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ABSTRACT

In this paper, we investigate the generalized third order Pell sequences and we deal with, in detail,
three special cases which we call them third order Pell, third order Pell-Lucas and modified third
order Pell sequences. We present Binet’s formulas, generating functions, Simson formulas, and
the summation formulas for these sequences. Moreover, we give some identities and matrices
related with these sequences.
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1 INTRODUCTION

In this paper, we introduce the generalized third
order Pell sequences and we investigate, in
detail, three special case which we call them third
order Pell, third order Pell-Lucas and modified
third order Pell sequences.

It is well-known that the Pell sequence (sequence
A000129 in [1]) {Pn} is defined recursively by the
equation, for n ≥ 0

Pn+2 = 2Pn+1 + Pn

in which P0 = 0 and P1 = 1. Then Pell
sequence (second order Pell sequence) is
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0, 1, 2, 5, 12, 29, 70, 169, 408, 985, 2378, 5741, 13860, 33461, ...

This sequence has been studied by many authors and more detail can be found in the extensive
literature dedicated to these sequences, see for example, [2,3,4,5,6,7,8,9,10]. For higher order Pell
sequences, see [11,12].

The generalized Tribonacci sequence {Wn(W0,W1,W2; r, s, t)}n≥0 (or shortly {Wn}n≥0) is defined
as follows:

Wn = rWn−1 + sWn−2 + tWn−3, W0 = a,W1 = b,W2 = c, n ≥ 3 (1.1)

where W0,W1,W2 are arbitrary complex (or real) numbers and r, s, t are real numbers.

This sequence has been studied by many authors, see for example [13-25].

The sequence {Wn}n≥0 can be extended to negative subscripts by defining

W−n = −s

t
W−(n−1) −

r

t
W−(n−2) +

1

t
W−(n−3)

for n = 1, 2, 3, ... when t ̸= 0. Therefore, recurrence (1.1) holds for all integer n.

As {Wn} is a third order recurrence sequence (difference equation), it’s characteristic equation is

x3 − rx2 − sx− t = 0 (1.2)

whose roots are

α = α(r, s, t) =
r

3
+A+B

β = β(r, s, t) =
r

3
+ ωA+ ω2B

γ = γ(r, s, t) =
r

3
+ ω2A+ ωB

where

A =

(
r3

27
+

rs

6
+

t

2
+

√
∆

)1/3

, B =

(
r3

27
+

rs

6
+

t

2
−

√
∆

)1/3

∆ = ∆(r, s, t) =
r3t

27
− r2s2

108
+

rst

6
− s3

27
+

t2

4
, ω =

−1 + i
√
3

2
= exp(2πi/3)

Note that we have the following identities

α+ β + γ = r,

αβ + αγ + βγ = −s,

αβγ = t.

If ∆(r, s, t) > 0, then the Equ. (1.2) has one real (α) and two non-real solutions with the latter being
conjugate complex. So, in this case, it is well known that generalized Tribonacci numbers can be
expressed, for all integers n, using Binet’s formula

Wn =
b1α

n

(α− β)(α− γ)
+

b2β
n

(β − α)(β − γ)
+

b3γ
n

(γ − α)(γ − β)
(1.3)

where

b1 = W2 − (β + γ)W1 + βγW0, b2 = W2 − (α+ γ)W1 + αγW0, b3 = W2 − (α+ β)W1 + αβW0.
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Note that the Binet form of a sequence satisfying (1.2) for non-negative integers is valid for all integers
n, for a proof of this result see [26]. This result of Howard and Saidak [26] is even true in the case of
higher-order recurrence relations.

In this paper we consider the case r = 2, s = t = 1 and in this case we write Vn = Wn. A generalized
third order Pell sequence {Vn}n≥0 = {Vn(V0, V1, V2)}n≥0 is defined by the third-order recurrence
relations

Vn = 2Vn−1 + Vn−2 + Vn−3 (1.4)

with the initial values V0 = c0, V1 = c1, V2 = c2 not all being zero.

The sequence {Vn}n≥0 can be extended to negative subscripts by defining

V−n = −V−(n−1) − 2V−(n−2) + V−(n−3)

for n = 1, 2, 3, .... Therefore, recurrence (1.4) holds for all integer n.

(1.3) can be used to obtain Binet formula of generalized third order Pell numbers. Binet formula of
generalized third order Pell numbers can be given as

Vn =
b1α

n

(α− β)(α− γ)
+

b2β
n

(β − α)(β − γ)
+

b3γ
n

(γ − α)(γ − β)

where

b1 = V2 − (β + γ)V1 + βγV0, b2 = V2 − (α+ γ)V1 + αγV0, b3 = V2 − (α+ β)V1 + αβV0. (1.5)

Here, α, β and γare the roots of the cubic equation x3 − 2x2 − x− 1 = 0. Moreover

α =
2

3
+

(
61

54
+

√
29

36

)1/3

+

(
61

54
−
√

29

36

)1/3

β =
2

3
+ ω

(
61

54
+

√
29

36

)1/3

+ ω2

(
61

54
−
√

29

36

)1/3

γ =
2

3
+ ω2

(
61

54
+

√
29

36

)1/3

+ ω

(
61

54
−
√

29

36

)1/3

where

ω =
−1 + i

√
3

2
= exp(2πi/3)

Note that

α+ β + γ = 2,

αβ + αγ + βγ = −1,

αβγ = 1.

The first few generalized third order Pell numbers with positive subscript and negative subscript are
given in the following Table 1.
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Table 1. A few generalized third order Pell numbers

n Vn V−n

0 V0 V0

1 V1 −V0 − 2V1 + V2

2 V2 −V2 + 3V1 − V0

3 2V2 + V1 + V0 −V2 + V1 + 4V0

4 5V2 + 3V1 + 2V0 4V2 − 9V1 − 3V0

5 13V2 + 7V1 + 5V0 −3V2 + 10V1 − 6V0

6 33V2 + 18V1 + 13V0 −6V2 + 9V1 + 16V0

7 84V2 + 46V1 + 33V0 16V2 − 38V1 − 7V0

8 117V1 + 214V2 + 84V0 −7V2 + 30V1 − 31V0

Now we define three special case of the sequence {Vn}. Third-order Pell sequence{P (3)
n }n≥0, third-

order Pell-Lucas sequence {Q(3)
n }n≥0 and modified third-order Pell sequence {E(3)

n }n≥0 are defined,
respectively, by the third-order recurrence relations

P
(3)
n+3 = 2P

(3)
n+2 + P

(3)
n+1 + P (3)

n , P
(3)
0 = 0, P

(3)
1 = 1, P

(3)
2 = 2, (1.6)

Q
(3)
n+3 = 2Q

(3)
n+2 +Q

(3)
n+1 +Q(3)

n , Q
(3)
0 = 3, Q

(3)
1 = 2, Q

(3)
2 = 6 (1.7)

and
E

(3)
n+3 = 2E

(3)
n+2 + E

(3)
n+1 + E(3)

n , E
(3)
0 = 0, E

(3)
1 = 1, E

(3)
2 = 1. (1.8)

The sequences {P (3)
n }n≥0, {Q(3)

n }n≥0 and {E(3)
n }n≥0 can be extended to negative subscripts by

defining
P

(3)
−n = −P

(3)

−(n−1) − 2P
(3)

−(n−2) + P
(3)

−(n−3) (1.9)

and
Q

(3)
−n = −Q

(3)

−(n−1) − 2Q
(3)

−(n−2) +Q
(3)

−(n−3) (1.10)

and
E

(3)
−n = −E

(3)

−(n−1) − 2E
(3)

−(n−2) + E
(3)

−(n−3) (1.11)

for n = 1, 2, 3, ... respectively. Therefore, recurrences (1.9), (1.10) and (1.11) hold for all integer n.

In the rest of the paper, for easy writing, we drop the superscripts and write Pn, Qn and En for
P

(3)
n , Q

(3)
n and E

(3)
n , respectively.

Note that Pn is the sequence A077939 in [1] associated with the expansion of 1/(1− 2x− x2 − x3),
Qn is the sequence A276225 in [1] and Qn is the sequence A077997 in [1].

Next, we present the first few values of the third-order Pell, third-order Pell-Lucas and modified third-
order Pell numbers with positive and negative subscripts:

Table 2. The first few values of the special third-order numbers with positive and negative
subscripts.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Pn 0 1 2 5 13 33 84 214 545 1388 3535 9003 22929 58396

P−n 0 0 1 −1 −1 4 −3 −6 16 −7 −31 61 −6 −147

Qn 3 2 6 17 42 107 273 695 1770 4508 11481 29240 74469 189659

Q−n 3 −1 −3 8 −3 −16 30 −1 −75 107 42 −331 354 350

En 0 1 1 3 8 20 51 130 331 843 2147 5468 13926 35467

E−n 0 −1 2 0 −5 7 3 −22 23 24 −92 67 141 −367
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For all integers n, third-order Pell, Pell-Lucas and modified Pell numbers (using initial conditions in
(1.5)) can be expressed using Binet’s formulas as

Pn =
αn+1

(α− β)(α− γ)
+

βn+1

(β − α)(β − γ)
+

γn+1

(γ − α)(γ − β)
,

and
Qn = αn + βn + γn,

and

En =
(α− 1)αn

(α− β)(α− γ)
+

(β − 1)βn

(β − α)(β − γ)
+

(γ − 1)γn

(γ − α)(γ − β)
,

respectively.

2 GENERATING FUNCTIONS

Next, we give the ordinary generating function
∞∑

n=0

Vnx
n of the sequence Vn.

Lemma 1. Suppose that fVn(x) =
∞∑

n=0

Vnx
n is the ordinary generating function of the generalized

third-order Pell sequence {Vn}n≥0. Then,
∞∑

n=0

Vnx
n is given by

∞∑
n=0

Vnx
n =

V0 + (V1 − 2V0)x+ (V2 − 2V1 − V0)x
2

1− 2x− x2 − x3
. (2.1)

Proof. Using the definition of generalized third-order Pell numbers, and substracting 2x
∑∞

n=0 Vnx
n,

x2∑∞
n=0 Vnx

n and x3∑∞
n=0 Vnx

n from
∑∞

n=0 Vnx
n we obtain

(1− 2x− x2 − x3)
∞∑

n=0

Vnx
n =

∞∑
n=0

Vnx
n − 2x

∞∑
n=0

Vnx
n − x2

∞∑
n=0

Vnx
n − x3

∞∑
n=0

Vnx
n

=

∞∑
n=0

Vnx
n − 2

∞∑
n=0

Vnx
n+1 −

∞∑
n=0

Vnx
n+2 −

∞∑
n=0

Vnx
n+3

=
∞∑

n=0

Vnx
n − 2

∞∑
n=1

Vn−1x
n −

∞∑
n=2

Vn−2x
n −

∞∑
n=3

Vn−3x
n

= (V0 + V1x+ V2x
2)− 2(V0x+ V1x

2)− V0x
2

+
∞∑

n=3

(Vn − 2Vn−1 − Vn−2 − Vn−3)x
n

= V0 + V1x+ V2x
2 − 2V0x− 2V1x

2 − V0x
2

= V0 + (V1 − 2V0)x+ (V2 − 2V1 − V0)x
2.

Rearranging above equation, we obtain

∞∑
n=0

Vnx
n =

V0 + (V1 − 2V0)x+ (V2 − 2V1 − V0)x
2

1− 2x− x2 − x3
.

The previous Lemma gives the following results as particular examples.
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Corollary 2. Generated functions of third-order Pell, Pell-Lucas and modified Pell numbers are

∞∑
n=0

Pnx
n =

x

1− 2x− x2 − x3
,

and
∞∑

n=0

Qnx
n =

3− 4x− x2

1− 2x− x2 − x3
,

and
∞∑

n=0

Enx
n =

x− x2

1− 2x− x2 − x3
,

respectively.

3 OBTAINING BINET FORMULA FROM GENERATING FUNCTION

We next find Binet formula of generalized third order Pell numbers {Vn} by the use of generating
function for Vn.

Theorem 3. (Binet formula of generalized third order Pell numbers)

Vn =
d1α

n

(α− β)(α− γ)
+

d2β
n

(β − α)(β − γ)
+

d3γ
n

(γ − α)(γ − β)
(3.1)

where

d1 = V0α
2 + (V1 − 2V0)α+ (V2 − 2V1 − V0),

d2 = V0β
2 + (V1 − 2V0)β + (V2 − 2V1 − V0),

d3 = V0γ
2 + (V1 − 2V0)γ + (V2 − 2V1 − V0).

Proof. Let
h(x) = 1− 2x− x2 − x3.

Then for some α, β and γ we write

h(x) = (1− αx)(1− βx)(1− γx)

i.e.,
1− 2x− x2 − x3 = (1− αx)(1− βx)(1− γx) (3.2)

Hence 1
α
, 1
β
, ve 1

γ
are the roots of h(x). This gives α, β, and γ as the roots of

h(
1

x
) = 1− 2

x
− 1

x2
− 1

x3
= 0.

This implies x3 − 2x2 − x− 1 = 0. Now, by (2.1) and (3.2), it follows that

∞∑
n=0

Vnx
n =

V0 + (V1 − 2V0)x+ (V2 − 2V1 − V0)x
2

(1− αx)(1− βx)(1− γx)
.

Then we write

V0 + (V1 − 2V0)x+ (V2 − 2V1 − V0)x
2

(1− αx)(1− βx)(1− γx)
=

A1

(1− αx)
+

A2

(1− βx)
+

A3

(1− γx)
. (3.3)

6
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So

V0+(V1−2V0)x+(V2−2V1−V0)x
2 = A1(1−βx)(1−γx)+A2(1−αx)(1−γx)+A3(1−αx)(1−βx).

If we consider x = 1
α
, we get V0 + (V1 − 2V0)

1
α
+ (V2 − 2V1 − V0)

1
α2 = A1(1− β

α
)(1− γ

α
). This gives

A1 =
α2(V0 + (V1 − 2V0)

1
α
+ (V2 − 2V1 − V0)

1
α2 )

(α− β)(α− γ)
=

V0α
2 + (V1 − 2V0)α+ (V2 − 2V1 − V0)

(α− β)(α− γ)
.

Similarly, we obtain

A2 =
V0β

2 + (V1 − 2V0)β + (V2 − 2V1 − V0)

(β − α)(β − γ)
, A3 =

V0γ
2 + (V1 − 2V0)γ + (V2 − 2V1 − V0)

(γ − α)(γ − β)
.

Thus (3.3) can be written as

∞∑
n=0

Vnx
n = A1(1− αx)−1 +A2(1− βx)−1 +A3(1− γx)−1.

This gives

∞∑
n=0

Vnx
n = A1

∞∑
n=0

αnxn +A2

∞∑
n=0

βnxn +A3

∞∑
n=0

γnxn =

∞∑
n=0

(A1α
n +A2β

n +A3γ
n)xn.

Therefore, comparing coefficients on both sides of the above equality, we obtain

Vn = A1α
n +A2β

n +A3γ
n

where

A1 =
V0α

2 + (V1 − 2V0)α+ (V2 − 2V1 − V0)

(α− β)(α− γ)
,

A2 =
V0β

2 + (V1 − 2V0)β + (V2 − 2V1 − V0)

(β − α)(β − γ)

A3 =
V0γ

2 + (V1 − 2V0)γ + (V2 − 2V1 − V0)

(γ − α)(γ − β)
.

and then we get (3.1).

Note that from (1.5) and (3.1) we have

V2 − (β + γ)V1 + βγV0 = V0α
2 + (V1 − 2V0)α+ (V2 − 2V1 − V0),

V2 − (α+ γ)V1 + αγV0 = V0β
2 + (V1 − 2V0)β + (V2 − 2V1 − V0),

V2 − (α+ β)V1 + αβV0 = V0γ
2 + (V1 − 2V0)γ + (V2 − 2V1 − V0).

Next, using Theorem 3, we present the Binet formulas of third-order Pell, Pell-Lucas and modified
Pell sequences.

Corollary 4. Binet formulas of third-order Pell, Pell-Lucas and modified Pell sequences are

Pn =
αn+1

(α− β)(α− γ)
+

βn+1

(β − α)(β − γ)
+

γn+1

(γ − α)(γ − β)
,

and
Qn = αn + βn + γn,

7
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and

En =
(α− 1)αn

(α− β)(α− γ)
+

(β − 1)βn

(β − α)(β − γ)
+

(γ − 1)γn

(γ − α)(γ − β)
,

respectively. Note that Binet formula of generalized third order Pell numbers can be represented as

Vn =
αd1α

n

2α2 + 2α+ 3
+

βd2β
n

2β2 + 2β + 3
+

γd3γ
n

2γ2 + 2γ + 3
(3.4)

which can be derived from a result ((4.20) in page 25) of Hanusa [27]. When we compare (3.1) and
(3.4), we see the following identities:

1

(α− β)(α− γ)
=

α

2α2 + 2α+ 3
,

1

(β − α)(β − γ)
=

β

2β2 + 2β + 3
,

1

(γ − α)(γ − β)
=

γ

2γ2 + 2γ + 3
.

Using the above identities, we can give the Binet formulas of third-order Pell, Pell-Lucas and modified
Pell sequences in the following form: Binet formulas of third-order Pell, Pell-Lucas and modified Pell
sequences are

Pn =
αn+2

2α2 + 2α+ 3
+

βn+2

2β2 + 2β + 3
+

γn+2

2γ2 + 2γ + 3
,

and
Qn = αn + βn + γn,

and

En =
(α− 1)αn+1

2α2 + 2α+ 3
+

(β − 1)βn+1

2β2 + 2β + 3
+

(γ − 1)γn+1

2γ2 + 2γ + 3
.

respectively.

We can find Binet formulas by using matrix method which is given in [12]. Take k = i = 3 in Corollary
3.1 in [12]. Let

Λ =

 α2 α 1
β2 β 1
γ2 γ 1

 ,Λ1 =

 αn−1 α 1
βn−1 β 1
γn−1 γ 1

 ,

Λ2 =

 α2 αn−1 1
β2 βn−1 1
γ2 γn−1 1

 ,Λ3 =

 α2 α αn−1

β2 β βn−1

γ2 γ γn−1

 .

Then the Binet formula for third-order Pell numbers is

Pn =
1

det(Λ)

3∑
j=1

P4−j det(Λj) =
1

Λ
(P3 det(Λ1) + P2 det(Λ2) + P1 det(Λ3))

=
1

det(Λ)
(5 det(Λ1) + 2 det(Λ2) + det(Λ3))

=

5

∣∣∣∣∣∣
αn−1 α 1
βn−1 β 1
γn−1 γ 1

∣∣∣∣∣∣+ 2

∣∣∣∣∣∣
α2 αn−1 1
β2 βn−1 1
γ2 γn−1 1

∣∣∣∣∣∣+
∣∣∣∣∣∣
α2 α αn−1

β2 β βn−1

γ2 γ γn−1

∣∣∣∣∣∣
 /

∣∣∣∣∣∣
α2 α 1
β2 β 1
γ2 γ 1

∣∣∣∣∣∣
=

αn+1

(α− β)(α− γ)
+

βn+1

(β − α)(β − γ)
+

γn+1

(γ − α)(γ − β)
.

8
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Similarly, we obtain the Binet formula for third-order Pell-Lucas and modified third-order Pell numbers
as

Qn =
1

Λ
(Q3 det(Λ1) +Q2 det(Λ2) +Q1 det(Λ3))

=

17

∣∣∣∣∣∣
αn−1 α 1
βn−1 β 1
γn−1 γ 1

∣∣∣∣∣∣+ 6

∣∣∣∣∣∣
α2 αn−1 1
β2 βn−1 1
γ2 γn−1 1

∣∣∣∣∣∣+ 2

∣∣∣∣∣∣
α2 α αn−1

β2 β βn−1

γ2 γ γn−1

∣∣∣∣∣∣
 /

∣∣∣∣∣∣
α2 α 1
β2 β 1
γ2 γ 1

∣∣∣∣∣∣
= αn + βn + γn

and

En =
1

Λ
(E3 det(Λ1) + E2 det(Λ2) + E1 det(Λ3))

=

3

∣∣∣∣∣∣
αn−1 α 1
βn−1 β 1
γn−1 γ 1

∣∣∣∣∣∣+
∣∣∣∣∣∣
α2 αn−1 1
β2 βn−1 1
γ2 γn−1 1

∣∣∣∣∣∣+
∣∣∣∣∣∣
α2 α αn−1

β2 β βn−1

γ2 γ γn−1

∣∣∣∣∣∣
 /

∣∣∣∣∣∣
α2 α 1
β2 β 1
γ2 γ 1

∣∣∣∣∣∣
=

(α− 1)αn

(α− β)(α− γ)
+

(β − 1)βn

(β − α)(β − γ)
+

(γ − 1)γn

(γ − α)(γ − β)

respectively.

4 SIMSON FORMULAS

There is a well-known Simson Identity (formula) for Fibonacci sequence {Fn}, namely,

Fn+1Fn−1 − F 2
n = (−1)n

which was derived first by R. Simson in 1753 and it is now called as Cassini Identity (formula) as well.
This can be written in the form ∣∣∣∣ Fn+1 Fn

Fn Fn−1

∣∣∣∣ = (−1)n.

The following Theorem gives generalization of this result to the generalized third-order Pell sequence
{Vn}n≥0.

Theorem 5. [Simson Formula of Generalized Third-Order Pell Numbers] For all integers n, we have∣∣∣∣∣∣
Vn+2 Vn+1 Vn

Vn+1 Vn Vn−1

Vn Vn−1 Vn−2

∣∣∣∣∣∣ =
∣∣∣∣∣∣
V2 V1 V0

V1 V0 V−1

V0 V−1 V−2

∣∣∣∣∣∣ . (4.1)

Proof. (4.1) is given in Soykan [28].

The previous Theorem gives the following results as particular examples.

Corollary 6. Simson formula of third-order Pell, Pell-Lucas and modified Pell numbers are given as∣∣∣∣∣∣
Pn+2 Pn+1 Pn

Pn+1 Pn Pn−1

Pn Pn−1 Pn−2

∣∣∣∣∣∣ = −1,

9



Soykan; AJARR, 6(1): 1-18, 2019; Article no.AJARR.51635

and ∣∣∣∣∣∣
Qn+2 Qn+1 Qn

Qn+1 Qn Qn−1

Qn Qn−1 Qn−2

∣∣∣∣∣∣ = −87,

and ∣∣∣∣∣∣
En+2 En+1 En

En+1 En En−1

En En−1 En−2

∣∣∣∣∣∣ = −3,

respectively.

5 SOME IDENTITIES

In this section, we obtain some identities of third order Pell, third order Pell-Lucas and modified third
order Pell numbers. First, we can give a few basic relations between {Pn} and {Qn}.

Lemma 7. The following equalities are true:

Qn = 8Pn+4 − 19Pn+3 − 3Pn+2,

Qn = −3Pn+3 + 5Pn+2 + 8Pn+1, (5.1)

Qn = −Pn+2 + 5Pn+1 − 3Pn, (5.2)

Qn = 3Pn+1 − 4Pn − Pn−1, (5.3)

Qn = 2Pn + 2Pn−1 + 3Pn−2, (5.4)

and

87Pn = 2Qn+4 − 18Qn+3 + 37Qn+2, (5.5)

87Pn = −14Qn+3 + 39Qn+2 + 2Qn+1, (5.6)

87Pn = 11Qn+2 − 12Qn+1 − 14Qn, (5.7)

87Pn = 10Qn+1 − 3Qn + 11Qn−1, (5.8)

87Pn = 17Qn + 21Qn−1 + 10Qn−2, (5.9)

Proof. Note that all the identities hold for all integers n. We prove (5.1). To show (5.1), writing

Qn = a× Pn+4 + b× Pn+3 + c× Pn+2

and solving the system of equations

Q0 = a× P4 + b× P3 + c× P2

Q1 = a× P5 + b× P4 + c× P3

Q2 = a× P6 + b× P5 + c× P4

we find that a = 8, b = −19, c = −3. The other equalities can be proved similarly.

Note that all the identities in the above Lemma can be proved by induction as well.

Secondly, we present a few basic relations between {Pn} and {En}.

Lemma 8. The following equalities are true:

En = Pn+3 − 5Pn+2,

En = −Pn+2 + 2Pn+1 + 2Pn,

En = Pn − Pn−1,

10
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and

3Pn = En+3 − En+2 − 2En+1,

3Pn = En+2 − En+1 + En,

3Pn = En+1 + 2En + En−1.

Thirdly, we give a few basic relations between {Qn} and {En}.

Lemma 9. The following equalities are true:

3Qn = En+3 − 4En+2 + 10En+1

3Qn = −2En+2 + 11En+1 + En

3Qn = 7En+1 − En − 2En−1

and

87En = −16Qn+3 + 57Qn+2 − 35Qn+1

87En = 25Qn+2 − 51Qn+1 − 16Qn

87En = −Qn+1 + 9Qn + 25Qn−1

We now present a few special identities for the modified third order Pell sequence {En}.

Theorem 10. (Catalan’s identity) For all integers n and m, the following identity holds

En+mEn−m − E
2
n = (Pn+m − Pn+m−1)(Pn−m − Pn−m−1) − (Pn − Pn−1)

2

=
(
Pn(Pm − Pm+1) + Pn−1(−Pm + Pm−2) + Pn−2(−Pm + Pm−1)

)
(
Pn(P−m − P1−m) + Pn−1(−P−m + P−m−2) + Pn−2(−P−m + P−m−1)

)
− (Pn − Pn−1)

2

Proof. We use the identity
En = Pn − Pn−1

and the identity (7.6).

Note that for m = 1 in Catalan’s identity, we get the Cassini identity for the modified third order Pell
sequnce

Corollary 11. (Cassini’s identity) For all integers numbers n and m, the following identity holds

En+1En−1 − E2
n = (Pn+1 − Pn)(Pn−1 − Pn−2)− (Pn − Pn−1)

2.

The d’Ocagne’s, Gelin-Cesàro’s and Melham’ identities can also be obtained by using En = Pn −
Pn−1.The next theorem presents d’Ocagne’s, Gelin-Cesàro’s and Melham’ identities of modified third
order Pell sequence {En}.

Theorem 12. Let n and m be any integers. Then the following identities are true:
(a) (d’Ocagne’s identity)

Em+1En − EmEn+1 = (Pm+1 − Pm)(Pn − Pn−1)− (Pm − Pm−1)(Pn+1 − Pn).

(b) (Gelin-Cesàro’s identity)

En+2En+1En−1En−2−E4
n = (Pn+2−Pn+1)(Pn+1−Pn)(Pn−1−Pn−2)(Pn−2−Pn−3)−(Pn−Pn−1)

4

(c) (Melham’s identity)

En+1En+2En+6 − E3
n+3 = (Pn+1 − Pn)(Pn+2 − Pn+1)(Pn+6 − Pn+5)− (Pn+3 − Pn+2)

3

Proof. Use the identity En = Pn − Pn−1.

11
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6 LINEAR SUMS

The following Theorem presents some formulas of generalized third order Pell numbers.

Theorem 13. For n ≥ 0 we have the following formulas:

(a) (Sum of the generalized third order Pell numbers)
n∑

k=0

Vk =
1

3
(Vn+3 − Vn+2 − 2Vn+1 − V2 + V1 + 2V0)

(b)
n∑

k=0

V2k =
1

3
(V2n+1 + V2n − V1 + 2V0)

(c)
n∑

k=0

V2k+1 =
1

3
(V2n+2 + V2n+1 − V2 + 2V1) .

Proof.

(a) Using the recurrence relation
Vn = 2Vn−1 + Vn−2 + Vn−3

i.e.
Vn−3 = Vn − 2Vn−1 − Vn−2

we obtain

V0 = V3 − 2V2 − V1

V1 = V4 − 2V3 − V2

V2 = V5 − 2V4 − V3

V3 = V6 − 2V5 − V4

V4 = V7 − 2V6 − V5

...

Vn−3 = Vn − 2Vn−1 − Vn−2

Vn−2 = Vn+1 − 2Vn − Vn−1

Vn−1 = Vn+2 − 2Vn+1 − Vn

Vn = Vn+3 − 2Vn+2 − Vn+1.

If we add the above equations by side by, we get
n∑

k=0

Vk = (Vn+3 + Vn+2 + Vn+1 − V2 − V1 − V0 +

n∑
k=0

Vk)

−2(Vn+2 + Vn+1 − V1 − V0 +

n∑
k=0

Vk)− (Vn+1 − V0 +

n∑
k=0

Vk).

Then, solving the above equality we obtain
n∑

k=0

Vk =
1

3
(Vn+3 − Vn+2 − 2Vn+1 − V2 + V1 + 2V0) .

12
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(b) and (c) Using the recurrence relation

Vn = 2Vn−1 + Vn−2 + Vn−3

i.e.
2Vn−1 = Vn − Vn−2 − Vn−3

we obtain

2V3 = V4 − V2 − V1

2V5 = V6 − V4 − V3

2V7 = V8 − V6 − V5

2V9 = V10 − V8 − V7

...

2V2n−1 = V2n − V2n−2 − V2n−3

2V2n+1 = V2n+2 − V2n − V2n−1

2V2n+3 = V2n+4 − V2n+2 − V2n+1.

Now, if we add the above equations by side by, we get

2(−V1 +

n∑
k=0

V2k+1) = (V2n+2 −V2 −V0 +

n∑
k=0

V2k)− (−V0 +

n∑
k=0

V2k)− (−V2n+1 +

n∑
k=0

V2k+1).

Similarly, using the recurrence relation

Vn = 2Vn−1 + Vn−2 + Vn−3

i.e.
2Vn−1 = Vn − Vn−2 − Vn−3

we write the following obvious equations;

2V2 = V3 − V1 − V0

2V4 = V5 − V3 − V2

2V6 = V7 − V5 − V4

2V8 = V9 − V7 − V6

2V10 = V11 − V9 − V8

2V12 = V13 − V11 − V10

2V14 = V15 − V13 − V12

...

2V2n−2 = V2n−1 − V2n−3 − V2n−4

2V2n = V2n+1 − V2n−1 − V2n−2

2V2n+2 = V2n+3 − V2n+1 − V2n.

Now, if we add the above equations by side by, we obtain

2(−V0 +

n∑
k=0

V2k) = (−V1 +

n∑
k=0

V2k+1)− (−V2n+1 +

n∑
k=0

V2k+1)− (−V2n +

n∑
k=0

V2k).

13
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Then, solving the following system

2(−V1 +
n∑

k=0

V2k+1) = (V2n+2 − V2 − V0 +
n∑

k=0

V2k) − (−V0 +
n∑

k=0

V2k) − (−V2n+1 +
n∑

k=0

V2k+1),

2(−V0 +
n∑

k=0

V2k) = (−V1 +
n∑

k=0

V2k+1) − (−V2n+1 +
n∑

k=0

V2k+1) − (−V2n +
n∑

k=0

V2k),

the required result of (b) and (c) follow.

As special cases of above Theorem, we have the following three Corollaries. First one presents some
summing formulas of third order Pell numbers.

Corollary 14. For n ≥ 0 we have the following formulas:

(a) (Sum of the third order Pell numbers)

n∑
k=0

Pk =
1

3
(Pn+3 − Pn+2 − 2Pn+1 − 1)

(b)
∑n

k=0 P2k = 1
3
(P2n+1 + P2n − 1)

(c)
∑n

k=0 P2k+1 = 1
3
(P2n+2 + P2n+1) .

Second one presents some summing formulas of third order Pell-Lucas numbers.

Corollary 15. For n ≥ 0 we have the following formulas:

(a) (Sum of the third order Pell-Lucas numbers)

n∑
k=0

Qk =
1

3
(Qn+3 −Qn+2 − 2Qn+1 + 2)

(b)
∑n

k=0 Q2k = 1
3
(Q2n+1 +Q2n + 4)

(c)
∑n

k=0 Q2k+1 = 1
3
(Q2n+2 +Q2n+1 − 2) .

Third one presents some summing formulas of modified third order Pell numbers.

Corollary 16. For n ≥ 0 we have the following formulas:

(a) (Sum of the modified third order Pell numbers)

n∑
k=0

Ek =
1

3
(En+3 − En+2 − 2En+1)

(b)
∑n

k=0 E2k = 1
3
(E2n+1 + E2n − 1)

(c)
∑n

k=0 E2k+1 = 1
3
(E2n+2 + E2n+1 + 1) .

7 MATRICES RELATED WITH GENERALIZED THIRD-ORDER PELL
NUMBERS

Matrix formulation of Wn can be given as Wn+2

Wn+1

Wn

 =

 r s t
1 0 0
0 1 0

n W2

W1

W0

 . (7.1)

14
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For matrix formulation (7.1), see [29]. In fact, Kalman give the formula in the following form

 Wn

Wn+1

Wn+2

 =

 0 1 0
0 0 1
r s t

n W0

W1

W2

 .

We define the square matrix A of order 3 as:

A =

 2 1 1
1 0 0
0 1 0


such that detM = 1. From (1.4) we have Vn+2

Vn+1

Vn

 =

 2 1 1
1 0 0
0 1 0

 Vn+1

Vn

Vn−1

 (7.2)

and from (7.1) (or using (7.2) and induction) we have Vn+2

Vn+1

Vn

 =

 2 1 1
1 0 0
0 1 0

n V2

V1

V0

 .

If we take V = P in (7.2) we have Pn+2

Pn+1

Pn

 =

 2 1 1
1 0 0
0 1 0

 Pn+1

Pn

Pn−1

 . (7.3)

We also define

Bn =

 Pn+1 Pn + Pn−1 Pn

Pn Pn−1 + Pn−2 Pn−1

Pn−1 Pn−2 + Pn−3 Pn−2


and

Cn =

 Vn+1 Vn + Vn−1 Vn

Vn Vn−1 + Vn−2 Vn−1

Vn−1 Vn−2 + Vn−3 Vn−2


Theorem 17. For all integer m,n ≥ 0, we have

(a) Bn = An

(b) C1A
n = AnC1

(c) Cn+m = CnBm = BmCn.

Proof.

(a) By expanding the vectors on the both sides of (7.3) to 3-colums and multiplying the obtained on
the right-hand side by A, we get

Bn = ABn−1.

By induction argument, from the last equation, we obtain

Bn = An−1B1.

But B1 = A. It follows that Bn = An.

(b) Using (a) and definition of C1, (b) follows.

15
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(c) We have

ACn−1 =

 2 1 1
1 0 0
0 1 0

 Vn Vn−1 + Vn−2 Vn−1

Vn−1 Vn−2 + Vn−3 Vn−2

Vn−2 Vn−3 + Vn−4 Vn−3


=

 Vn+1 Vn + Vn−1 Vn

Vn Vn−1 + Vn−2 Vn−1

Vn−1 Vn−2 + Vn−3 Vn−2

 = Cn.

i.e. Cn = ACn−1. From the last equation, using induction we obtain Cn = An−1C1. Now

Cn+m = An+m−1C1 = An−1AmC1 = An−1C1A
m = CnBm

and similarly
Cn+m = BmCn.

Some properties of matrix An can be given as

An = 2An−1 +An−2 +An−3

and
An+m = AnAm = AmAn

and
det(An) = 1

for all integer m and n.

Theorem 18. For m,n ≥ 0 we have

Vn+m = VnPm+1 + Vn−1(Pm + Pm−1) + Vn−2Pm (7.4)

= VnPm+1 + (Vn−1 + Vn−2)Pm + Vn−1Pm−1. (7.5)

Proof. From the equation Cn+m = CnBm = BmCn we see that an element of Cn+m is the product
of row Cn and a column Bm. From the last equation we say that an element of Cn+m is the product
of a row Cn and column Bm. We just compare the linear combination of the 2nd row and 1st column
entries of the matrices Cn+m and CnBm. This completes the proof.

Remark 19. By induction, it can be proved that for all integers m,n ≤ 0, (7.4) holds. So for all integers
m,n, (7.4) is true.

Corollary 20. For all integers m,n, we have

Pn+m = PnPm+1 + Pn−1(Pm + Pm−1) + Pn−2Pm (7.6)

Qn+m = QnPm+1 +Qn−1(Pm + Pm−1) +Qn−2Pm (7.7)

En+m = EnPm+1 + En−1(Pm + Pm−1) + En−2Pm (7.8)

8 CONCLUSION

Recently, there have been so many studies of the sequences of numbers in the literature and the
sequences of numbers were widely used in many research areas, such as physics, engineering,
architecture, nature and art. We introduce the generalized third order Pell sequences and we present
Binet’s formulas, generating functions, Simson formulas, the summation formulas, some identities
and matrices for these sequences.
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