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1 Introduction

In the preceding paper [1], differential equations of order lx ∈ Z>0, with coefficients of polynomials,
are studied. They take the form:

lx∑
k=0

∞∑
m=0

ak,mt
m dk

dtk
u(t) =

lx∑
k=0

(ak,0 + ak,1 · t+ ak,2 · t2 + ak,3 · t3 + · · · ) · d
k

dtk
u(t) = 0, t > 0, (1.1)

where ak,m for k ∈ Z[0,lx] and m ∈ Z>−1 are constants. It was assumed that a finite number of the
constants are nonzero.

Here R and Z are the sets of all real numbers and all integers, respectively, and Z[a,b] = {n ∈ Z|a ≤
n ≤ b} for a, b ∈ Z satisfying a < b. We also use C which is the set of all complex numbers, and
Z>a = {n ∈ Z|n > a}, Z<a = {n ∈ Z|n < a} for a ∈ Z, and R>a = {x ∈ R|x > a} for a ∈ R. We
use (z)k and (z)−k for z ∈ C, k ∈ Z>−1, which denote (z)k =

∏k−1
m=0(z+m) if k ∈ Z>0, and (z)0 = 1,

as usual, and

(z)−k =

k−1∏
m=0

(z −m) = (−1)k(−z)k, k ∈ Z>0, (1.2)

and (z)−0 = 1.

In [1], the terms of Equation (1.1) are reassembled as

lx∑
l=−∞

Dl
tu(t) = 0, t > 0, (1.3)

where

Dl
tu(t) =

lx∑
k=max{0,l}

ak,k−l · tk−l d
k

dtk
u(t), (1.4)

each of Dl
tu(t) is called a block of classified terms.

When lx = 2, Equation (1.3) is expressed as

D2
tu(t) +D1

tu(t) +D0
tu(t) +D−1

t u(t) +D−2
t u(t) + · · · = 0, t > 0, (1.5)

where

D2
t = a2,0

d2

dt2
, D1

t = a2,1t ·
d2

dt2
+ a1,0

d

dt
, D0

t = a2,2t
2 · d

2

dt2
+ a1,1t ·

d

dt
+ a0,0,

D−1
t = a2,3t

3 · d
2

dt2
+ a1,2t

2 · d
dt

+ a0,1t, D−2
t = a2,4t

4 · d
2

dt2
+ a1,3t

3 · d
dt

+ a0,2t
2, · · · .

(1.6)

When Dl
t is operated on tα for α ∈ C\Z, we have

Dl
tt

α = Al(α)t
α−l, (1.7)

where

Al(α) =

lx∑
k=max{0,l}

ak,k−l · (α)−k . (1.8)

When we discuss a differential equation of order lx, the following condition is adopted.
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Condition 1.1. We consider such a differential equation is not regarded as a differential equation
of u′(t), so that

∑∞
m=0 |alx,m| ̸= 0 and

∑∞
m=0 |a0,m| ̸= 0.

In [1], special attention is focussed on Equation (1.5) for the case in which there exist two nonzero
blocks of classified terms, so that the equation is expressed as

Dl
tu(t) +Dl−m

t u(t) = 0, m ∈ Z>0, (1.9)

Remark 1.1. By (1.6) for lx = 2, we see that Equation (1.9) for l = −1,−2, . . . are equivalent to
the one for l = 0, and the differential equation for l = 1 is equivalent to the one for l = 0 when
a0,0 = 0. We note that the differential equation for l = 2 is equivalent to a special one for l = 0.
Hence we study only the differential equation for l = 0.

In [1], special attention is focussed on the solutions of

D0
tu(t) +D−1

t u(t) = 0, (1.10)

In [2, 3, 4], the solutions of Kummer’s and the hypergeometric differential equation, which are
special ones of Equation (1.10), were studied with the aid of distribution theory, and of the AC-
Laplace transform, that is the Laplace transform supplemented by its analytic continuation. In the
study, the following condition was adopted.

Condition 1.2. u(t) is expressed as a linear combination of gν(t) =
1

Γ(ν)
tν−1 for t > 0 and ν ∈ S,

where S is a set of ν ∈ R>−M\Z<1 for some M ∈ Z>−1.

We then express u(t) as follows:

u(t) =
∑
ν∈S

uν−1
1

Γ(ν)
tν−1, (1.11)

where uν−1 ∈ C are constants. Because of this condition, we obtained the solutions which are
expressed by a power series of t multiplied by a power tα:

u(t) = tα
∞∑

k=0

pkt
k, (1.12)

where α ∈ C\Z<0, pk ∈ C and p0 ̸= 0.

In [1], for Equation (1.10), the solutions in the form of (1.12) are shown to be given by the generalized
hypergeometric function. When lx = 2, the solutions of Equation (1.10), which are of the form
(1.12), are expressed by

2F1(a, b; c; z)=

∞∑
k=0

(a)k(b)k
k!(c)k

zk, 2F0(a, b; ; z) =

∞∑
k=0

(a)k(b)k
k!

zk, (1.13)

1F1(a; c; z)=

∞∑
k=0

(a)k
k!(c)k

zk, 0F1(; c; z) =

∞∑
k=0

1

k!(c)k
zk. (1.14)

The first series in (1.13) and (1.14) are the hypergeometric and the confluent hypergeometric series,
respectively. In Section 2, we reproduce the theorem giving the results for the solution of Equation
(1.10) for lx = 2, with a correction. In [1], every equation of Equation (1.9) for m ∈ Z>1 is shown
to reduced to a differential equation of the form of (1.10) by a change of variable.

In [5], the asymptotic behaviors as t→ ∞ are discussed for the confluent hypergeometric function,
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which is a solution of Kummer’s differential equation, in the standpoint of fractional calculus.

It is the purpose of the present paper to show how the behaviors near infinity are obtained for all
the solutions given in the above-mentioned theorem. In Section 3, we first show that the solutions
near infinity, which take the form:

u(t) = tβ
∞∑

k=0

qkt
−k, (1.15)

are easily obtained with the aid of the theorem. Discussion is then given on the behaviors as t→ ∞,
for the solutions given in the theorem. As a by-product, we obtain the solution of the following
equation in Section 3.2:

t3
d2u

dt2
− u = 0. (1.16)

In Section 3.3, we use a formula for the confluent hypergeometric function, which is given in [5].
In Section 4, discussion based on fractional calculus is given on the derivation of the corresponding
formula for the hypergeometric function.

2 Solution of Equation (1.10) for lx = 2 and l = 0

From now on, we restrict the discussion to the case of lx = 2.

We introduce notation nD̃
l
t which represents Dl

t, when the coefficient of tn is nonzero and those of
tm for m > n are all zero. The differential equations belonging to Equation (1.10) for l = 0 are
classified into

2D̃
0
tu(t) + nD̃

−1
t u(t)=0, n = 3, 2, 1, (2.1)

mD̃
0
tu(t) + 3D̃

−1
t u(t)=0. m = 2, 1, 0. (2.2)

We call Equation (2.1) for n ∈ Z[1,3] as (2.1-n), and Equation (2.2) for m ∈ Z[0,2] as (2.2-m), where
(2.1-3) and (2.2-2) represent the same equation.

We use a, b and c, which satisfy a1,1 = a2,2(1 + a + b) and a0,0 = a2,2 · ab when a2,2 ̸= 0, and
a0,0 = a1,1 · c when a2,2 = 0 and a1,1 ̸= 0. Using these in (1.6), we obtain

2D̃
0
t =a2,2[t

2 · d
2

dt2
+ (1 + a+ b)t · d

dt
+ ab], 1D̃

0
t = a1,1(t ·

d

dt
+ c), 0D̃

0
t = a0,0. (2.3)

When a0,0 = 0, we put b = 0 and c = 0 in (2.3). We use ã, b̃ and c̃, which satisfy a1,2 = a2,3(1+ã+b̃)
and a0,1 = a2,3 · ãb̃ when a2,3 ̸= 0, and a0,1 = a1,2 · c̃ when a2,3 = 0 and a1,2 ̸= 0. Using these in
(1.6), we obtain

3D̃
−1
t =a2,3 · t[t2 ·

d2

dt2
+ (1 + ã+ b̃)t · d

dt
+ ãb̃], 2D̃

−1
t = a1,2 · t(t ·

d

dt
+ c̃),

1D̃
−1
t =a0,1 · t. (2.4)

When a0,1 = 0, we put b̃ = 0 and c̃ = 0 in the first two equations of (2.4).
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Remark 2.1. In Section 7.21 of [6], terminologies ”regular singular point” and ”irregular singular
point” are used. For an equation, which is expressed by

[(t− c)2
d2

dt2
+ (t− c)p(t)

d

dt
+ q(t)]u(t) = 0, (2.5)

point t = c is called a singular point, if p(t)
t−c

or q(t)

(t−c)2
is not analytic at c. If the point t = c is

a singular point, it is said to be regular or irregular at t = c, according as both p(t) and q(t) are
analytic at t = c, or not so. By this terminology, the point t = 0 is a regular singular point of
Equation (2.1), and it is an irregular singular point of Equations (2.2-1) and (2.2-0). We note that
there exist two, one and no solutions of the form (1.12) for Equations (2.1) satisfying a − b /∈ Z,
(2.2-1) and (2.2-0), respectively.

The differential equation (2.1-3) for a0,0 = 0 is the hypergeometric differential equation, whose
solutions are the hypergeometric functions. The differential equation (2.1-2) for a0,0 = 0 is
Kummer’s differential equation, whose solutions are the confluent hypergeometric functions. Laguerre’s
differential equation is a special one of Kummer’s differential equation; See Chapter VIII in [7], and
Chapter 13 in [8].
The following theorem is Theorem 2.2 in [1], with minor corrections.

Theorem 2.1. We have the following solutions of the form (1.12) for Equations (2.1)∼(2.2).

(i). If a0,0 ̸= 0, a0,1 ̸= 0 and a − b /∈ Z, we have the pairs of solutions of (2.1-3), (2.1-2) and
(2.1-1), respectively, which are given by

ϕα(t)= tα · 2F1(ã+ α, b̃+ α; 1 + a+ b+ 2α;−a2,3
a2,2

t), (2.6)

ϕα(t)= tα · 1F1(c̃+ α; 1 + a+ b+ 2α;−a1,2
a2,2

t), (2.7)

ϕα(t)= tα · 0F1(; 1 + a+ b+ 2α;−a0,1
a2,2

t), (2.8)

for α = −a and α = −b.
(ii). If a0,0 = 0, a0,1 ̸= 0 and −a /∈ Z, pairs of solutions of (2.1-3), (2.1-2) and (2.1-1) are given

by

ϕ0(t)= 2F1(ã, b̃; 1 + a;−a2,3
a2,2

t), ϕ−a(t) = t−a · 2F1(ã− a, b̃− a; 1− a;−a2,3
a2,2

t); (2.9)

ϕ0(t)= 1F1(c̃; 1 + a;−a1,2
a2,2

t), ϕ−a(t) = t−a · 1F1(c̃− a; 1− a;−a1,2
a2,2

t); (2.10)

ϕ0(t)= 0F1(; 1 + a;−a0,1
a2,2

t), ϕ−a(t) = t−a · 0F1(; 1− a;−a0,1
a2,2

t), (2.11)

respectively, which are (2.6)∼(2.8) for b = 0.

(iii). If a0,0 ̸= 0, a0,1 = 0 and a− b /∈ Z, pairs of solutions of (2.1-3) and (2.1-2) are given by (2.6)
for b̃ = 0, and by (2.7) for c̃ = 0, respectively.

(iv). If a0,0 ̸= 0 and a0,1 ̸= 0, we have only one solution of (2.2-1) given by

ψ−c(t)= t−c · 2F0(ã− c, b̃− c; ;−a2,3
a1,1

t). (2.12)

The second factor on the righthand side of (2.12) is a polynomial, when ã − c ∈ Z<1 or
b̃−c ∈ Z<1. If such is not the case, it is an infinite series which has zero radius of convergence.

(v). If a0,0 = 0 and a0,1 ̸= 0, only one solution of (2.2-1) is given by (2.12) for c = 0.

(vi). If a0,0 ̸= 0 and a0,1 = 0, only one solution of (2.2-1) is given by (2.12) for b̃ = 0.
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(vii). There exists no solution of the form (1.12) for (2.2-0).

Remark 2.2. In Theorem 2.2 of [1], the case (vii) is not included, since there exists no solution of
the form (1.12) in this case.

Remark 2.3. In [1], the first equation in (2.11) is given by ϕ0(t) = 0F1(; 1 + a;−a1,1

a2,2
t), which is

in error and should be corrected as in (2.11).

3 Behaviors of the Solutions Given in Theorem 2.1 as
t → ∞ and t → 0

Lemma 3.1. We put x = 1
t
, v(x) = u(t), and

mD̃
0
xv(x) :=

1

t
· m+1D

−1
t u(t), m = 2, 1, 0, (3.1)

nD̃
−1
x v(x) :=x · n−1D

0
tu(t), n = 3, 2, 1. (3.2)

Then

2D̃
0
xv(x) + nD̃

−1
x v(x)=0, n = 3, 2, 1, (3.3)

mD̃
0
xv(x) + 3D̃

−1
x v(x)=0, m = 2, 1, 0, (3.4)

where

2D̃
0
x =a2,3[x

2 · d
2

dx2
+ (1− ã− b̃)x · d

dx
+ ãb̃], 1D̃

0
x = a1,2(−x · d

dx
+ c̃), 0D̃

0
x = a0,1, (3.5)

in place of (2.3), and

3D̃
−1
x =a2,2 · x[x2 ·

d2

dx2
+ (1− a− b)x · d

dx
+ ab], 2D̃

−1
x = a1,1 · x(−x · d

dx
+ c),

1D̃
−1
x =a0,0 · x, (3.6)

in place of (2.4). We call Equation (3.3) for n ∈ Z[1,3] as (3.3-n), and Equation (3.4) for m ∈ Z[0,2]

as (3.4-m), where (3.3-3) and (3.4-2) represent the same equation.

Lemma 3.2. When Equations (2.1-3), (2.1-2), (2.1-1), (2.2-1) and (2.2-0) hold, Equations (3.4-2),
(3.4-1), (3.4-0), (3.3-2) and (3.3-1), respectively, hold.

Remark 3.1. The solutions of Equations (3.3-n) and (3.4-m), respectively, for n ∈ Z[1,3] and
m ∈ Z[0,2], are given by those of Equations (2.1-n) and (2.2-m) with a2,2, a1,1, a0,0, a, b, c, ϕ, ψ

and t exchanged by a2,3, −a1,2, a0,1, −ã, −b̃, −c̃, ϕ̃, ψ̃ and x, respectively.

Remark 3.2. As a consequence of Remark 3.1, from the solutions of the form (1.12) for Equations
(2.1) and (2.2) given in Theorem 2.1, we obtain the solutions of the form:

v(x) = tα
∞∑

k=0

pkx
k, (3.7)

for Equations (3.3) and (3.4), where α ∈ C\Z<0, pk ∈ C and p0 ̸= 0.

Remark 3.3. In Section 7.22 in [6], it is stated that an equation belonging to (2.1)∼(2.2) is said
to have a regular or irregular singular point at t = ∞, according as the equation associated to it
in Lemma 3.2 has a regular or irregular singular point at the point x = 0. By Remak 2.1, the
equations in (3.3) and Equations (3.4-1) and (3.4-0) have a regular and an irregular singular point,
respectively, at x = 0. As a consequence, by Lemma 3.2, Equations (2.1-3), (2.2-1) and (2.2-0) have
a regular singular point at x = ∞, and Equations (2.1-2) and (2.1-1) have an irregular singular
point at x = ∞.

6



Morita and Sato; JAMCS, 29(6): 1-17, 2018; Article no.JAMCS.45273

3.1 Solutions of (2.1-1) with a0,1 ̸= 0 for |z| → ∞
When Equation (2.1-1) with a0,1 ̸= 0 holds, we have the pair of solutions given in (2.8). In this case,
Lemma 3.2 shows that Equation (3.4-0) with a0,1 ̸= 0 holds, and Remark 3.1 shows that Equation
(3.4-0) has no solution, since Equation (2.2-0) has no solution as shown in Theorem 2.1(vii).

We put a2,2 = 1, a0,1 = −δ, z = t, ζ = z−1, w(z) := u(t) and w̃(ζ) := v(x). Then Equations (2.1-1)
and (3.4-0) are expressed by

z2 · d
2w

dz2
+ (1 + a+ b)z · dw

dz
+ abw − δzw = 0, (3.8)

−δw̃ + ζ3 · d
2w̃

dζ2
+ (1− a− b)ζ2 · dw̃

dζ
+ abζw̃ = 0, (3.9)

and if a− b /∈ Z, we obtain the following solutions of (3.8), with the aid of (2.8):

Φ−a(z) := δ−a · ϕ−a(t) = (δz)−a · 0F1(; 1− a+ b; δz), (3.10)

Φ−b(z) := δ−b · ϕ−b(t) = (δz)−b · 0F1(; 1 + a− b; δz). (3.11)

Remark 3.4. When n ∈ Z>−1, a = b+ n− ϵ and δ = 1, by using (3.11) and (3.10), respectively,
we obtain two solutions of (3.8):

z−b · 0F1(; 1 + n− ϵ; z)

= z−b[1 +

∞∑
k=1

1

k!(1 + n− ϵ)(1 + n− ϵ+ 1)(1 + n− ϵ+ 2) · · · (1 + n− ϵ+ k − 1)
zk], (3.12)

ϵ · n!(1− n+ ϵ)n−1 · z−b−n+ϵ · 0F1(; 1− n+ ϵ; z) = (1− δn,0)ϵ · n! · z−b−n+ϵ
n−1∑
k=0

(1− n+ ϵ)n−1

k!(1− n+ ϵ)k
zk

+z−b+ϵ[1 +

∞∑
k′=1

n!

(n+ k′)!(ϵ+ 1)(ϵ+ 2) · · · (ϵ+ k′)
zk

′
], (3.13)

both of which tend to z−b · 0F1(; 1 + n; z) as ϵ→ 0, where δn,0 denotes Kronecker’s delta, which is
equal to 1, if n = 0, and to 0, if otherwise.

Lemma 3.3. When n ∈ Z>−1, a = b+ n and δ = 1, we have two solutions of (3.8):

w1(z) := z
−b · 0F1(; 1 + n; z), (3.14)

w2(z) := (1− δn,0)n! · z−b−n
n−1∑
k=0

(−1)n−k−1(n− k − 1)!

k!
zk

+z−b · 0F1(; 1 + n; z) log z − z−b
∞∑

k=1

n!(ϕ(n+ k)− ϕ(n) + ϕ(k))

k!(n+ k)!
zk, (3.15)

where

ϕ(k) = 1 +
1

2
+ · · ·+ 1

k
. (3.16)

Proof. To obtain (3.15), we use (3.13) and (3.12) in

w2(z) = lim
ϵ→0

∂

∂ϵ
[ϵ · n!(1− n+ ϵ)n−1 · z−b−n+ϵ · 0F1(; 1− n+ ϵ; z)− z−b · 0F1(; 1 + n− ϵ; z)]. (3.17)
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Putting b = 0 and n = 1 in this lemma, we obtain the following lemma.

Lemma 3.4. When a = 1, b = 0 and δ = 1, we have two solutions of (3.8):

w1(z) := 0F1(; 2; z), (3.18)

w2(z) := z
−1 + 0F1(; 2; z) log z −

∞∑
k=1

ϕ(k) + ϕ(k + 1)− 1

k!(k + 1)!
zk, (3.19)

where ϕ(k) is given by (3.16).

3.2 Solutions of (2.2-0) with a0,0 ̸= 0 for |z| → ∞
When (2.2-0) with a0,0 ̸= 0 holds, Theorem 2.1(vii) shows that there exists no solution of the form
(1.12). In this case, Lemma 3.2 shows that (3.3-1) with a0,0 ̸= 0 holds, and Remark 3.1 shows that
(2.1-1) and (2.8), with a2,2, a0,0, a0,1, a, b, ϕ and t replaced by a2,3, a0,1, a0,0, −ã, −b̃, ϕ̃ and x,
respectively, hold, so that if ã− b̃ /∈ Z,

ϕ̃ã(x)=x
ã · 0F1(; 1 + ã− b̃;−a0,0

a2,3
x), ϕ̃b̃(x) = xb̃ · 0F1(; 1− ã+ b̃;−a0,0

a2,3
x). (3.20)

We put a0,0 = 1, a2,3 = −δ, z = t, ζ = z−1, w̃(ζ) = v(x) and w(z) = u(t). Then (2.2-0) and (3.3-1)
are expressed by

w − δ · z[z2 · d
2w

dz2
+ (1 + ã+ b̃)z · dw

dz
+ ãb̃w] = 0, (3.21)

−δ[ζ2 · d
2w̃

dζ2
+ (1− ã− b̃)ζ · dw̃

dζ
+ ãb̃w̃] + ζw̃ = 0, (3.22)

and if ã− b̃ /∈ Z, we obtain the following solutions of (3.21), with the aid of (3.20):

Φ̃ã(z) := δ−ãϕ̃ã(x) = (δz)−ã · 0F1(; 1 + ã− b̃; (δz)−1), (3.23)

Φ̃b̃(z) := δ−b̃ϕ̃b̃(x) = (δz)−b̃ · 0F1(; 1− ã+ b̃; (δz)−1). (3.24)

Remark 3.5. We note that the solutions of (3.22) for the cases of (i): n ∈ Z>−1, ã = b̃−n+ ϵ and
δ = 1, (ii): n ∈ Z>−1, ã = b̃− n and δ = 1, and (iii): ã = −1, b̃ = 0 and δ = 1, are obtained from
Remark 3.4 and Lemmas 3.3 and 3.4, respectively, with z, w1(z) and w2(z) replaced by ζ, w̃1(ζ)
and w̃2(ζ), respectively. As a consequence, we have the following lemma from Lemma 3.4.

Lemma 3.5. When ã = −1, b̃ = 0 and δ = 1, Equation (3.21) is expressed by

z3 · d
2w

dz2
− w = 0, (3.25)

which has an irregular singular point at z = 0, and the solutions of (3.25) are given by

w1(z)= w̃1(ζ) = 0F1(; 2; z
−1), (3.26)

w2(z)= w̃2(ζ) = z − 0F1(; 2; z
−1) log z −

∞∑
k=1

ϕ(k) + ϕ(k + 1)− 1

k!(k + 1)!
z−k, (3.27)

where ϕ(k) is given by (3.16).
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3.3 Asymptotic behaviors of the solutions of (2.1-2) for |z| → ∞
We consider Equation (2.1-2) with a0,1 ̸= 0 or a0,0 ̸= 0 or both, for which we have the pair of
solutions given in (2.7). In this case, Lemma 3.2 shows that (3.4-1) holds, and Remark 3.1 shows
that Equations (2.2-1) and (2.12), with a2,3, a1,1, a0,0, ã, b̃, c, ψ and t replaced by a2,2, −a1,2, a0,1,
−a, −b, −c̃, ψ̃ and x, respectively, hold, so that

ψ̃c̃(x)=xc̃ · 2F0(c̃− a, c̃− b; ;
a2,2
a1,2

x). (3.28)

We put a2,2 = 1, a1,2 = −δ, z = t, ζ = z−1, w(z) := u(t) and w̃(ζ) := v(x). Then Equations (2.1-2)
and (3.4-1) are expressed by

z2 · d
2w

dz2
+ (1 + a+ b)z · dw

dz
+ abw − δz[z · dw

dz
+ c̃w] = 0, (3.29)

δ[ζ · dw̃
dζ

− c̃w̃] + ζ3 · d
2w̃

dζ2
+ (1− a− b)ζ2 · dw̃

dζ
+ abζw̃ = 0, (3.30)

and if a− b /∈ Z, we obtain the following solutions of (3.29), with the aid of (2.7) and (3.28):

Φ−a(z) := δ
−aϕ−a(t) = (δz)−a · 1F1(c̃− a; 1− a+ b; δz), (3.31)

Φ−b(z) := δ
−bϕ−b(t) = (δz)−b · 1F1(c̃− b; 1− b+ a; δz), (3.32)

Ψ̃−c̃(z) := δ
−c̃ψ̃c̃(x) = (δz)−c̃ · 2F0(c̃− a, c̃− b; ;−(δz)−1). (3.33)

When b = 0, A = c̃, B = 1 + a and δ = 1, (3.29) is Kummer’s equation:

z · d
2w

dz2
+B · dw

dz
− z · dw

dz
−Aw = 0, (3.34)

and its solution given by (3.32) becomes 1F1(A;B; z). In [5], the asymptotic behavior of 1F1(A;B; z)
is given as follows.

Lemma 3.6. Let A ∈ C\Z<1, B ∈ C\Z<1 and B −A ∈ C\Z<1. Then

1F1(A;B; z)= ez · 1F1(B −A;B;−z) (3.35)

= eiAπ Γ(B)

Γ(B −A)
U(A;B; z) + ei(B−A)π Γ(B)

Γ(A)
ezU(B −A;B; e−iπz), (3.36)

where

U(A;B; z) := z−A · 2F0(1 +A−B,A; ;−z−1), (3.37)

ei(B−A)πezU(B −A;B; e−iπz) = ezzA−B · 2F0(1−A,B −A; ; z−1). (3.38)

Remark 3.6. In Section 13.5.2 of [8], (3.37) is stated to hold valid, when − 3
2
π < arg z < 3

2
π.

As a consequence, (3.38) holds valid, when − 1
2
π < arg z < 5

2
π, and (3.36) with (3.37) and (3.38)

hold valid, when − 1
2
π < arg z < 3

2
π. In Section 13.5.1 of [8], (3.36) is stated to hold valid when

− 3
2
π < arg z < − 1

2
π, if i in these equations are replaced by −i.

Remark 3.7. Equations (3.36) and (3.38) are taken from Equations (70) and (72) in [5], with
corrections. The corrections are such that “i” in the first factor in the second term on the righthand
side of (70) and in the first factor on the righthand side of (72) should be replaced by “− i”.
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With the aid of this lemma, we obtain the asymptotic behavior of the solutions (3.31) and (3.32)
of Equation (3.29) as follows.

Lemma 3.7. Let c̃− a ∈ C\Z<1, 1− a+ b ∈ C\Z<1 and 1 + b− c̃ ∈ C\Z<1. Then

z−a · 1F1(c̃− a; 1− a+ b; z) = ezz−a · 1F1(1 + b− c̃; 1− a+ b;−z) (3.39)

= ei(c̃−a)πz−aΓ(1− a+ b)

Γ(1 + b− c̃)
U(c̃− a; 1− a+ b; z)

+ei(1+b−c̃)π Γ(1− a+ b)

Γ(c̃− a)
ezz−aU(1 + b− c̃; 1− a+ b; e−iπz), (3.40)

where

z−aU(c̃− a; 1− a+ b; z) = z−c̃ · 2F0(c̃− b, c̃− a; ;−z−1), (3.41)

ei(1+b−c̃)πezz−aU(1 + b− c̃; 1− a+ b; e−iπz) = ezzc̃−1−b−a · 2F0(1− c̃+ a, 1 + b− c̃; ; z−1).

(3.42)

Lemma 3.8. Lemma 3.7 in which a and b are exchanged holds.

Comparing (3.41) and (3.42) with the corresponding equations in Lemma 3.8, we see that the
lefthand sides of these equations are equal with themselves with a and b exchanged. When we put
A = c̃− b and B = 1 + a− b, the equations showing these are expressed by

U(A;B; z)= z1−BU(1 +A−B; 2−B; z), (3.43)

ei(B−A)πezU(B −A;B; e−iπz)= ei(1−A)πezz1−BU(1−A; 2−B; e−iπz), (3.44)

See Sections 13.1.29 and 13.1.30 in [8].

In discussing the asymptotic behaviors of the solutions given in Lemmas 3.6∼3.8, we use the
following lemma; See Sections 13.5.3 and 13.5.4 of [8].

Lemma 3.9. Let 0 < ϵ ≪ 1, 2F0(a, b; ; z) be the asymptotic expansion of a function f(z) near the

origin, and fN (z) :=
∑N

k=0
(a)k(b)k

k!
zk for N ∈ Z>0. Then there exist N ∈ Z>0 and r ∈ R>0, for

which |fN (z)− f(z)| < ϵ, if |z| < r.

Based on this lemma, we obtain

Remark 3.8. For the solutions given by (3.35) and (3.39) and the corrsesponding solution in
Lemma 3.8, (3.36) and (3.40) show that Stokes’ phenomenon occurs; See Section 7.22 in [9] for
this phenomenon. For instance, the asymptotic behaviors given by (3.37) and (3.38), which are
U(A,B, z) and ezU(B −A,B, e−iπz), are observed for the solution given by (3.35) as |z| → ∞, for
Re z < 0 and Re z > 0, respectively.

3.4 Solutions and asymptotic solutions of (2.2-1) for |z| → ∞ and
|z| → 0, respectively

We consider Equation (2.2-1) with a0,1 ̸= 0 or a0,0 ̸= 0 or both, for which we have the solution given
by (2.12). In this case, Lemma 3.2 shows that (3.3-2) holds, and Remark 3.1 shows that (2.1-2)
and (2.7), with a2,2, a1,2, a0,1, a, b, c̃, ϕ and t replaced by a2,3, −a1,1, a0,0, −ã, −b̃, −c, ϕ̃ and x,
respectively, hold, so that

ϕ̃ã(x)=x
ã · 1F1(ã− c; 1 + ã− b̃;

a1,1
a2,3

x), ϕ̃b̃(x) = xb̃ · 1F1(b̃− c; 1− ã+ b̃;
a1,1
a2,3

x). (3.45)
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We put a2,3 = δ, a1,1 = 1, z = t, ζ = z−1, w̃(ζ) = v(x) and w(z) = u(t). Then (2.2-1) and (3.3-2)
are expressed by

z · dw
dz

+ cw + δz[z2 · d
2w

dz2
+ (1 + ã+ b̃)z · dw

dz
+ ãb̃w] = 0, (3.46)

δ[ζ2 · d
2w̃

dζ2
+ (1− ã− b̃)ζ · dw̃

dζ
+ ãb̃w̃]− ζ2 · dw̃

dζ
+ cζw̃ = 0, (3.47)

and we obtain the following solutions of (3.46), with the aid of (2.12) and (3.45):

Ψ−c(z) := δ
−cψ−c(t) = (δz)−c · 2F0(ã− c, b̃− c; ;−δz), (3.48)

Φ̃−ã(z) := δ
−ãϕ̃ã(x) = (δz)−ã · 1F1(ã− c; 1 + ã− b̃; (δz)−1), (3.49)

Φ̃−b̃(z) := δ
−b̃ϕ̃b̃(x) = (δz)−b̃ · 1F1(b̃− c; 1− ã+ b̃; (δz)−1). (3.50)

When b̃ = 0, Ã = −c, B̃ = 1− ã and δ = 1, (3.47) is Kummer’s equation:

ζ · d
2w̃

dζ2
+ B̃ · dw̃

dζ
− ζ · dw̃

dζ
− Ãw̃ = 0, (3.51)

and the solution given by (3.50) becomes 1F1(Ã; B̃; z−1). The asymptotic behavior near the origin
of 1F1(Ã; B̃; z−1) is obtained by replacing A, B and z in Lemma 3.6 by Ã, B̃ and z−1, respectively,
as follows.

Lemma 3.10. Let Ã ∈ C\Z<1, B̃ ∈ C\Z<1 and B̃ − Ã ∈ C\Z<1. Then

1F1(Ã; B̃; z−1) = e1/z1F1(B̃ − Ã; B̃;−z−1) (3.52)

= eiÃπ Γ(B̃)

Γ(B̃ − Ã)
U(Ã; B̃; z−1) + ei(B̃−Ã)π Γ(B̃)

Γ(Ã)
e1/zU(B̃ − Ã; B̃; e−iπz−1), (3.53)

where

U(Ã; B̃; z−1)= zÃ · 2F0(1 + Ã− B̃, Ã; ;−z), (3.54)

ei(B̃−Ã)πe1/zU(B̃ − Ã; B̃; e−iπz−1)= e1/zz−Ã+B̃ · 2F0(1− Ã, B̃ − Ã; ; z). (3.55)

Remark 3.9. In Remark 3.6, it was stated that (3.36) with (3.37) and (3.38) holds valid for
− 1

2
π < arg z < 3

2
π, and hence (3.53) with (3.54) and (3.55) holds for for − 1

2
π < arg(z−1) < 3

2
π

so that for − 3
2
π < arg z < 1

2
π. If all i in (3.53)∼(3.55) are replaced by −i, (3.53) with (3.54) and

(3.55) are valid for − 1
2
π < arg z < 3

2
π.

We note that we obtain the asymptotic behavior near the origin of the solutions given by (3.49),
by replacing a, b, c̃ and z in Lemma 3.7 by −ã, −b̃, −c and z−1, respectively, as follows.

Lemma 3.11. Let −c+ ã ∈ C\Z<1, 1 + ã− b̃ ∈ C\Z<1, and 1− b̃+ c ∈ C\Z<1. Then

z−ã · 1F1(−c+ ã; 1 + ã− b̃; z−1) = e1/zz−ã · 1F1(1− b̃+ c; 1 + ã− b̃;−z−1) (3.56)

= ei(−c+ã)πz−ãΓ(1 + ã− b̃)

Γ(1− b̃+ c)
U(−c+ ã; 1 + ã− b̃; z−1)

+ei(1−b̃+c)π Γ(1 + ã− b̃)

Γ(−c+ ã)
e1/zz−ãU(1− b̃+ c; 1 + ã− b̃; e−iπz−1), (3.57)

where

z−ãU(−c+ ã; 1 + ã− b̃; z−1) = z−c · 2F0(−c+ b̃,−c+ ã; ;−z), (3.58)

ei(1−b̃+c)πe1/zz−ãU(1− b̃+ c; 1 + ã− b̃; e−iπz−1) = e1/zzc+1−b̃−ã · 2F0(1 + c− ã, 1− b̃+ c; ; z).

(3.59)
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Lemma 3.12. Lemma 3.11 in which ã and b̃ are exchanged holds.

Remark 3.10. We note that the three equations (3.48)∼(3.50) correspond to (3.31)∼(3.33) in
Section 3.3. The behaviors at |z| → ∞ and |z| → 0, of the second set of equations, must describe
the behaviors at |z| → 0 and |z| → ∞, respectively, of the first set of equations. In particular, from
the Stokes’ phenomenon described in Remark 3.8 for the second set, we expect Stokes’ phenomenon
at |z| → 0 for the first set as follows. Asymptotic behaviors for U(Ã, B̃, z−1) and e1/zU(B̃ −
Ã, B̃, e−iπz−1) are observed for the solution given by (3.52) as |z| → 0 for Re z < 0 and Re z > 0,
respectively.

3.5 Behaviors of the solutions of (2.1-3) for |z| → ∞
We consider Equation (2.1-3) with a0,1 ̸= 0 or a0,0 ̸= 0 or both, for which we have the pair of
solutions in (2.6). In this case, Lemma 3.2 shows that Equation (3.4-2) holds, and Remark 3.1
shows that (2.1-3) and (2.6), with a2,3, a2,2, a, b, ã, b̃, ϕ and t replaced by a2,2, a2,3, −ã, −b̃, −a,
−b, ϕ̃ and x, respectively, hold, so that if ã− b̃ /∈ Z,

ϕ̃ã(x)=x
ã · 2F1(ã− a, ã− b; 1 + ã− b̃;−a2,2

a2,3
x),

ϕ̃b̃(x)=x
b̃ · 2F1(b̃− a, b̃− b; 1− ã+ b̃;−a2,2

a2,3
x). (3.60)

We put a2,2 = 1, a2,3 = −δ, z = t, ζ = z−1, w(z) = u(t) and w̃(ζ) = v(x). Then Equations (2.1-3)
and (3.4-2) are expressed by

z2 · d
2w

dz2
+ (1 + a+ b)z · dw

dz
+ abw − δz[z2 · d

2w

dz2
+ (1 + ã+ b̃)z · dw

dz
+ ãb̃w] = 0, (3.61)

−δ[ζ2 · d
2w̃

dζ2
+ (1− ã− b̃)ζ · dw̃

dζ
+ ãb̃w̃] + ζ3 · d

2w̃

dζ2
+ (1− a− b)ζ2 · dw̃

dζ
+ abζw̃ = 0, (3.62)

and if a− b /∈ Z and ã− b̃ /∈ Z, we obtain the following solutions of (3.61), with the aid of (2.6) and
(3.60):

Φ−a(z)= δ−a · ϕ−a(t) = (δz)−a · 2F1(ã− a, b̃− a; 1− a+ b; δz), (3.63)

Φ−b(z)= δ−b · ϕ−b(t) = (δz)−b · 2F1(ã− b, b̃− b; 1 + a− b; δz), (3.64)

Φ̃−ã(z)= δ
−ã · ϕ̃ã(x) = (δz)−ã · 2F1(ã− a, ã− b; 1 + ã− b̃; (δz)−1), (3.65)

Φ̃−b̃(z)= δ
−b̃ · ϕ̃b̃(x) = (δz)−b̃ · 2F1(b̃− a, b̃− b; 1− ã+ b̃; (δz)−1). (3.66)

When b = 0, A = ã, B = b̃, C = 1+ a and δ = 1, (3.61) is the hypergeometric differential equation:

z(1− z)
d2w

dz2
+ [C − (1 +A+B)z]

dw

dz
−ABw = 0. (3.67)

and if C /∈ Z<0, its solution (3.64) becomes 2F1(A,B;C; z),

In Section 15.3.7 of [8], and in Section 2.4.1 of [7], we have the following formula, which gives the
behavior near infinity of 2F1(A,B;C; z):

2F1(A,B;C; z)=
Γ(C)Γ(B −A)

Γ(B)Γ(C −A)
(−z)−A · 2F1(A+ 1− C,A; 1 +A−B; z−1)

+
Γ(C)Γ(A−B)

Γ(A)Γ(C −B)
(−z)−B · 2F1(B + 1− C,B; 1−A+B; z−1), (3.68)

for |z| > 1 and arg(−z) < π.
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Remark 3.11. This formula can be derived by the method used in deriving Lemma 3.6 in [5]. The
derivation is given in next section.

With the aid of this lemma, we obtain the behavior near infinity of the solutions (3.63) and (3.64)
of Equation (3.61) as follows.

Lemma 3.13. Let c̃− a ∈ C\Z<1, 1− a+ b ∈ C\Z<1, and 1 + b− c̃ ∈ C\Z<1. Then

z−a · 2F1(ã− a, b̃− a; 1− a+ b; z) =
Γ(1− a+ b)Γ(b̃− ã)

Γ(b̃− a)Γ(1 + b− ã)
(−z)−ã · 2F1(ã− b, ã− a; 1 + ã− b̃; z−1)

+
Γ(1− a+ b)Γ(ã− b̃)

Γ(ã− a)Γ(1 + b− b̃)
(−z)−b̃ · 2F1(b̃− b, b̃− a; 1− ã+ b̃; z−1),

(3.69)

for |z| > 1 and arg(−z) < π.

Lemma 3.14. Lemma 3.13 in which a and b are exchanged holds.

4 Solutions of the Hypergeometric Equation with the
Aid of Fractional Calculus

Lemma 4.1. Let ξ = 0 or ξ = ∞. Then we have solutions of (3.67) given by

w1(ξ, z)= γ1(ξ) · PDA−1
ξ [zA−C(1− z)C−B−1], (4.1)

w3(ξ, z)= γ3(ξ) · z1−C
PD

B−C
ξ [zB−1(1− z)−A], (4.2)

in [10], where

γ1(0)=
Γ(2− C)

Γ(1 +A− C)
, γ3(0) =

Γ(C)

Γ(B)
, (4.3)

γ1(∞)=
Γ(1−A+B)

Γ(B)
, γ3(∞) =

Γ(1−B +A)

Γ(1− C +A)
. (4.4)

Here the fractional derivative PD
ν
ξ [f(z)] for ν = −λ satisfying Re λ > 0 is equal to

RD
−λ[f(z)] =

1

Γ(λ)

∫ z

ξ

(z − ζ)λ−1f(ζ)dζ, (4.5)

when the integral exists, and PD
ν
ξ [z

κ(1− z)λ] is assumed to be analytic as a function of ν, of κ as
well as of λ; See [11].

Remark 4.1. In Table 1 in [10], al and bl for l = 3 are 1 − c + a and 1 − c + b, which should be
replaced by 1− c+ b and 1− c+ a, respectively. In Lemma 4.1, this correction is included.

In [11], PD
ν
0f(z) is defined for a function f(z) which is expressed by f(z) = zλ−1f1(z), as follows.

Definition 4.1. Let ν ∈ C, λ ∈ C\Z, CP (z) be Pohhammer’s path of integration, that is P0 :=
(2ϵ,−ϵ) → P1 := z · (1 − ϵ,−ϵ), z+, z · (1 − ϵ, 2ϵ) → (ϵ, 2ϵ), 0+, (ϵ, ϵ) → z · (1 − 2ϵ, ϵ), z−,
z · (1 − 2ϵ,−2ϵ) → (2ϵ,−ϵ), 0−, (2ϵ,−ϵ), where 0 < ϵ < 1

4
, → denotes the path along the line

segment from the preceding point to the succeeding point, and z+ and z− denote the pathes from
the preceding point to the succeeding point, along a circle around the point z counter-clockwise
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and clockwise, respectively, and f1(z) be assumed to be analytic within the path CP (z). Then if
ν /∈ Z<0,

PD
ν
0 [z

λ−1f1(z)]=
e−iπλΓ(ν + 1)

4π sin(λπ)

∫
CP (z)

(ζ − z)−ν−1ζλ−1f1(ζ)dζ

=
1

Γ(−ν)
−eiπνe−iπλ

4 sin(−νπ) sin(λπ)

∫
CP (z)

(z − ζ)−ν−1ζλ−1f1(ζ)dζ, (4.6)

and if ν = −n ∈ Z<0 and κ ∈ C, PD
−n
0 [zλ−1f1(z)] = limκ→n PD

−κ
0 [zλ−1f1(z)].

Remark 4.2. Path CP (z) may be denoted by C(P, z+, 0+, z−, 0−), where P is a point on the path
from P0 to P1.

In the following proofs, we use

Lemma 4.2. Let κ ∈ C, λ ∈ C, A ∈ C\Z<1, k ∈ Z>−1, A
′ ∈ C\Z and B ∈ C\Z<1. Then

B(κ, λ) =

∫ 1

0

(1− t)κ−1tλ−1dt =
Γ(κ)Γ(λ)

Γ(κ+ λ)
, Re κ > 0, Re λ > 0, (4.7)

B(κ, λ) =
−e−iπλe−iπκ

4 sin(λπ) sin(κπ)

∫
CP (1)

(1− ζ)κ−1ζλ−1dζ =
Γ(κ)Γ(λ)

Γ(κ+ λ)
, κ /∈ Z, λ /∈ Z. (4.8)

Γ(A+ k) = Γ(A)(A)k, Γ(A′ − k) =
Γ(A′)

(−1)k(−A′ + 1)k
,

(
−B
k

)
=

(B)k(−1)k

k!
, (4.9)

See Section 12.43 of [12] for Equation (4.8).

Lemma 4.3. Let Φ1−C(z), Φ0(z), Φ̃−A(z) and Φ̃−B(z) be given by (3.63)∼(3.66) for b = 0, A = ã,
B = b̃, C = 1 + a and δ = 1. Then

w1(0, z)=Φ1−C(z), w1(∞ · z, z) = (−1)C−AΦ̃−B(z), (4.10)

w3(0, z)=Φ0(z), w3(∞ · z, z) = (−1)C−BΦ̃−A(z). (4.11)

Proof. Proofs are given for the two equations in (4.11). By (4.2) and (4.5),

w3(ξ, z)= γ3(ξ)z
1−C 1

Γ(C −B)

∫ z

ξ

(z − ζ)C−B−1ζB−1(1− ζ)−Adζ, (4.12)

if the integral on the righthand side exists. We put ξ = 0 and ζ = zx. Then if Re (C − B) > 0,
Re B > 0 and z ̸= 1, we have

w3(0, z)=
Γ(C)

Γ(B)Γ(C −B)

∫ 1

0

(1− x)C−B−1xB−1(1− zx)−Adx. (4.13)

When |z| < 1, we have

w3(0, z) =
Γ(C)

Γ(B)Γ(C −B)

∞∑
k=0

(
−A
k

)
(−1)kzk

∫ 1

0

(1− x)C−B−1xB−1+kdx

=
Γ(C)

Γ(B)Γ(C −B)

∞∑
k=0

(A)kΓ(C −B)Γ(B + k)

k!Γ(C + k)
zk =

∞∑
k=0

(A)k(B)k
k!(C)k

zk = 2F1(A,B;C; z).

(4.14)

14
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When θ = arg z, ξ = ∞ · eiθ and |z| > 1, we put ζ = 1
x
eiθ. Then

w3(∞ · eiθ, z)= Γ(1−B +A)

Γ(1− C +A)Γ(C −B)
(−1)C−B(−z)−A

∫ 1

0

(1− x)C−B−1x−C+A(1− xz−1)−Adx

=
Γ(1−B +A)

Γ(1− C +A)Γ(C −B)
(−1)C−B(−z)−A

∞∑
k=0

(A)kΓ(C −B)Γ(1− C +A+ k)

k!Γ(1−B +A+ k)
z−k

=(−1)C−B(−z)−A · 2F1(A+ 1− C,A; 1−B +A; z−1). (4.15)

Lemma 4.4. Let Re (C − B) > 0, Re B > 0, |z| > 1 and arg(−z) < π. Then w3(0, z) given by
(4.13) is expressed by

w3(0, z)=
Γ(C)Γ(B −A)

Γ(B)Γ(C −A)
(−z)−A · 2F1(A− C + 1, A;A−B + 1; z−1). (4.16)

Proof. By using (4.13), we have

w3(0; z)=
Γ(C)

Γ(B)Γ(C −B)

∫ 1

0

(1− x)C−B−1xB−1(1− zx)−Adx

=
Γ(C)(−z)−A

Γ(B)Γ(C −B)

−e−iπ(C−B)e−iπ(B−A)

4 sin[π(C −B)] sin[π(B −A)]

∫
CP (1)

(1− ζ)C−B−1ζB−1−A(1− 1

zζ
)−Adζ

=
Γ(C)(−z)−A

Γ(B)Γ(C −B)

× −e−iπ(C−B)e−iπ(B−A)

4 sin[π(C −B)] sin[π(B −A)]

∞∑
k=0

(
−A
k

)
(−1)kz−k

∫
CP (1)

(1− ζ)C−B−1ζB−1−A−kdζ

=
Γ(C)

Γ(B)Γ(C −B)
(−z)−A

∞∑
k=0

(A)kΓ(C −B)Γ(B −A− k)

k!Γ(C −A− k)
z−k

=
Γ(C)Γ(B −A)

Γ(B)Γ(C −A)
(−z)−A

∞∑
k=0

(A)k(A− C + 1)k
k!(A−B + 1)k

z−k. (4.17)

Remark 4.3. By the derivation of w3(0, z) given by (4.16) in Lemma 4.4, we see that it is an
analytic continuation of 2F1(A,B;C; z) to the domain given by |z| > 1 and arg(−z) < π. We note
that 2F1(A,B;C; z) does not change when A and B are exchanged, and hence w3(0, z) obtained from
(4.16) by the exchange of A and B, must be another analytic continuation of 2F1(A,B;C; z). The
sum of these analytic continuations is expressed by (3.68), which is seen to be a linear combination
of (3.65) and (3.66) for δ = 1.

5 Conclusion

In [1], it is proposed to use the expression of the differential equation with polynomial coefficients,
in terms of blocks of classified terms. The differential equation with only one block is called Euler’s
equation, which is easily solved. In [1], the solutions of the differential equation of two blocks are
studied, where the solutions of the form (1.12) are expressed by the generalized hypergeometric
functions. In particular, the solutions of Equation (1.10) of the second order are expressed in terms
of the four functions given in (1.13) and (1.14). That part of the results is summarized in a theorem.
In Section 2 of the present paper, we reproduce it as Theorem 2.1. In Section 3, we show that the
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solutions applicable near infinity are obtained with the aid of the solutions given in the theorem,
and then discussion is given of the behaviors near infinity of the solutions given in the theorem.

In [5], the asymptotic behaviors as t→ ∞ are discussed for the confluent hypergeometric function,
which is a solution of Kummer’s differential equation, in the standpoint of fractional calculus, where
the solutions are near the origin, are near infinity and asymptotic solutions are of the solutions near
the origin as t → ∞, for Kummer’s equation. In Sections 3.3 and 3.4, we show that the solution
near infinity that is of the form (1.15) is easily obtained from the solutions given in the theorem in
Section 2, for Equation (1.10) for lx = 2. Discussion is also given on the behaviors of the solution
given in the theorem as t→ ∞. The results for the solutions of Equation (2.1-2) are obtained with
the aid of the results in [5].

In [10], Kummer’s 24 solutions of the hypergeometric equation are derived in the standpoint of
fractional calculus. The results are used to discuss the behaviors of the solutions of Equation (2.1-
3). In Section 4, by using the solution obtained by fractional calculus, an argument is given to show
how the behavior near infinity is obtained from the solution near the origin.

In the present paper, we focussed attention to the solution of Equation (1.10). In the preceding
paper, it was mentioned that the solutions of an equation described by (1.9) for m > 1 are obtained
from those of an equation described by (1.10) by a change of variable.

In Section 3.2, we derive a solution which is not expressed in the form (1.12) for Equation (1.16),
as an example.

Acknowledgements

The authors are grateful to the reviewers of this paper. Following their suggestions and advices,
the authors improved the descriptions and also added Remark 3.7.

Note

After publishing [1], Author KS asked Author TM, how Equation (3.25) is solved. Author TM
wrote a preliminary manuscript of this paper to answer this question.

Competing Interests

Authors have declared that no competing interests exist.

References

[1] Morita T, Sato K. A study on the solution of linear differential equations with polynomial
coefficients. J. Adv. Math. Comput. Sci. 2018;28(3):1-15.

[2] Morita T, Sato K. Solution of Laplace’s differential equation and fractional differential equation
of that type. Applied Math. 2013;4(11A):26-36.

[3] Morita T, Sato K. Solution of differential equations with the aid of an analytic continuation
of Laplace transform. Applied Math. 2014;5:1209-1219.

[4] Morita T, Sato K. Solution of differential equations with polynomial coefficients with the aid
of an analytic continuation of Laplace transform. Mathematics. 2016;4(19):1-18.

16



Morita and Sato; JAMCS, 29(6): 1-17, 2018; Article no.JAMCS.45273

[5] Morita T, Sato K. Asymptotic expansions of fractional derivatives and their applications.
Mathematics. 2015;3:171-189.

[6] Ince EL. Ordinary differential equations. Dover Publ. Inc., New York; 1956.

[7] Magnus M, Oberhettinger F, Soni RP. Formulas and theorems for the functions of
mathematical physics. Springer-Verlag New York Inc., New York; 1966.

[8] Abramowitz M, Stegun IA. Handbook of mathematical functions with formulas, graphs and
mathematical tables. Dover Publ. Inc., New York; 1972.

[9] Watson GN. A treatise on the theory of Bessel functions. Cambridge U.P., Cambridge; 1922.

[10] Morita T, Sato K. Kummer’s 24 solutions of the hypergeometric equation with the aid of
fractional calculus. Adv. Pure Math. 2016;6:180-191.

[11] Morita T, Sato K. Liouville and Riemann-Liouville fractional derivatives via contour integrals.
Frac. Calc. Appl. Anal. 2013;16:630-653.

[12] Whittaker ET, Watson GN. A course of modern analysis. Cambridge U.P., Cambridge; 1935.
——————————————————————————————————————————————–
c⃝2018 Morita and Sato; This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here (Please copy paste the total link in your browser
address bar)
http://www.sciencedomain.org/review-history/27634

17

http://creativecommons.org/licenses/by/4.0

	Introduction
	Solution of Equation (1.10) for lx=2 and l=0
	 Behaviors of the Solutions Given in Theorem 2.1 as t and t0 
	 Solutions of (2.1-1) with a0,1=0 for |z|
	 Solutions of (2.2-0) with a0,0=0 for |z|
	 Asymptotic behaviors of the solutions of (2.1-2) for |z|
	 Solutions and asymptotic solutions of (2.2-1) for |z| and |z|0, respectively
	 Behaviors of the solutions of (2.1-3) for |z|

	 Solutions of the Hypergeometric Equation with the Aid of Fractional Calculus
	Conclusion

