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Abstract 
Maintenance for wind turbines has been transformed using supervised ma-
chine learning techniques. This method of automatic and autonomous learn-
ing can identify, monitor, and detect electrical and mechanical components 
of wind turbines and predict, detect, and anticipate their degeneration. Using 
a machine learning classifier and frequency analysis, we simulate two failure 
states caused by bearing vibrations. Implementing KNN facilitates efficient 
monitoring, monitoring, and fault-finding for wind turbines. It is possible 
to reduce downtime, anticipate breakdowns, and import offshore aspects 
through these technologies. 
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1. Introduction 

Global warming and increased energy consumption are driving the use of re-
newable sources of electricity. Research has developed new techniques for main-
taining wind power infrastructure, and wind power production has increased by 
about 40% in the past few years. By using advanced monitoring and fault diag-
nosis, wind turbines can be made more reliable, safer, and more profitable. A 
spectral analysis and fault tree analysis have traditionally [1] been used to main-
tain wind turbines. 

A growing number of businesses are turning to artificial intelligence (AI) thanks 
to the growth of digital technology, mobile technology, and smart and data-driven 
technologies. The industry is currently able to access a growing amount of data, 
which can have many implications, including scheduling [2], maintenance 
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management [3], and quality improvement [4]. 
Machine learning has become even more relevant in these areas with the ad-

vent of cloud-based solutions and new hardware [5]. Failure to replace a motor 
or switch usually causes vibrations. Vibrations can also indicate gear and bearing 
failures. The rolling elements in bearings wear primarily because the bearing 
surface position continuously changes with respect to the load, because of the 
rotation speed. The advent of new hardware and cloud-based solutions has made 
machine learning even more impactful in these fields [6]. The cause of vibration 
is usually either mechanical or electrical failure. Vibrations can also indicate gear 
and bearing failures. Due to their rolling elements, bearings are subject to wear 
in large part due to the way their surface position is continuously adjusted with 
respect to the load. A vibration can be caused by geometric imperfections, cage 
failure, as well as imbalance and misalignment. The use of spectral analysis to 
detect bearing failures caused by mechanical failures has been used in several 
studies [7]. In the past, various diagnostic techniques have been used to study 
wind turbine generators and their structures [8]. Artificial Intelligence [9] found 
that Machine Learning worked perfectly and continues to work perfectly. How-
ever, there are some limitations and drawbacks to this kind of methodology. 
Maintenance methodologies can automatically diagnose and classify a mal-
functioning component’s function. Data management and analysis allow for 
flexible offshore implementation and feedback learning, according to [10], 
while machine learning reduces response times and virtually eliminates errors, 
as per [11]. 

Validating AI methods is essential for implementing them successfully on real 
systems without costly errors. With AI methodology, you are protected against 
all types of failures by analysing and preventing them. Validating fault diagnosis 
techniques and understanding how these systems work is accomplished by de-
veloping new techniques, performing studies, etc., using prototypes or test 
benches. Wind turbines broken during peak energy times can cause considerable 
losses for two reasons: first, they cost a great deal to replace, and second, their 
inability to generate energy contributes to the loss. The use of fault detection and 
diagnosis techniques is essential to avoid high repair and maintenance costs in 
offshore wind farms, especially those subject to high repair and maintenance 
costs. Aside from reducing downtime costs, it becomes increasingly important to 
manage maintenance activities efficiently. By applying algorithms designed to 
anticipate and prevent problems, we developed a prototype that detects, super-
vises, and anticipates failures in comparison to existing systems. The purpose of 
our article is to present a method in which vibration analysis can be used to 
monitor and diagnose faults in a prototype wind turbine. Automatically detect-
ing bearing failures is presented in this paper. After reviewing the literature, data 
collection and analysis, the classification results are assessed before concluding 
with a review of the literature. As a result of the study, some significant conclu-
sions can be drawn. 
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2. Research Methodology 

There are many ways to diagnose and monitor the vibration of bearings in a 
wind turbine, and each bearing has different characteristics. Thus, bearing cha-
racteristics may be different from fault characteristics in general. In this study, 
machine learning is used to improve accuracy and predict potential failures 
based on vibration measurements from another bearing. 

2.1. Machine Learning 

Machine learning techniques for wind turbine fault detection mainly address 
two tasks: detecting anomalous behavior and classifying faults. The system is 
made more reliable and secure by using this technique, which also makes it 
possible to take corrective measures very quickly if the system fails. 

To classify the different bearing data and determine which ones are in good 
condition or which ones have a fault and, in this case, what type of fault it is, 
Machine learning algorithms have been used [12]. 

Machine learning is a subfield of computer science which belongs to the field 
of Artificial Intelligence and whose objective is to create systems that learn au-
tomatically. Machine learning algorithms use computational methods to extract 
information from the data that is entered into the algorithm without relying on a 
specific equation as a model, and by increasing the number of data that we enter 
into the algorithm, it adapts and improves its results. 

Nowadays, with the increase in the amount of data that computers can store and 
manage, Machine learning has become a very useful tool to solve problems or 
make better decisions. Several of the sectors where algorithms of this type are used 
facial recognition, motion detection, manufacturing, predictive maintenance, etc. 

There are two types of techniques when obtaining machine learning algo-
rithms, unsupervised learning and supervised learning. 

Unsupervised learning consists of obtaining patterns not visible to the naked 
eye in the data that we introduce to the algorithm, while supervised learning 
tries to train a model with known input and output values, to predict the output 
values when introducing certain values, input data. Of these two types of ma-
chine learning, the one used in this work has been supervised learning. 

Within supervised learning, two types of techniques are used to obtain mod-
els: regression and classification techniques. 

Regression techniques are used to predict the value of continuous variables 
over time; however, in this work classification techniques have been used since 
they are used to predict discrete variables. 

2.2. Decision Trees 

The algorithm that is based on some input data (inputs) provides a solution (out-
put) following a set of conditions or decisions which go from a root node, which is 
the beginning of the tree, to a terminal node [13]. The conditions at each node and 
the number of nodes are determined when training the algorithm. Some of the 
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advantages of this algorithm are: that is easy to interpret, it uses little memory 
space, and it can be adjusted to nonlinear patterns. As for disadvantages: it is sen-
sitive to anomalous data and does not usually offer very high precision. 

2.3. Discriminant Analysis 

This type of algorithm classifies data by looking for linear combinations of fea-
tures or predictors. They assume that the data belonging to each class follows a 
Gaussian distribution [14]. Gaussian distributions are characterized by certain 
parameters which are calculated for each class when training this type of algo-
rithm. From these parameters, the limits that separate the data regions of differ-
ent classes are obtained and thanks to these limits, new input data are classified. 

2.4. Naïve Bayes Algorithms 

They are quite simple algorithms and easy to interpret. They use the Bayes’ 
theorem to decide to which class the input data belongs. When using this theo-
rem, it is assumed that the predictor variables are independent of each other, 
that is, that the presence of a variable or predictor in the data is not correlated 
with any other predictor [15]. When introducing new data to the algorithm, it 
will classify them in the class to which they are most likely to belong, calculating 
this probability using Bayes’ theorem. 

2.5. Support Vector Machines 

These algorithms try to obtain the “border” that best separates the different 
classes. These borders between classes are called hyperplanes; the objective is to 
obtain a hyperplane that separates the data of different classes, leaving the great-
est possible margin between them. The points from which the distance or mar-
gin is measured are called support vectors, which are the points or points that 
are closest to the hyperplane [16]. 

This algorithm is usually used when there are two possible classes to classify 
the input data (although it can also be used for problems with more than two 
classes, using the same theoretical concept that is used when classifying between 
two classes, the problem becomes more complex). 

2.6. K-Nearest Neighbout (KNN) 

It is a learning algorithm based on the principle that instances within a data set 
will generally exist close to other instances with similar properties [17]. This 
methodology does not generate a model resulting from learning with training 
data, but rather learning happens at the same time that the test data is tested. 
This type of algorithm is also known as the lazy learning method [18]. 

Its operation is very simple, for a given training group of classified instances 
( ) ( ) ( )1 1 2 2, , , , , ,N NT x y x y x y =   , where ix  is the vector of characteristics of 

the unlabeled instance, iy  is the label 1 1 2, , , Ky c c c=  , 1,2, ,i N=  . For a 
training sample (x, y), the k-NN algorithm finds the k closest instances to x 
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based on a given distance metric. The area that contains these k instances is 
represented by ( )kN x . Therefore, the test sample label x can be calculated 
based on the decision rules: 

( ) ( )arg max , 1,2, , ; 1, 2, ,
j i kc i jx N xy I y c i N j K

∈
= = = =∑         (1) 

where I is the indicator function. 
If the instances are tagged using a tagger, then the tag of an unclassified in-

stance can be obtained by analysing its closest neighbours, as shown in Figure 1. 
 

 
Figure 1. K-NN diagram with different samples. 

3. Case Study 

The document describes the industrial environment and how the sensors will be 
distributed, as well as the components within which the system will operate. In 
addition, a data acquisition card’s characteristics and connections are discussed. 

3.1. Sensor Distribution and Prototype Development 

A small wind turbine prototype like the one in Figure 2 can be useful for  
 
 

 
Figure 2. Component distribution in the prototype. 
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diagnosing problems with components since it can detect damage and wear on 
the parts and how these affect them [19]. 

As a result of this system, parts can be exchanged without waiting for deteri-
oration to occur, allowing for testing of diagnostic techniques before the parts 
deteriorate. Vibration sensors are installed close to the fast shaft coupling to 
measure vibrations from generators, gearboxes, and bearings. 

To monitor the vibrations generated by the fast shaft coupling to the genera-
tor, sensors should be installed in the input bearing of the generator. Depending 
on the state monitoring techniques and design of the machine, sensors should be 
placed in each process stage of the multiplier. In doing so, you can see how dif-
ferent failures affect vibrations and see how they propagate between stages. A 
bearing located on the slow axis is another interesting metric for measuring the 
prototype. We may change this element on some of the deteriorated bearings to 
observe the signal’s behavior following a failure as well as to see how the signal 
behaves in normal operation and how the component deteriorates over time. 

After considering the previous points, it was decided to place 10 accelerome-
ters in total, distributed as follows: 
• Bearing: 1 accelerometer; 
• Multiplier: 7 accelerometers; 
• Generator: 2 accelerometers. 

Vibrations are measured with accelerometers. They have a 2-pin MIL-C-5015 
connector [19], so they are generally useful accelerometers. Some characteristics 
are presented in Table 1. 

 
Table 1. Accelerometer characteristics. 

Measured range Sensitivity (±10%) Frequency range (±3 dB) 

±50 g (±490 m/s2) 100 mV/g (10.2 mV/(m/s2)) 30 a 600,000 cpm (0.5 a 10,000 Hz) 

3.2. Data Collection and Description 

For vibration measurement, accelerometers are used. The accelerometers have a 
two-pin MIL-C-5015 NI connector. To measure vibration, we used the PCI-4472B 
acquisition card, which offers eight-channel dynamic signal acquisition. For ac-
celerometers and microphones, IEPE is used to integrate the signals of the eight 
input channels simultaneously. The eight input channels cover a bandwidth 
from DC to 45 kHz. When the card is AC coupled with very low-frequency AC 
vibration measurements, the PCI 4472B performs with a cut-off frequency of 
only 0.5 Hz. NI sound and vibration analysis software, including the NI Sound 
and Vibration Measurement Suite and the NI Sound and Vibration Toolkit, 
provides signal processing functionality to perform audio measurements, frac-
tional octave analysis, frequency analysis, transitory analysis and order tracking 
[20]. We use two PCI-4472B cards since the prototype has 10 accelerometers, 
and each card only provides 8 inputs. In Table 2, a short description (label) of 
accelerometers for the data acquisition system is presented. As you can see in  
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Table 2. Description accelerometers to the data acquisition system. 

Data Attributes Data Description 

First PCI-4472B  

Channel 0 Accelerometer LA. 

Channel 1 Accelerometer LOA. 

Channel 2 Accelerometer E2V. 

Channel 3 Accelerometer E2H. 

Channel 4 Accelerometer E3V. 

Channel 5 Accelerometer E3H. 

Channel 6 Accelerometer 3EA. 

Second PCI-4472B  

Channel 0 Accelerometer EV1. 

Channel 1 Accelerometer E1H. 

Channel 2 Accelerometer ROD. 

 

 
Figure 3. Connection of accelerometers to the data acquisition system. 

 
Figure 3, the NI PCI-4472B also has eight accelerometer inputs, which can be 
connected as you would any other PCI card. 

4. Results and Discussion 

The simulation is successfully run using traditional methods versus the artificial 
methods described in this section. Historically, vibrational motion is measured 
with spectral analysis. With traditional methods compared to the artificial me-
thods described here, the simulation is successfully run. Spectral analysis has 
historically been used to measure vibrational motion. An accelerometer array 
around the wind turbine prototype is shown in figure X. 0 rpm to 1500 rpm is 
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the speed range for the prototype. A medium speed of 300 rpm was selected for 
this particular case. Wind turbines can be tracked, diagnosed, and prevented us-
ing traditional vibration analysis methods coupled with automated learning sys-
tems. Based on an average of 5000 samples collected by the selected sensors, a 
graphical presentation is generated at 1 KHz. Automation can be used to pre-
vent, diagnose, and track wind turbine failures. The algorithm needs to be 
trained so it can analyse and classify the data independently, so it can make a 
correct prediction. The following section explains how to train and teach the al-
gorithm. 

Based on the training, we were able to simulate 2 states of analysis: imbalance 
and breakage. We believe that the feedback we received is valuable for accurate 
prediction. About eight times, the algorithm was trained. As a final analysis, we 
used KNN to compare the two states. A total of four phases of analysis were 
conducted, starting with the acquisition of the data using a PCI-4472B card, fol-
lowed by filtration and processing. Stabilizing the analysis involves transforming 
the signal into something that is not random. Machine learning algorithms must 
be properly conditioned and processed efficiently to extract patterns from sig-
nals of this type. Signals of this type are time-varying and therefore hard to 
process. To ensure the algorithm works correctly, the filtering and conditioning 
phase must be completed. Signal processing algorithms can be used to read the 
invariant characteristics of signals in real-time. Identifying faults or conditions 
requires the extraction of features. The arithmetic mean is computed by adding 
the examples of each problem (based on the predetermined issue condition) and 
dividing by the number of tests considered. The principal component analysis is 
then used to reduce the number of variables in the data set to a minimum num-
ber that produces the same outcome as the original variables. Furthermore, by 
understanding the current state as well as what is happening, we can make future 
decisions based on their standard deviation. It shows that there are differences or 
dispersions between many of the states, which implies that most of the points are 
around the average, which is why the study should work. Training sessions follow 
the entire process so that the algorithm eventually becomes self-operating. The 
algorithm can be made to work with a few training sessions; it just needs new 
data. 

Each state will be explored separately. It is important for KNN to update the 
limits used in their feedback algorithm due to the fact that the limits used in this 
case are out of date with respect to the problem of imbalances (Figure 4(a)). The 
failure is caused by bearing race breakage, as shown in Figure 4(b). Here’s a 
breakdown of each state. Firstly, the classifier follows the same pattern. Since 
KNN does not follow a set pattern for sorting and classifying data, it produces 
more grouped data, as a result of the techniques used. Additionally, the algo-
rithms in both cases are highly accurate and are similar to the actual and pre-
dicted outputs in both cases. Figure 5 shows the confusion matrix. Let us ex-
amine the imbalance variable as an example. 95% percent of the time, this variable  
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Figure 4. (a) Imbalance. Real output vs. predicted output algorithm; (b) Bearing break. Real output vs 
predicted output algorithm. 

 
is correctly classified, while 5% percent of the time, it is incorrectly classified. A 
total of 95% of true positives and just 5% of false positives were detected. In this 
way, KNN is able to accurately predict the wind turbine’s failure thanks to its 
many similarities with the prototype. As a result of this simulation, we have ob-
served that both the KNN and the BNN classifications were quite robust to the 
interference (noise). The KNN algorithm also allows for regression classification 
to be implemented. 
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Figure 5. Confusion matrix (KNN). 

5. Conclusion 

A large part of the success and proper functioning of AI depends on the acquisi-
tion and classification of data. Machine learning systems are changing how wind 
turbine faults can be detected, monitored, and diagnosed, making them better 
accessible. The purpose of this document is to explore several different AI tech-
niques for analysing vibrations to diagnose and prevent failures in wind turbine 
bearings. KNN models have been used to diagnose bearing faults from a theo-
retical and practical perspective. This model has a lot of advantages, including its 
robustness, high accuracy, and high processing speeds, which make them very 
suitable for this type of study. Traditional methods such as spectral analysis are 
being displaced due to some of their advantages, such as their ease of classifica-
tion and prediction. As a result, the methodology provided good predictions for 
the stipulated failure conditions, allowing this methodology to be used for other 
mechanical components of wind turbine prototypes, with the goal of identifying 
or preventing possible breakdowns. This prototype facilitates the study, devel-
opment, and validation of fault diagnosis and supervision techniques by provid-
ing the possibility of replacing defective or worn parts with other components. 
In the phase leading up to their installation in high-power wind turbines, proto-
type wind turbines allow testing of the designed diagnostic algorithms, reducing 
costs and time, and allowing them to be verified, adjusted, and corrected. 

Conflicts of Interest 

The author declares no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] Yang, B., Liu, R. and Chen, X. (2018) Sparse Time-Frequency Representation for 

Incipient Fault Diagnosis of Wind Turbine Drive Train. IEEE Transactions on In-

https://doi.org/10.4236/jcc.2022.107001


J. Vives 
 

 

DOI: 10.4236/jcc.2022.107001 11 Journal of Computer and Communications 
 

strumentation and Measurement, 67, 2616-2627.  
https://doi.org/10.1109/TIM.2018.2828739 

[2] Sánchez, P.J.B., Ramirez, I.S. and Márquez, F.P.G. (2021) Wind Turbines Acoustic 
Inspections Performed with UAV and Sound Frequency Domain Analysis. 2021 7th 
International Conference on Control, Instrumentation and Automation (ICCIA), 
Tabriz, 23-24 February 2021, 1-5. 

[3] Ramirez, I.S., Urioso, E.C., Peco, A.M., Kotorov, R., Chi, L., Padhye, R.G., García 
Márquez, F.P., et al. (2021) Motif Analysis in Internet of the Things Platform for 
Wind Turbine Maintenance Management. In: Xu, J.P., et al., Eds., International 
Conference on Management Science and Engineering Management, Springer, 
Cham, 74-86. https://doi.org/10.1007/978-3-030-79203-9_7 

[4] Zhang, R.G., Wang, B.J., Wang, J.B., Lei, H. and Xia, S.C. (2021) Wind Turbine 
Blade Failure Case Analysis and Control Measures. Journal of Physics: Conference 
Series, 2047, Article No. 012014. https://doi.org/10.1088/1742-6596/2047/1/012014 

[5] Lee, G.S., Choi, J., Kang, M., Park, S. and Lee, J. (2020) Study on Enhancement of 
Data Processing Algorithm in SaaS Cloud Infrastructure to Monitor Wind Turbine 
Condition. New & Renewable Energy, 16, 25-30.  
https://doi.org/10.7849/ksnre.2020.2047 

[6] Roy, S., Kundu, B. and Chatterjee, D. (2021) Cloud Based Real-Time Vibration and 
Temperature Monitoring System for Wind Turbine. In: Shaw, R.N., Mendis, N., 
Mekhilef, S. and Ghosh, A., Eds., AI and IOT in Renewable Energy, Springer, Sin-
gapore, 89-99. https://doi.org/10.1007/978-981-16-1011-0_9 

[7] Kong, Y., Wang, T. and Chu, F. (2019) Meshing Frequency Modulation Assisted 
Empirical Wavelet Transform for Fault Diagnosis of Wind Turbine Planetary Ring 
Gear. Renewable Energy, 132, 1373-1388.  
https://doi.org/10.1016/j.renene.2018.09.027 

[8] Karaagac, U., Mahseredjian, J., Gagnon, R., Gras, H., Saad, H., Cai, L., Wang, L., et 
al. (2019) A Generic EMT-Type Model for Wind Parks with Permanent Magnet 
Synchronous Generator Full Size Converter Wind Turbines. IEEE Power and En-
ergy Technology Systems Journal, 6, 131-141.  
https://doi.org/10.1109/JPETS.2019.2928013 

[9] Ti, Z., Deng, X.W. and Yang, H. (2020) Wake Modeling of Wind Turbines Using 
Machine Learning. Applied Energy, 257, Article ID: 114025.  
https://doi.org/10.1016/j.apenergy.2019.114025 

[10] Kreutz, M., Ait-Alla, A., Varasteh, K., Oelker, S., Greulich, A., Freitag, M. and 
Thoben, K.D. (2019) Machine Learning-Based Icing Prediction on Wind Turbines. 
Procedia CIRP, 81, 423-428. https://doi.org/10.1016/j.procir.2019.03.073 

[11] Liu, Z., Xiao, C., Zhang, T. and Zhang, X. (2020) Research on Fault Detection for 
Three Types of Wind Turbine Subsystems Using Machine Learning. Energies, 13, 
460. https://doi.org/10.3390/en13020460 

[12] Gu, G.X., Chen, C.T. and Buehler, M.J. (2018) De Novo Composite Design Based 
on Machine Learning Algorithm. Extreme Mechanics Letters, 18, 19-28.  
https://doi.org/10.1016/j.eml.2017.10.001 

[13] Chacón, A.M.P., Ramirez, I.S. and Márquez, F.P.G. (2021) Support Vector Machine 
for False Alarm Detection in Wind Turbine Management. 2021 7th International 
Conference on Control, Instrumentation and Automation (ICCIA), Tabriz, 23-24 
February 2021, 1-5. 

[14] Deng, Z., Kammoun, A. and Thrampoulidis, C. (2019) A Model of Double Descent 
for High-Dimensional Binary Linear Classification. Information and Inference: A 

https://doi.org/10.4236/jcc.2022.107001
https://doi.org/10.1109/TIM.2018.2828739
https://doi.org/10.1007/978-3-030-79203-9_7
https://doi.org/10.1088/1742-6596/2047/1/012014
https://doi.org/10.7849/ksnre.2020.2047
https://doi.org/10.1007/978-981-16-1011-0_9
https://doi.org/10.1016/j.renene.2018.09.027
https://doi.org/10.1109/JPETS.2019.2928013
https://doi.org/10.1016/j.apenergy.2019.114025
https://doi.org/10.1016/j.procir.2019.03.073
https://doi.org/10.3390/en13020460
https://doi.org/10.1016/j.eml.2017.10.001


J. Vives 
 

 

DOI: 10.4236/jcc.2022.107001 12 Journal of Computer and Communications 
 

Journal of the IMA, 11, 435-495. https://doi.org/10.1093/imaiai/iaab002 

[15] Ye, J.C. (2022) Linear and Kernel Classifiers. In: Ye, J.C., Ed., Geometry of Deep 
Learning, Springer, Singapore, 29-44. https://doi.org/10.1007/978-981-16-6046-7_2 

[16] Zhang, Z.L., Luo, X.G., Yu, Y., Yuan, B.W. and Tang, J.F. (2018) Integration of an 
Improved Dynamic Ensemble Selection Approach to Enhance One-vs-One Scheme. 
Engineering Applications of Artificial Intelligence, 74, 43-53.  
https://doi.org/10.1016/j.engappai.2018.06.002 

[17] Utami, E., Iskandar, A.F. and Raharjo, S. (2021) Multi-Label Classification of Indo-
nesian Hate Speech Detection Using One-vs-All Method. 2021 IEEE 5th Interna-
tional Conference on Information Technology, Information Systems and Electrical 
Engineering (ICITISEE), Yogyakarta, 9-10 November 2021, 78-82.  
https://doi.org/10.1109/ICITISEE53823.2021.9655883 

[18] Dzulfikri, Z., Nuryanti, N. and Erdani, Y. (2020) Design and Implementation of Ar-
tificial Neural Networks to Predict Wind Directions on Controlling Yaw of Wind 
Turbine Prototype. Journal of Robotics and Control (JRC), 1, 20-26.  
https://doi.org/10.18196/jrc.1105 

[19] Diaferio, M., Foti, D., La Scala, A. and Sabbà, M.F. (2021) Design of the Set-Up for 
Ambient Vibration and Dynamic forced Tests on a Cable-Stayed Bridge. 2021 AEIT 
International Annual Conference (AEIT), Milan, 4-8 October 2021, 1-5.  
https://doi.org/10.23919/AEIT53387.2021.9626962 

[20] Quiles, E., Garciia, E., Cervera, J. and Vives, J. (2019) Development of a Test Bench 
for Wind Turbine Condition Monitoring and Fault Diagnosis. IEEE Latin America 
Transactions, 17, 907-913. https://doi.org/10.1109/TLA.2019.8896812 

 
 

https://doi.org/10.4236/jcc.2022.107001
https://doi.org/10.1093/imaiai/iaab002
https://doi.org/10.1007/978-981-16-6046-7_2
https://doi.org/10.1016/j.engappai.2018.06.002
https://doi.org/10.1109/ICITISEE53823.2021.9655883
https://doi.org/10.18196/jrc.1105
https://doi.org/10.23919/AEIT53387.2021.9626962
https://doi.org/10.1109/TLA.2019.8896812

	Monitoring and Detection of Wind Turbine Vibration with KNN-Algorithm
	Abstract
	Keywords
	1. Introduction
	2. Research Methodology
	2.1. Machine Learning
	2.2. Decision Trees
	2.3. Discriminant Analysis
	2.4. Naïve Bayes Algorithms
	2.5. Support Vector Machines
	2.6. K-Nearest Neighbout (KNN)

	3. Case Study
	3.1. Sensor Distribution and Prototype Development
	3.2. Data Collection and Description

	4. Results and Discussion
	5. Conclusion
	Conflicts of Interest
	References

