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Abstract
The convergence rate of a Markov transition matrix is governed by the second largest eigenvalue, where the
first largest eigenvalue is unity, under general regularity conditions. Garren and Smith (2000) constructed
confidence intervals on this second largest eigenvalue, based on asymptotic normality theory, and performed
simulations, which were somewhat limited in scope due to the reduced computing power of that time period.
Herein we focus on simulating coverage intervals, using the advanced computing power of our current time
period. Thus, we compare our simulated coverage intervals to the theoretical confidence intervals from Garren
and Smith (2000).
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1 Introduction
We consider a Markov chain governed by a Hilbert-Schmidt operator. The convergence rate is determined by
the second largest eigenvalue of the Markov chain, noting that the largest eigenvalue is one. Under general
regularity conditions, this Markov chain is ergodic; i.e., aperiodic and irreducible.

When estimating the convergence rate, the least-squares estimator defined herein is the same one used by Garren
and Smith (2000) [1] (G-S), and we adopt their notation as well. Additional theoretical details may be found in
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G-S, and we focus on simulations for an applied example herein.

An overview of Markov chain Monte Carlo (MCMC) is provided by [2], and an elementary introduction is
provided by [3]. Convergence diagnostics for MCMC is analyzed by [4]. Subsampling techniques for hastening
convergence of the MCMC are discussed by [5]. A clever R package for performing parallel runs of MCMC is
introduced by [6], and a method for accelerating the MCMC is discussed by [7]. In an application to genetics,
[8] discussed the difficulty in concluding convergence of MCMC using graphical techniques. An application of
MCMC to astronomy is given by [9].

The least-squares estimation of the second largest eigenvalue, along with two nuisance parameters, is discussed
in section 2. As an example, we analyze the hierarchical Poisson model in section 3. We end with a brief
conclusion in section 4.

2 Least-squares Estimation
The Markov chain, as governed by a Hilbert-Schmidt operator, is allowed M burn-in iterations and terminates
after a total of N iterations. Then, L independent runs of the Markov chain are performed. Modern computers
allow us to select L to be quite huge, especially in comparison to the values of L selected by G-S when the
computing power was much less efficient.

For each independent run, the Markov chain is given an initial state. Then, a set D is selected, so that for each
iterate we determine whether or not X(l)

n , the state of the Markov chain after n iterates of the lth run, is in set D.
Hence, we define the indicator variable

Z(l)
n = I(X(l)

n ∈ D), 0 ≤ n ≤ N, 1 ≤ l ≤ L,

and we also define

Z̄n =
1
L

L∑
l=1

Z(l)
n

to be the average of the Z(l)
n values among the independent runs. The asymptotic behavior of Z̄n may be written

as
Z̄n = ρ + a2 λ

n
2 + oP(λn

2), as n→ ∞.
Note that ρ depends on D; a2 depends on the initial state and D, whereas λ2 depends on neither the initial state
nor D.

The joint least-squares estimators of (ρ, a2, λ2) are defined to be the values of (θ1, θ2, θ3) which minimize

N∑
n=M+1

[
Z̄n − (θ1 + θ2θn3)

]2
,

and are found numerically. G-S showed that the least-squares estimators are consistent and asymptotically
normal as M, N, and L go to infinity under certain regularity conditions. They further derived the variance of
the asymptotic distribution.

A Markov chain governed by a Hilbert-Schmidt operator allows analysis of a continuous distribution. Thus,
G-S generalizes and improves the approach of [10], who estimated the number of iterations needed for just a
two-state Markov chain, and G-S also can handle higher-state discrete Markov chains. In terms of real-world
applications, estimating the number of iterations needed for convergence allows a researcher to discern the
amount of computing time needed when analyzing data from a Bayesian model based on a Hilbert-Schmidt
operator. Convergence is rapid when λ2 is near zero, but is slow when λ2 is near unity, although λ2 is more
difficult to estimate when it is near zero.
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Table 1: Number of pump failures at a nuclear power plant

Number of failures (yi) Time (ti)
5 94.320
1 15.720
5 62.880

14 125.760
3 5.240

19 31.440
1 1.048
1 1.048
4 2.096

22 10.480

3 Hierarchical Poisson Model
The example we analyze herein was studied by [11], [12], and also G-S. Let yi, the number of failures at a
nuclear power plant, be modeled as a Poisson distribution with mean ωiti for time ti. We model the parameter
ωi ∼ Γ(α, β), whose density is ωα−1

i exp{−ωi/β}/βαΓ(α), for i = 1, . . . , 10.

The data for yi and ti are shown in Table 1. We set α = 1.802, based on method of moments estimates, as
suggested by [11]. Furthermore, we model 1/β as a Γ(γ = 0.01, δ = 1) distribution. These values of α, γ, and δ
were used by [11], [12], and G-S.

To set up the Gibbs sampler, we use the conditional distributions

[ ωi | β, ω j, j , i; y ] ∼ Γ
(
α + yi, (ti + 1/β)−1

)
, i = 1, . . . , 10,

and

[ 1/β | ω, y ] ∼ Γ

γ + 10α,

1/δ + 10∑
i=1

ωi


−1 .

This Gibbs sampler is reversible and is produced by a Hilbert-Schmidt operator; see G-S.

G-S selected M = 0, . . . , 6, N = 12, and L = 5000. Hence, for each of the seven values of M, G-S obtained
one joint least-squares estimator of (ρ, a2, λ2), error bounds based on the information sandwich approach, and
hence 95% confidence intervals as well. Graphs of their estimates, along with 95% confidence intervals, are
shown in Figures 1, 2, and 3 of G-S.

Due to increased computing speeds in the statistical software R [13], we increased L to 500,000 and computed
20,000 least-squares estimates rather than just one. By producing 20,000 least-squares estimates, we empirically
constructed the coverage intervals, rather than use the information sandwich approach based on just one estimate.
Therefore, we are able to evaluate the theoretical information sandwich approach of G-S by simulating the
coverage intervals. Our estimates of ρ, a2, and λ2, are shown in Figures 1a, 1b, and 1c, respectively, where the
inner line segments represent the median of the 20,000 least-squares estimates and the two outer line segments
represent the 95% coverage intervals.

Estimates of ρ seem most stable for 2 ≤ M ≤ 6, with tight coverage intervals for 0 ≤ M ≤ 5, as seen in Figure
1a. The median of ρ̂ is approximately 0.505 for 2 ≤ M ≤ 6. This figure hints at the importance of allowing at
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Fig. 1. 95% coverage intervals on ρ, a2, and λ, for M = 0, . . . , 6.

least a small amount of burn-in, implying a preference of M > 0 when performing this least-squares estimation.

The coverage intervals on a2 are quite narrow for 0 ≤ M ≤ 2 but get quite a bit wider as M increases, as shown
in Figure 1b. These median values of â2 range between 0.89 and 8.06 for 0 ≤ M ≤ 6.

The coverage intervals on λ2 are somewhat narrow for 0 ≤ M ≤ 3 but get a lot wider as M increases, as shown
in Figure 1c. The median estimate of λ2 tends to stabilize around 0.33 for 2 ≤ M ≤ 6 despite the widening of
the coverage intervals.

This widening of coverage intervals on both a2 and λ2 as M increases is anticipated, since a small value of λ
produces rapid convergence of the Gibbs sampler, causing increased difficulty in estimating both a2 and λ2. G-S
tended to obtain even wider coverage intervals, which were calculated by the information sandwich approach,
but this is not at all surprising since their value of L was much smaller than ours.

Next, we increase L by a factor of 100, so that the new value is L = 50, 000, 000, but we obtain only one least-
squares estimate of (ρ, a2, λ2). In the color red, we plot ρ̂n = ρ̂ + â2λ̂

n
2, n = 1, . . . , 12, where the least-squares

estimates are based on M = 0, . . . , 6 in Figure 2. Also in those seven figures, in the color black, we plot what ρ̂n
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is estimating; i.e., Z̄n. The standard errors on Z̄n are no more than 0.5/
√

L = 0.00007, so these standard errors
are quite negligible and in fact non-detectable in Figure 2.
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Fig. 2. Estimating ρn for M = 0, . . . , 6.
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4 Conclusion
The simulations herein exemplify the huge difficulty in estimating the second largest eigenvalue, which is
heavily tied to the convergence rate of the Gibbs sampler. Using no burn-in of the chain tends to confound the
impact of the second largest eigenvalue with the remaining eigenvalues. However, as the amount of burn-in
increases, the impact of all eigenvalues, including the second largest eigenvalue though excluding the largest
eigenvalue of unity, decreases substantially, again increasing the difficulty in estimating the second largest
eigenvalue. Therefore, reasonable estimation of the second largest eigenvalue requires a large number of
replications and a small amount of burn-in.
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