3 Σi [(1-pi)
N-3 pi

3]   which, by the same process, yields: 
= CN, 3 [Σi (1-pi)

N-3
 - Σi (1-pi)

N-2
 - Σi [(1-pi)

N-2
 pi] - Σi [(1-pi)

N-2
 pi

2 
)]]   

= CN, 3 [(Δ(N-3) - Δ(N-2)) - f1*/(N-1) - 2 f2/(N(N-1))]  according to equations (A2.1) and  (A1.2) 
 

where f1* is the number of singletons that would be recorded in a sample of size (N - 1) instead of N.   
According to equations (A1.3) & (A1.4):   
 

f1*  =  - (N-1) Δ'(N-1)  =  - CN-1, 1  Δ'(N-1)    and    f2  =  [N(N-1)/2] Δ''(N)   = CN-1, 2  Δ''(N)             (A1.5) 
 

where Δ' (N-1)  is the first derivate of  Δ(N) with respect to N, at point (N-1).   Then,  
  

f3  = CN, 3 [(Δ(N-3) - Δ(N-2)) + Δ'(N-1) - Δ''(N) ]   =  CN, 3 [ -Δ'(N-2) + Δ'(N-1) - Δ''(N) ]   
=  CN, 3 [ Δ''(N-1) - Δ''(N) ]  = CN,3 [ - ∂ Δ''(N)/∂N ] =  CN, 3 [ - ∂

3
 Δ(N)/∂N3

] = CN, 3 Δ'''(N) 
 

where Δ'''(N) is the third derivative of  Δ(N) with respect to N.  Thus: 
 

f3 = - CN, 3 Δ'''(N)                                                                                                                   (A1.6) 
 

Now, generalising for the number fx of species recorded x times in the sample: 
 

►   fx = CN, x  Σi [(1-pi)
N-x pi

x]    according to equation (A1.2), 
= CN, x Σi [(1-pi)

N-x
 (1 - (1 - pi

x
)) ]  = CN, x [Σi (1-pi)

N-x
 - Σi [(1-pi)

N-x
 (1 - pi

x
)]]   

= CN, x [Σi (1-pi)
N-x - Σi [(1-pi)

N-x (1 - pi)( Σj pi
j )]]    

 

with Σj  as the summation from j = 0 to  j = x-1. It comes: 
 

fx = CN, x [Σi (1-pi)
N-x

 - Σi [(1-pi)
N-x+1

 ( Σj pi
j
)]]   

= CN, x [Σi (1-pi)
N-x - Σi (1-pi)

 N-x+1 - Σk [(Σi (1-pi)
 N-x+1 pi

k )]] 
 

with Σk  as the summation from k = 1 to k = x-1 ; that is: 
 

fx  = CN, x [(Δ(N-x) - Δ(N-x+1)) - Σk (fk*/C(N-x+1+k), k )]  according to equations (A1.1) and  (A1.2)) 
 

where C(N-x+1+k), k = (N-x+1+k)!/k!/(N-x+1)! and fk* is the expected number of species  recorded k times 
during a sampling of size (N-x+1+k)  (instead of size N).   
 
The same demonstration, which yields previously the expression of f1* above (equation (A1.5)), 
applies for the fk* (with k up to x-1) and gives:  
   

fk* = (-1)
k
 (C(N-x+1+k), k ) Δ

(k)
(N-x+1+k)                                                                                         (A1.7) 

 
where Δ (k)

(N-x+1+k)  is the kth derivate of  Δ(N) with respect to N, at point (N-x+1+k). Then,   
 

fx = CN, x [(Δ(N-x) - Δ(N-x+1)) - Σk ((-1)k Δ(k)
(N-x+1+k) )], 
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which finally yields: 
  

fx  = CN, x [(-1)x (∂Δ(x-1)
(N)/∂N) ] = CN, x [(-1)x (∂xΔ(N)/∂Nx)].   That is:  

 

fx = (-1)x CN, x Δ
(x)

(N)  = (-1)x CN, x [∂
xΔ (N)/∂Nx]                                                                       (A1.8)  

 

where  [∂x Δ (N)/∂Nx] is the xth derivative of  Δ(N) with respect to N, at point N.  
   

Conversely: 
 

[∂x Δ(N)/∂Nx] = (-1)x fx /CN, x                                                                                                   (A1.9)  
 

Note that, in practice, leaving aside the beginning of sampling, N rapidly increases much greater than 
x, so that the preceding equation simplifies as: 
 

[∂x Δ(N)/∂Nx] = (– 1)x (x!/Nx) fx(N)                                                                                          (A1.10) 
 
In particular: 
 

[∂Δ(N)/∂N] = f1(N)/N                                                                                                             (A1.11) 
 
[∂

2 
Δ(N)/∂N2

] = 2 f2(N)/N
2
                                                                                                      (A1.12)    

             
This relation (A1.9) has general relevance since it does not involve any specific assumption relative to 
either (i) the particular shape of the distribution of species abundances in the sampled assemblage of 
species or (ii) the particular shape of the species accumulation rate. Accordingly, this relation 
constrains any theoretical form of species accumulation curves. As already mentioned, the shape of 
the species accumulation curve is entirely defined (at any value of sample size N) by the series of the 
successive derivatives [∂

x
R(N)/∂Nx

] of the predicted number R(N) of recorded species for a sample of 
size N: 
 

[∂
x
R(N)/∂Nx

] = (-1)
(x-1)

 fx /CN, x                                                                                              (A1.13)  
 
with [∂

x
R(N)/∂Nx

] as the x
th
 derivative of  R(N) with respect to N, at point N and CN, x = N!/(N-x)!/x! (since 

the number of recorded species R(N) is equal to the total species richness S minus the expected 
number of missed species Δ(N)).  
 
As above, equation (A1.13) simplifies in practice as: 
 

∂xR(N)/∂Nx  =  (– 1)(x-1) (x!/Nx) fx(N)                                                                                       (A1.14) 
 
Equation (A1.13) makes quantitatively explicit the dependence of the shape of the species 
accumulation curve (expressed by the series of the successive derivatives [∂xR(N)/∂Nx] of R(N)) upon 
the shape of the distribution of species abundances in the sampled assemblage of species. 
 
A2 - An alternative derivation of the relationship between ∂

x
R(N)/∂Nx

  and fx(N) 

 
Consider a sample of size N (N individuals collected) extracted from an assemblage of S species and 
let Gi be the group comprising those species collected i-times and fi(N) their number in Gi. The number 
of collected individuals in group Gi is thus i.fi(N), that is a proportion i.fi(N)/N of all individuals collected in 
the sample. Now, each newly collected individual will either belong to a new species (probability 1.f1/N 
= f1/N) or to an already collected species (probability 1– f1/N), according to [8]. In the latter case, the 
proportion i.fi(N)/N of individuals within the group Gi accounts for the probability that the newly collected 
individual will contribute to increase by one the number of species that belong to the group Gi (that is 
will generate a transition [i-1 → i] under which the species to which it belongs leaves the group Gi-1 to 
join the group Gi). Likewise, the probability that the newly collected individual will contribute to reduce 
by one the number of species that belong to the group Gi (that is will generate a transition [i → i+1] 
under which the species leaves the group Gi to join the group Gi+1) is (i+1).fi+1(N)/N. 



 
 
 
 

Béguinot; AIR, 10(6): 1-14, 2017; Article no.AIR.35223 
 
 

 
14 

 

Accordingly, for i > 1: 
 

∂fi(N)/∂N  =  [i.fi(N)/N – (i+1).fi+1(N)/N](1 – f1/N)                                                              (A2.0) 
 
Leaving aside the very beginning of sampling, and thus considering values of sample size N 
substantially higher than f1, it comes: 
 

∂fi(N)/∂N  =  i.fi(N)/N – (i+1).fi+1(N)/N                                                                                        (A2.1) 
 
Let consider now the Species Accumulation Curve R(N), that is the number R(N) of species that have 
been recorded in a sample of size N. The probability that a newly collected individual belongs to a still 
unrecorded species corresponds to the probability of the transition [0 → 1], equal to i.fi(N)/N with i = 1, 
that is: f1(N)/N (as already mentioned).  
 
Accordingly, the first derivative of the Species Accumulation Curve R(N) at point N is 
   

∂R(N)/∂N = f1(N)/N                                                                                                                 (A2.2) 
 
In turn, as f1(N) = N.∂R(N)/∂N (from equation (A2.2)) it comes: 
                              

∂f1(N)/∂N = ∂[N(∂R(N)/∂N)]/∂N = N(∂
2
R(N)/∂N2

) + ∂R(N)/∂N 
 
On the other hand, according to equation (A2.1):  
 
∂f1(N)/∂N = 1.f1(N)/N – 2.f2(N)/N  =  f1(N)/N – 2f2(N)/N, and therefore: 
 

N(∂2R(N)/∂N2) + ∂R(N)/∂N =  f1(N)/N – 2f2(N)/N 
 
And as ∂R(N)/∂N = f1(N)/N according to equation (A2.2): 
 

∂
2
R(N)/∂N2

  =  – 2f2(N)/N
2
                                                                                                      (A2.3) 

 
Likewise, as f2(N) = –N

2
/2.(∂

2
R(N)/∂N2

), it comes: 
 

∂f2(N)/∂N  =  ∂[–N2/2.(∂2R(N)/∂N2)]/∂N  =  – N(∂2R(N)/∂N2) – N2/2.(∂3R(N)/∂N3) 
 
As ∂f2(N)/∂N = 2f2(N)/N – 3f3(N)/N,  according to equation (A2.1), it comes: 
 

– N(∂
2
R(N) /∂N

2
) – N

2
/2.(∂

3
R(N)/∂N

3
) = 2f2(N)/N – 3f3(N)/N 

 
and as ∂

2
R(N)/∂N2

 = – 2f2(N)/N
2
, according to equation (A2.3), it comes: 

 
∂

3
R(N)/∂N3

  =  + 6f3(N)/N
3
                                                                                                      (A2.4) 

 
More generally: 
 

∂xR(N)/∂Nx  =  (– 1)(x-1) (x!/Nx) fx(N)                                                                                         (A2.5) 
_________________________________________________________________________________ 
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