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ABSTRACT

Aims/ Objectives: Multi-regime fundamental models use two or more equations to describe the
association among the main maroscopic traffic variables encountered in traffic analysis. The paper
investigates specific properties of some multi-phase speed-density equations.
Methodology: It first compares the characteristics of each of these equations by solving the
nonlinear continuity traffic equation.
Results: It was observed that predicting vehicular trajectories with these model equations could
lead to misinformation. The kinematic wave and stable shockwave properties of these models were
also ascertained.
Conclusion: Based on the results, it was concluded that it would be more cumbersome to explain
nonlinear traffic characteristics when these two and three regime models are adopted.
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1 INTRODUCTION

Vehicular traffic flow are often dichotomized into
two regimes; the free flow regime and the
congested regime. In the free-flow regime
there is a positive relationship between flow and
density, while the relationship is negative during a
traffic cluster. Single-regime models use a single
equation to characterize this physical process[1,
2, 3, 4, 5]. However, some authors postulated
the use of two or more equations to describe
this same phenomenon, hence the name multi-
phase equations [6, 7]. More often one equation
is used to describe freeway traffic and the
other for jam formation. Multi-regime models
use piecewise curves to describe the functional
relationship among macroscopic traffic variables.
In general, a speed-density relationship is easy
to explain when compared to other fundamental
relationships. There is a one-to-one relationship
between driver behavior and the number of
vehicles present on the road. Speed-density
relationship is a part of traffic dynamic studies
to explore traffic flow patterns such as shock
waves and queue lengths on highways and urban
bypass.

Comparison of the one-equation model has
explored extensively in the literature[8, 9, 10]. In
earlier research, [11] presented an analysis of
the characteristic profiles of some single regime
models. All selected speed-density equation
had similar characteristic curves exhibiting wave-
fans. The forward movement of trajectories
authenticated that any of the speed-density
functions could be coupled with the LWR
equation to achieve the required simulation
results. More recently, [12] also presented
on the static and dynamic properties of one-
equation speed-density-flow models. This was to
determine an appropriate single-regime speed-
density equation suitable for mixed traffic in the
cities. The static properties are the usual flow
characteristics invariant to time. This include
the following: the speed u(k) converges to it
maximum as density reduces to near empty road;
u′(0) = 0, that is vehicles can attain maximum
speed when there is minimal interplay among

vehicles; and the speed u(k) get to zero as
density reaches its maximum.

Hither, multi-phase density-speed functionals are
examined for their suitability for microscopic and
macroscopic traffic modeling. Four of these
models namely: Edie’s two-regime model [6],
modified Greenberg’s two-phase equation, and
Drakes two and three-regime models [7]. Each of
this equation together with the continuity is solved
using the method of characteristics to determine
vehicle trajectory paths.

The method of characteristics is employed
for solving these first order nonlinear partial
differential equations. The method is used
to formulate equations that defines a family of
lines in the (x,t) plane along which information
travels. We further determine some time-
dependent properties of each equation. The
dynamic properties crosschecked for each model
are tabled below:

• The derivative q′(k) should be less than
zero when density converges to jam
density. q′(k) characterizes the kinematic
wave speed.

• The second derivative q′′(k) should rather
be greater than zero. This is the stable
shockwave property. A stable shock will
be observed moving from a jam traffic to a
free-flowing traffic. For the converse, then
q′′(k) should be greater than zero.

.

2 THE MODEL

2.1 Edie’s Multi-Regime Model
Edie in 1961 first proposed the idea of a two-
regime model following the disadvantage of
single-regime models. The Underwood model
was used for the free-flow regime and the
Greenberg model was used for the congested-
flow regime. The speed-density equation is
expressed as:

u =

{
54.9e−

ρ
163.9 , ρ ≤ 50

26.8 ln
(

162.5
ρ

)
, ρ ≥ 50

(2.1)
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u is the vehicles speed and ρ is traffic density.

The LWR macroscopic model will be coupled
with all the multi-regime models to determine
their flow characteristics. The LWR equation is
a one-dimensional continuity equation used for
modeling traffic flow [13, 14]. It is of the form:

∂ρ(x, t)

∂t
+

∂q(x, t)

∂x
= 0

From the calculus of chain rule, the one-
dimensional continuity equation can also be
expressed as

∂ρ(x, t)

∂t
+

dq(x, t)

dρ

∂ρ(x, t)

∂x
= 0 (2.2)

where q(x, t) = ρ(x, t)u(x, t) is the flow function.
The flow function for Edie’s model is classified
into two; the freeway regime and cluster regime.
In the free-flow regime

q(x, t) = 54.9e−
ρ

163.9 with
dq

dρ
= −0.335e−

ρ
163.9

As it similitude to equation (2.2), the LWR model
reduces to

∂ρ

∂t
− 0.335e−

ρ
163.9

∂ρ

∂x
= 0 (2.3)

Again, it can be established by the method of
characteristics that

dx

dt
= −0.335e−

ρ
163.9 =

dq

dρ

Hence the characteristic curve for the free flow
regime is given by the equation:

x(t) = −0.335te−
ρ0

163.9 + x0 (2.4)

For the congested regime, the flow equation is
given by

q(ρ) = 26.8ρ ln

(
162.5

ρ

)
with

dq

dρ
= 26.8

[
ln

(
162.5

ρ

)
− 1

]
=

∂x

∂t

Hence the characteristic is

x(t) = 26.8

[
ln

(
162.5

ρ0

)
− 1

]
t+ x0 (2.5)

Figure shows a diagrammatic representation of
equations (2.4) and (2.5). Left is the freeway
regime and right is the obstructed regime. A
linear initial density profiles ρ0 is chosen for
plotting these lines of characteristics.

On kinematic wave and stable shockwave
property, the analysis is also presented in two
cases. Case one for the free-flow regime and
case two for the congested regime. In each
case the first and second derivatives of flow with
respect to density is presented. Case 1:

dq

dρ
= −0.335e

− ρ
163.9 < 0, and

dq2

dρ2
= 0.002e

− ρ
163.9 >

0 as ρ → ρj

Case 2:

dq

dρ
= 26.8

[
ln

(
162.5

ρ

)
− 1

]
< 0, and

dq2

dρ2
=

−26.8

ρ
< 0

ρj is the jam density. These equations are
an expression of both the first and second-
order derivative property test of speed-density-
flow models. The direction of the slopes explains
the propagation speed of a disturbance during
the cluster. The ability of the model to capture
nonlinear traffic phenomena is explicated by the
curvature of the flow function.

2.2 Drake’s Two-Regime Model
Drake proposed two two-regime models and one
three-regime model. The first two-regime model
proposed by Drake makes use of Greenshields-
type linear model for both the free-flow regime
and the congested regime with speed defined as

u =

{
60.9− 0.525ρ, ρ ≤ 65

40− 0.265ρ, ρ ≥ 65
(2.6)

From a similar analysis from section 2.1

The free-flow function for this two-regime model
is given by

q = 60.9ρ− 0.515ρ2

with
dq

dρ
= 60.9− 1.03ρ =

dx

dt

Then, the equation that defines the characteristic
in the space-time plane is given by

x(t) = (60.9− 1.03ρ0)t+ x0 (2.7)
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For the congested regime, the flow equation is
expressed as

q = 40ρ− 0.265ρ2

with the corresponding characteristic

x(t) = (40− 0.53ρ0)t+ x0 (2.8)

The dynamic properties are as follows:

Case I:

dq

dρ
= 60.9−1.03ρ < 0, and

dq2

dρ2
= −1.03 < 0

The sloping property is applicable when density is
greater than 59.1. Hence the acceptable choice
of values satisfying this property is for density to
lie within 59.1 < ρ < 65.

Case II:

For the congested regime

dq

dρ
= 40− 0.53ρ < 0, and

dq2

dρ2
= −0.53 < 0

With this regime, the first order derivative
property is applicable when density exceeds
75.5veh/km. This occurs in circumstances
where traffic is more denser.

2.3 Modified Greenberg’s Multi-
Regime Model

The second two-regime model proposed by
Drake suggests a constant speed for the free-
flow regime and a Greenberg model for the
congested-flow regime. The mathematical
presentation of the equations is expressed by
(2.9).

u =

{
48, ρ ≤ 35

32 ln
(

145.5
ρ

)
, ρ ≥ 35

(2.9)

The derivation of the characteristic equations for
the modified Greenberg fundamental equations
is as follows. For the free-flow regime, flow is
expressed as

q = 48ρ

This means the slope of the flow function will still
be a constant value. Equation (2.2) reduces to a
linear differential equation

∂ρ

dt
+ 48

∂ρ

∂x
= 0 (2.10)

Therefore the freeway characteristic is given by
the equation

x(t) = 48t+ x0 (2.11)

In the case of congestion

q = 32ρ ln

(
145.5

ρ

)
with

dq

dρ
= 32

[
ln

(
145.5

ρ

)
− 1

]
=

dx

dt

and

x(t) = 32

[
ln

(
145.5

ρ0

)
− 1

]
t+ x0 (2.12)

For properties regarding the kinematic wave and
shock wave, it is again classified into two cases.
Case one for free-flowing traffic, while case two
explains the properties of the congested regime.

Case I: given that q = 48ρ, then

dq

dρ
= 48 > 0

with the second derivative given as

dq2

dρ2
= 0

For the second case

dq

dρ
= 32

[
ln

(
145.5

ρ

)
− 1

]
This first derivative will be less than zero when
density is greater than 53.53. This presupposes
that this property is not attainable. Because
free-flow density should have a maximum of 35
vehicles per kilometer. The second derivative

dq2

dρ2
=

−32

ρ

will result in a negative constant since density is
always positive.
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2.4 The Three-regime Model
The three-regime model developed by Drake
takes a linear form for all three regimes. This
model is represented by three different flow
equations; the free-flow, the transitional flow, and
the congested flow.

u =


50− 0.098ρ, ρ ≤ 40

81.4− 0.913ρ, 40 ≤ ρ ≤ 65

40− 0.265ρ, ρ ≥ 65

The respective equations representing flux for
the various regimes are

q =


50ρ− 0.098ρ2, ρ ≤ 40

81.4ρ− 0.913ρ2, 40 ≤ ρ ≤ 65

40ρ− 0.265ρ2, ρ ≥ 65

From thence, we can derive the corresponding
characteristic equations as follows

dx

dt
=


50− 0.196ρ, ρ ≤ 40

81.4− 1.826ρ, 40 ≤ ρ ≤ 65

40− 0.53ρ, ρ ≥ 65

with the specific information paths as

x =


(50− 0.196ρ0)t+ x0, ρ ≤ 40

(81.4− 1.826ρ0)t+ x0, 40 ≤ ρ ≤ 65

(40− 0.53ρ0)t+ x0 ρ ≥ 65

(2.13)
For the kinematic wave and shockwave property,
the analysis is categorized by their regimes.

Free-flow regime:
dq

dρ
= 50− 0.196ρ

The above derivative, will be less than zero
when ρ > 255.1. This value of density does not
make this alternative achievable. For the second
derivative we obtain

dq2

dρ2
= −0.196 < 0

Transitional regime:

dq

dρ
= 81.4− 1.826ρ

This also will be less than zero if ρ > 44.6.
Therefore the applicable interval is ρ ∈ [44.6, 65].
Differentiating again

dq2

dρ2
= −1.826 < 0

Congested regime:

dq

dρ
= 40− 0.53ρ

Here, the first derivative will be less than zero
when density is 75.5veh/km or more.

dq2

dρ2
= −0.53 < 0

Since the speed-density functions are linear in
nature, all the second derivatives are constants
less than zero.

Fig. 1. Characteristic Profiles for Edie’s Model
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Fig. 2. Characteristic Lines for Drake’s Model

Fig. 3. Characteristic Curves for Modified Greenberg’s Model

Fig. 4. Characteristic Profiles for Drake’s Three-Regime Model
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3 MODEL ANALYSIS AND
DISCUSSIONS

From Figures 1-4, the characteristic curves for
all regimes are presented, left is the free flow
regime, the middle is the transitional regime
if applicable, with the obstructed regime on
the right. The curves for the congested flow
functions have the same resemblance. For
Drake’s two-regime model, both jam traffic and
free moving traffic have similar characteristic
lines. An exception observed was the free-
flow trajectories from the modified Greenberg’s
model with all others exhibiting wave-fans. For
Edie’s formulation, the requirement for kinematic
wave speed property is satisfied for both regimes.
However, a stable shockwave could only be
observed during a relieved traffic. For Drake’s
models, the dynamic property regarding the
wave speed was eligible for some range of
density values. The acceptable values should
range between 59veh/km and 65veh/km. The
second derivatives of Drake’s functions were all
negative. This suggests that the flow functions
are concave as opposed to the usual convex
shape. The situation was not different from
the modified Greenberg’s equation. Again, the
slopes of Greenberg’s flow functions were either
zero or a positive real constant. These values
give a delusive threshold for determining the
propagating speed of traffic. The additional
equation by Drake captioned synchronized
regime did not produce any more efficient
results. With the exception of the first derivative
test for the transitional flow, the three-regime
model failed all the dynamic property criterion
for speed-density fundamental equations.

4 CONCLUSION

The main variables that characterize vehicular
traffic are speed, density and flow. The
relationship among these variables are evinced
either through one-equation models or multiple
equation models. In this paper, the characteristic
profiles of vehicles are presented using a
combination of some multi-regime model plus
the first order traffic equation. The models
considered include the two-regime Edie’s
models, the two-regime Greenberg’s model,

and two multi-regime models developed by
Drake. The characteristic equations for free-
flow regime, the transitional regime and the
congested regime along with their corresponding
curves are presented. Most of the characteristics
evinced backward traveling trajectory features,
more particularly the jam phase. This suggests
that, these multi-regime models are not suitable
for predicting trajectory paths of vehicles. These
models also failed the test criterion for identifying
stable shock waves. Implying that it would be
more difficult using these multi-regime equations
to explain nonlinear traffic phenomena such as
phantom jams and traffic hysteresis.
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