
_____________________________________________________________________________________________________ 
 
*Corresponding author: E-mail: oaadeleke@lautech.edu.ng;  
 
 
 

Current Journal of Applied Science and Technology  
 
34(2): 1-14, 2019; Article no.CJAST.33939 
ISSN: 2457-1024 
(Past name: British Journal of Applied Science & Technology, Past ISSN: 2231-0843,  
NLM ID: 101664541) 

 

 

Resource Allocation Scheme for One-to-Many 
Cooperative Wireless Systems Using the Bidding 

Game Strategy 
 

Oluseye Adeleke1* and Wasana Boonsong2 
 

1Department of Electronic and Electrical Engineering, Ladoke Akintola University of Technology, 
Ogbomoso, Nigeria.  

2
Department of Electronics, Faculty of Industrial Education and Technology, Rajamangala University 

of Technology Srivijaya, Songkhla, Thailand. 
 

Authors’ contributions 
 

This work was carried out in collaboration between both authors. Author OA proposed the title of the 
work, designed the outlines, carried out the analysis and wrote the first and final drafts of the 

manuscript. Author WB provided very helpful inputs throughout the study and managed the analysis 
of the study as well as the literature. Both authors approved the final manuscript. 

 
Article Information 

 
DOI: 10.9734/CJAST/2019/v34i230126 

Editor(s): 
(1) Dr. Rodolfo Dufo Lopez, Professor, Department of Electrical Engineering, University of Zaragoza,  

Spain. 
Reviewers: 

(1) Yueran Gao, USA. 
(2) Lingwei Xu, Qingdao University of Science and Technology, Qingdao, China. 

(3) Dr. Mohamed Elhoseny, Mansoura University, Egypt. 
Complete Peer review History: http://www.sdiarticle3.com/review-history/33939 

 
 
 

Received 19 March 2017 
Accepted 16 June 2017 
Published 02 April 2019 

 
 

ABSTRACT 
 
In this paper, we propose a new scheme for optimal resource (i.e, power) allocation in a cooperative 
wireless communication system, using a type of game called the Bidding game. Previous related 
works have all considered networks with multiple source nodes interacting with either single or 
multiple relays, without paying so much attention to how partners are selected for cooperation. 
However because of the importance of partner selection as an integral part of an efficient 
cooperative communication network, which also includes resource allocation, we propose this new 
game-based resource allocation scheme, in which the conventional theories of economic bidding 
are applied. In this work, we model the cooperative communication network as a single-user, multi-
relay system in which the source acts as the auctioneer while the relays or partners act as the 
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bidders in the game. The resource being auctioned here is power. The relay which offers the highest 
bid in terms of price is first selected by the source node and then allocated power by the source 
node. Our proposed scheme is aimed at answering the question of how maximally or optimally the 
power should be allocated in the network by the source node so as not to violate the power 
constraint. We show that there exists bidding and pricing mechanisms or strategies that lead to the 
maximization of network throughput or utility in cooperative communication networks. We also see 
in our simulation results that there is convergence to the Nash equilibrium which proves the 
correctness of our scheme.  

 
 
Keywords: Cooperative communication; auction; bidding game; optimum; power allocation. 
 

1. INTRODUCTION 
 
In the last few years, cooperative wireless 
communication has been seen as a veritable 
signal transmission technique aimed at exploiting 
spatial diversity gains over single antenna nodes 
in wireless communication networks. In this 
technique, several nodes act as partners or 
relays and share their resources to forward other 
nodes’ data to the destination. It has also been 
ascertained that this cooperation gives a 
significant improvement in system performance 
and reliability over the non-cooperative systems 
[1]. To fully take hold of the benefits of 
cooperative diversity or communication, 
appropriate partner selection and an efficient 
resource allocation are very essential, because, 
apart from the fact that these aid the harnessing 
of the benefits, the performance of cooperative 
communication as a whole depends on them. 
 
Recently, several works have dealt with the issue 
of partner selection and resource allocation in 
cooperative communications. These works are 
found to be in two categories namely, centralized 
(for example, [2-4]) and decentralized (e.g. [5-
12]). There have been more researches on the 
distributed systems because they are more 
favorable in practical terms since they require 
only the local information of the nodes, unlike the 
centralized systems which require the global 
channel state information, and thus incur higher 
signaling overhead [13].  For instance, in [6], the 
authors proposed a partner selection scheme for 
distributed systems based on limited 
instantaneous SNR. The authors in [7] proposed 
a distributed power control framework for a 
single-source, multiple-relay system to optimize 
multihop diversity. In the last few years, game 
theory has grown to be a veritable tool in the 
analysis of distributed systems due to their 
autonomous and self-configuring capability. For 
instance, in [5] a non-cooperative game known 
as Stackelberg was employed to develop a 
power allocation algorithm. The network is 

modeled as a single user, multi-relay system in 
which the source acts as the buyer and the 
relays act as the sellers of resource (i.e. power). 
The authors in [14] studied and developed an 
auction-based  power allocation scheme for a 
distributed cooperative network. In this work 
where there are many sources and only one 
relay, the source nodes acts as the bidders while 
the relay acts as the auctioneer. 
 
Still on researches using the auction theory or 
the bidding game, the authors in [13] developed 
a multi-source, multi-relay cooperative network 
for the purpose of optimal allocation of power. 
But unlike [14], each user acts as both a bidder 
and an auctioneer. In [1], the authors proposed a 
distributed ascending-clock auction-based 
algorithm for multi-relay power allocation where 
the source nodes are also many. A design of an 
auction-based power allocation scheme for 
many-to-one (multi-user, single-relay) 
cooperative adhoc networks was implemented in 
[15]. Furthermore, the authors in [14] extended 
their work to cover many users as well. It is also 
worthy of note that non-linear optimization tools 
were employed in the analysis by the authors in 
[13-15]. This is due to the fact that power as a 
resource is being maximized or optimized by 
either the source or the relay node. It is also 
noteworthy that in all these aforementioned 
auction-based works, tools of optimization have 
been employed in the analyses.  
 
However, unlike the work in [5] where a buyer-
seller game is used in which a source node 
selects a partner node that gives it the highest 
utility by offering it a low price and at the same 
time develop an optimal power allocation 
scheme, in this work we propose a new power 
allocation scheme which is based on the bidding 
game in which a partner node that offers the 
highest price is selected by the source node. In 
this proposed game, the source is the auctioneer 
while the relays are the bidders. Moreover, unlike 
the works in many researchers [1,13-15] in which 
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multiple source nodes are involved, and no much 
attention is actually given to the selection of 
cooperating partners or relays before allocating 
resources, we propose a single-user, multi-relay 
system, which we call single-auctioneer, multi-
bidder bidding game in which we focus on the 
selection of the most suitable partner node as a 
prelude to resource allocation. This work intends 
to propose a new power allocation scheme 
based on the bidding theory with a single source 
node, rather than multiple source nodes so as to 
concentrate the entire transmit power from the 
source for the cooperative process rather than 
have it shared among multiple source nodes. In 
addition, since we are also concerned with how 
the cooperating relays are selected by the source 
nodes, we propose a scheme based on a single 
source interacting with multiple relay nodes. 
 

The rest of this paper is organized as follows: 
Section II presents the background to this work. 
The proposed power allocation scheme is 
described in Section III while Section IV gives the 
results and discussion. The conclusion is given in 
Section V. 
 

2. BACKGROUND 
 

2.1 Cooperative System Model 
 
We consider a simple cooperative model as 
depicted in Fig. 1(a) where there is one relay and 
one source node in time division mode. The 
schematic in Fig. 1(b) shows a single source 
node, which, in our work, acts as the auctioneer 
and N-relay nodes, which act as the bidders in 
our proposed auction or bidding game. 

 

 
 

Fig. 1a. A 3-node cooperative system model in the time division mode 
 

 
Fig.1b. A One-to-Many model of a cooperative wireless communication network 
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In the first time slot or Phase 1 (in Fig.1a), the 
source node broadcasts its information, and is 
received by the both the partner (r) and 
destination (d) nodes as follows: 
 

  dssdssd XGPY 
5.0

                       (1) 

 

 
iii rssrssr XGPY 

5.0
                       (2) 

 
where Ysd and Ysr respectively represent the 
received signal from the source to destination, d 
and from source to relay, r. Ps represents the 
power transmitted from the source node while Xs 
represents the transmitted data with normalized 
to unit energy. Gsd and Gsr denote channel gains 
from s to d and from s to r respectively, and the 
AWG noises are given as   and denoted by n. 

 
During the first time slot, the SNR obtained at the 
destination node is given as 
 

n

GP sds
sd                          (3) 

 

Moreover, during the second time slot, the 
isr

Y is 

amplified and forwarded to the destination node; 
thus the signal received at the destination during 
the second time slot is given as 
 
 

  ddrdrrdr iii
XGPY '5.0             (4) 

 

Where dri
G is the channel gain from relay to 

destination nodes while d
' is the noise received 

during the second phase, and  
 

i

i

i

sr

sr

dr
Y

Y
X   is the signal of unit energy that 

the relay receives from the source node and 
which it forwards to the destination node. 
 

Now, using dri
X and (2), we rewrite (4) as 

follows: 
 

    
  d

srs

rssrsdrr

dr
nGP

XGPGP
Y

i

iii

i

'

5.0

5.05.0










(5) 
 

And using (5), we obtain the SNR through 
relaying, at the destination node as follows: 
 

 nGPGPn

GGPP

iii

iii

i

srsdrr

srdrsr

dsr


                   (6) 

 
Next, the achievable transmission rate at the 
destination node will then be obtained. From the 
analysis above, the source has two options in 
this case: 
 
Option1: the source node uses only the Phase1 
transmission and obtains the rate 
 

 sdsd WC  1log2            (7) 

 
Where W is the bandwidth of the transmitted 
signal from the source node 
 
Option 2: the source node uses the two phases, 
and at the combining output (using MRC), 
achieves the following achievable transmission 
rate capacity C: 
 

 dsrsddsr ii

W
C   1log

2
2  = Cs   (8) 

 

It can be seen in (8) that the dsri
  is the 

additional SNR increase when compared with the 

non-cooperative case, i.e. dsri
SNR   . 

 
Comparing option 1 above with option 2, the rate 
increase obtainable by the source node is given 
as follows: 
 

 0,max sddsr CCC
i

                        (9) 

 
We make the assumption that the Ps (source 
node’s power) is fixed and that the power that 
would be allocated to a particular relay node 
would be a function of the amount of bid placed 
by that relay. 
 

2.2 Non-linear Optimization 
 
A Non-Linear Optimization problem is a type of 
optimization problem that is defined by a system 
of equalities and inequalities, collectively known 
as constraints, over a set of unknown real 
variables, along with an objective function to be 
maximized or minimized, where some or all the 
constraints or the objective functions are 
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nonlinear. It is the branch of                    
mathematical optimization that deals with 
nonlinear problems. 
 
A general nonlinear optimization problem is given 
as follows: 
 
max f(x) to maximize some variable, e.g utility 
 
OR 
 
min f(x) to minimize some variable, e.g price 
 

Where 
n

n

Rx

RRxf



:)(

 
  
s.t (subject to) 
 

Kkxh

Jjxg

k

j





,0)(

,0)(

 
 
Methods of solving an Optimization problem 

 
1. Where the objective function f is linear and 

the constraint set is a polytope, the 
problem is a linear optimization problem, 
which may be solved using well known 
linear optimization solutions. 

2. Where the objective function is concave 
(maximization problem), or convex 
(minimization problem) and the constraint 
set is convex, then the problem is              
convex and general methods from         
convex optimization can be used in most 
cases. 

3. If the objective function is a ratio of a 
concave and a convex function (in the 
maximization case) and the constraints are 
convex, then the problem can be 
transformed to a convex optimization 
problem using fractional optimization 
techniques. 

 
Under differentiability and constraint 
qualifications, the Karush–Kuhn–Tucker (KKT) 
conditions provide necessary conditions for a 
solution to be optimal. And since this work 
involves optimization of some resource, the KKT 
conditions would be very useful in this regard. 
Under convexity, these conditions are also 
sufficient. If some of the functions are non-
differentiable, subdifferential versions of the 
Karush–Kuhn–Tucker (KKT) conditions are 
available [16].  

2.3 Karush-Kuhn-Tucker (KKT) 
Conditions 

 
For a solution in a nonlinear optimization problem 
to be optimal, there are some necessary 
conditions to be satisfied. These are referred to 
as the first order necessary conditions and are 
called the Karush-Khun-Tucker (KKT) conditions. 
Where nonlinear constraints are involved (as in 
NLO), the KKT approach to nonlinear 
optimization makes use of and generalizes the 
method of Langrange multipliers, which 
conventionally are used in solving equality-
constrained optimization problems. 
We now briefly consider a nonlinear optimization 
problem in order to explain the applications of the 
KKT conditions 
 

min f(x) or )(minarg* xfx
x

          (10) 

 
s.t  gi(x) – bi ≥ 0 i = 1,…k         (11) 

 
hj(x) – bj = 0 j = 1,…m                      (12) 

 
Where (1) is the objective function while (2) and 
(3) are the inequality and equality constraints 
respectively. In word form, we wish to find the 
solution that minimizes f(x), provided the 
inequalities gi(x) ≥ bi and equalities hj(x) = bj hold 
true. For this kind of nonlinear optimization, the 
necessary KKT conditions are as follows: 
 

(i) gi(x*) – bi is feasible, where x* represents 
optimal value. This condition applies to (1) 

(ii) 0)()( *

1

**  


xgxf i

m

i
i . This 

condition applies to (1), (2) and (3) 

(iii) 0))(( **  iii bxg , i = 1,…k. This 

applies to (2) 

(iv) ,0* i  i = 1,…k. This applies to (2)  

 

3. GAME THEORY-BASED RESOURCE 
ALLOCATION 

 

3.1 Bidding Game Model 
 
The main essence of a bidding game is auction. 
An auction is a decentralized economic 
mechanism for allocation of resources. In an 
auction, the players are the bidders and 
auctioneers, the strategies are the bids while 
allocations and prices are the bids’ functions. For 
our work, the source is the auctioneer who 
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desires to sell bids to the highest bidder, the 
relay nodes are the bidders who wish to pay for 
the bids and the good or resource to be bought is 
power. According to Han et al. [17], there are 
four components which determine the outcome 
of an auction. These components are (1) the 
information available to the bidders and 
auctioneer, (2) the bids placed by the bidders to 
the auctioneer, (3) the allocation of good or 
resource by the auctioneer, based on the placed 
bids, and (4) the payments made to the 
auctioneer by the bidder after the successful 
bidding. 
 
In the cooperative scenario being considered 
here, and as mentioned earlier, power is the 
good or resource that the bidders(relays) are 

going to bid for, from among which the source 
(auctioneer) would select the highest bidder (the 
relay that places the highest value in the bid 
profile). Fig.3 shows a bidding game model for a 
cooperative system being considered. 
 
Modeling the bidding game with these 
components, we have: 
 
 Information: The source node (auctioneer) 

announces a non-negative bid threshold 
Bth and a price p > 0 to all relays prior to 
the commencement of the bidding process; 

Bids, bi: Relay ri places a bid (which is a scalar), 
bi ≥ 0 to the source node. After an                     
iterative process to get the highest bidder,                 
the source selects the most suitable relay;

 
 

Fig. 2. Illustration of the bidding interaction between the auctioneer and the bidders 
 

 
 

Fig. 3. Model of the bidding game for a cooperative communication system 
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According to Jianwei et al. [14], a bidding 
profile defined as vector b = (b1, b2,…bN) 
which contains the bids of the relay nodes, 
where N is the number of relays involved in 
the game. 

 Allocation, Pall: The source, after selecting 
the relay, allocates power Pall based on the 
bid price placed by the selected relay 
node. 

 
From the model in Fig. 3, we derive the following: 
 

After a suitable relay ri with the highest bid 
has been selected by the source node, s, 
allocation of power is carried out for the relay 
node, 
Let P = power available to be allocated by 
the source node 
Bth = threshold bid placed by the source 
node at the commencement of the bidding 
process 
bj = bid placed by the other relay(s) not 
selected by the source node but among the 
set of participating relay nodes 
If Pall = power allocated to the selected relay 
node, ri , we have 

 

P

Bb

b
P

N

j
thj

i
all








1

                     (13) 

Where 





N

j
thj

i

Bb

b

1

is the ratio of the selected 

relay node’s bid to the bids of the other relays in 
the set. 
 
Fig. 2 shows an illustration of the bidding 
interaction between the auctioneer and the 
bidders. Let 
 
RN = {1, 2…N} be a set of relay nodes available 
for the bidding game. A 1 X N matrix ps denotes 

the source power where 
irs

p , (
ir

p ,1 for only one 

source node) represents the amount of power 
the source allocates to a relay ri for forwarding 
data to the destination node.  
The sum of all the elements in the only row of ps 
represents the total power consumption or 
allocation of all participating relays in the 
network, which is subject to an optimal or peak 

power constraint sp . 

 

Let Cs denote the achievable transmission rate 
capacity as derived in Eqn.8 in Section II.A for 
the source node at a given power allocation 

vector  N
irs i

p
1, 
which can be applied to different 

cooperative diversity techniques such as decode 
and forward, amplify and forward, estimate and 
forward or compress and forward. 
 

Now, to the objective of this work: to allocate 
power to each relay node in order to maximize or 
optimize the total throughput and efficiency of the 
network. We formulate the optimization problem 
as follows (which we call NLO): 
 

max Cs or 

irs

i
p

srs Cp
,

minarg*
,          (14) 

 

s.t s

N

i
rs pp
i


1
, ,  i N                      (15) 

 

variables 0sp                                   (16) 

 
The objective function in the NLO above is 
concave, since Cs is a concave function of the 

power vector  N
irs i

p
1, 

. It is also obvious that 

constraint (12) is convex. It can thus be said 
without loss of generality that the set of the 
optimization problem in the NLO that is feasible 
is a convex one. It thus means that the NLO is a 
convex optimization problem; which solution is 
given as follows: 
 
For the NLO problem in Eqn. (14) – (16), the 
Lagrangian is  
 

  







 



N

i
srs

N

i
iss ppCpL

i

1
,

1

,      (17) 

 

Where ),( spL is the Lagrangian which 

depends on sp and   while  0 is the 

Lagrange multiplier. 
 

Using the Karush-Kuhn-Tucker (KKT) theorem 
and conditions as in [18] and as described in 
Section II.C, the following necessary and 
sufficient conditions are obtained for two 

variables p* and  * which stand for the optimal 
values of the power and Lagrange multiplier 
respectively. 
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  **

,
'

irss i
pC  , ,0

*

, 
irs

p  i N       (18) 

,0
1

,
** 












N

i
srsi pp i i N        (19) 

 

,
1

*

, s

N

i
rs pp
i




 i N         (20) 

,0* p   0*                        (21) 

 

Noteworthy is that if ,0, 
irs

p    0
*

,
' 

irs
pC ; 

which we obtained by evaluating the derivative of 
the Lagrangian function in (17) with respect to

irs
p , . This derivative is as follows: 

 

 


































N

i
rsi

rsrs

s

rs

s pP
PP

C

P

PL
i

iii
1

,

,,,

,




 

      irss i
PC  ,

'  

Thus,                                             
**

,
' )( irss i
PC   

 
where the asterix (*) denotes optimal value. We 
propose, in the next section, a bidding game-
based power allocation scheme to achieve the 
optimum solution for the optimization problem 
NLO. 
 

3.2 Proposed Bidding Game-Based 
Power Allocation Scheme 

 
In the development of this scheme, the first step 
is to show that there exists auction equilibrium in 
the proposed bidding game. This is expedient 
because in any form of analysis using the game-
theoretic concepts, a common objective is to 
ensure there are a convergence to and a unique 
Nash equilibrium. Then we propose our scheme 
to achieve the optimum allocation of power. 
 
In this work, we wish to achieve an efficient 
resource allocation through a single-auctioneer 
multi-bidder bidding game where the auctioneer 
is the source node and the relay nodes are the 
bidders. An interaction between the source node 
(auctioneer) and the relay nodes (bidders) is 
illustrated in Fig. 2, in which the auctioneer 
dynamically announces a bid price to all the 
bidders and the bidders respond by placing bids 
so as to attract the auctioneer in selecting a 
particular bidder to which power would be 

allocated. The issue we are attempting to 
address in this section is that of the maximum 
amount of power that can be allocated to the 
relay nodes by the source nodes without violating 
the power constraint. 
 

As mentioned earlier, the auctioneer (source, s) 
announces a price, which we call pth and each 
bidder (relay, ri) places or submits a bid bi to the 
source, s. 
 

Let pth = price value announced by the 
auctioneer, 
 

b = bidding matrix or profile where  N
iisi bb
1, 

 . 

However this auctioneer – bidder approach is 
made up of two main components, which are: 
 

(a) For a given price, pth, each bidder ri, i

determines its demand vector  N
irs i

p
1, 

, 

then places the corresponding bid vector 

 N
irs i

b
1, 
to the auctioneer; 

(b) For the collected or submitted bids from 
the bidders, the auctioneer determines its 
own supply value as well and allocates the 
power based on those bids. 

 

In essence, our main challenge is to develop a 
price value and a bidding matrix or profile so that 
the outcome of the proposed bidding game is 
equivalent to the optimum solution of NLO. We 
thus introduce a 2-sided bidding game rule. One 
side is the bidder’s side while the other is the 
auctioneer’s side. 
 
Side 1: For the bidders’ side, each of the bidders 

ri, i  places a bid in proportion to the price 
given by the auctioneer and the power it intends 

to buy from it, i.e. ,. ,, ii rsthrs ppb   i . 

Obviously, if 0, 
irs

p no bidding takes place. 

Side 2: However, for the auctioneer’s side, the 
auctioneer aims at maximizing the surrogate 

function 


N

i
rsrs ii

pb
1

,, log , using the mechanism 

in Kelly et al. [19]; the differentiability and 

concavity in 
irs

p , being the factors for selecting 

the surrogate function. 
 

We propose the following: 
 
Proposition: There is an optimum demand 

vector  N
irs i

p
1

*
, 

from each bidder ri, i , and an 
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optimum supply value from the auctioneer both 
of which agree with the NLO. 
 
Proof of the proposition: The achievable 
transmission rate capacity of source, Cs is 

related only to  N
irs i

p
1, 
without having an explicit 

relationship with  N
isri

p
1, 

. Since Cs is jointly 

concave in  N
irs i

p
1, 
, bidder ri has the capability 

to decide its demand  N
irs i

p
1

*
, 

which satisfies 

(15) – (18), with the optimal dual vector * given. 
From the illustrative graph in Fig.2, the power the 
auctioneer sells to bidder ri is equivalent to the 
power the bidder ri submits a bid for. This thus 
means that an optimal demand vector leads to 
an optimum supply vector. This proposition 
implies that, if the source and relay nodes simply 
follow the proposed scheme rather than attempt 
to compute the local payoff selfishly, the global 
optimum is achievable. 
 
3.2.1 Bidder problem 
 
We assume that the bidders do not place their 
bids just to impact the auctioneer’s price, 
especially when there are N bidders at play in the 
bidding market. There is the tendency for each 
bidder to want to maximize its utility or surplus 
(which is the difference between the payoff from 
buying power from auctioneer and its own 
payment for the power). From the auctioneer’s 
price, pth, bidder ri determines its optimum 
demand according to the following function: 
 

 
i

N

iirs

i rs

N

i
th

p

sr ppCU ,
1

1,

max 






        (19) 

 
After this, the bidder places its optimum bid to 
the auctioneer according to that optimal demand 
and the announced price pth  as : 
 

*
,

*
, ii rsrs pb  ,  i                       (20) 

 
From the rule of concavity, it can be proved that 

the utility 
ir

U is jointly concave in  N
irs i

p
1, 
 

where Cs (defined in (8)) is concave in N
irs i

p
1, 
. 

And as a result of the concave nature of the 
utility, bidder ri is able to optimize the unique 

power vector  N
irs i

p
1, 

so as to maximize its 

payoff. Finding the derivative of 
ir

U in (19) with 

respect to
irs

p , , the necessary and sufficient first 

order condition can be obtained as: 
 

  0*
,

'

*
,





thrss

rs

r
ppC

p

U
i

i

i
,  ip

irs
,0, 

(22) 
 
Having another look at (15), which is the KKT 
condition for the NLO, it can be seen that if the 
auctioneer announces its price as 
 

 *
,

'**

irssith pCp   ,  i , 0, 
irs

p       (23) 

 
it is then obvious that (21) agrees with (15). This 
clearly shows that the optimum power p* in the 
above bidder problem is in agreement with the 
one in the NLO. It can thus be seen from the 
above analysis that, with an appropriate pricing 
and bidding, the individual optimum in the bidder 
problem in in good agreement with the global 
optimum. 
 
3.2.2 Auctioneer problem 
 
The next issue we need to address is the 
auctioneer problem. We can solve the optimum 
power supply or allocation by the auctioneer by 
the formulation of auctioneer problem in terms of 
the following optimization problem: 
 

ii rs

N

i
rs pb ,

1
, logmax



                     (24) 

 

s.t s

N

i
rs pp
i


1
,                                   (25) 

 
variables 0p    (26) 

The Lagrangian associated with the problem (24) 
– (26) is written as follows: 
 









 



N

i
srs

N

i
rsrss pppbL

isi

1
,

1
,,

' log 
 

(27) 
 

where s denotes the Lagrange multiplier of the 

auctioneer. From the KKT theorem mentioned 
earlier, the KKT conditions for the auctioneer 
problem are as follows: 
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*

,*
,

s

rs

rs
i

i

b
p


 , Ni          (28) 

 

0
1

*
,

* 











N

i
srss pp

i
                      (29) 

 





N

i
srs pp

i

1
,                                   (30) 

 

,0* p   0* s                                   (31) 

 
If the above problem with its accompanying KKT 
conditions is compared with the NLO, we see 

that if si   and bids are submitted / placed by 

bidders as 
 

 
iii rssrsrs pCpb ,

'*
,

*
,                                    

(32) 
 
It can be clearly seen then that (28) – (31) agree 
with (18) – (21) and the solution of the auctioneer 
problem is also in agreement with the NLO. 

3.3 Algorithm for the Power Allocation 
Scheme  

 
We now construct an algorithm to show the 
mechanism for the bidding game-based power 
allocation scheme we are proposing. This 
mechanism is iterative. 
 
3.3.1 Algorithm for single-auctioneer multi-

bidder power bidding game 
 
Initialize or Start up 
 

Iterative process index is set up at t = 0 
 
For every bidder node, initial mode is set to 
direct (non-cooperative) transmission 
 

i.e. p(0) = diag ( ),..., 21 Nppp : only diagonal 

elements are non-zero 
 

A random 1 x N bid matrix, 0)0( b  is 
generated 
 
A random value of auctioneer’s price pth is 
given as the threshold price 

 
Iterate 
 

1. 1 tt  

2. Allocate power: Source (auctioneer) dynamically allocates power 
irs

p , to relay ri according 

to 
 

3. 
)1(

)1(
,)(

, 




t
th

t
rst

rs
p

b
p i

i
, Ni  

 
4. Update bids: 
 

- ;1t  

- Auctioneer, s = 1; 
- for each bidder ri, i = 1:N do 

-           if 0
)(
,

)(





t
rs

t
r

p

U
i , OR   )1()(

,
'  t

th
t
rss ppC
i

then 

-            )( ,')(
,

)(
,

t
rss

t
rs

t
rs iii

pCpb  ; 

-                else 

-                     ;0)(, tb
irs

 

-           end if 
- end for 
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5. Update price:  The auctioneer updates its price 
as follows: 
 









 




N

i
s

t
rsth

t
th

t
th pppp

i

1

)(
,

)1()( 
 

Where th = small constant incremental step-

size 
 
Until the price value converges 
 

4. RESULTS AND DISCUSSION 
 
A cooperative communication network consisting 
of one source node, one destination and four 
relay nodes is considered, as shown in Fig. 4. 
The single destination node is situated at (0, 0) in 
a two-dimensional plane topology, while the relay 
nodes are randomly located on the network 
plane. The source node is acting as the 
auctioneer while the relays are acting as the 
bidders in the bidding game. It is assumed that 
all relay nodes have the same maximum power 
constraints, given as 10 dB. The path loss 
exponent is also set to be 3.0. 

 
In Fig. 5, we show the convergence of the source 
node’s power to the Nash equilibrium. It can be 
recalled that the existence of and convergence to 

the Nash equilibrium are a necessary condition 
for the solution of any game-based analysis. The 
plots equally show the variations of the source 
power with different price allotments. Fig. 6 
shows a similar situation but with the utility of the 
source node. Fig. 7 shows a comparison of the 
convergence of the proposed scheme with the 
work of Yuan et al, 2011, using the bidding price. 
It shows that our proposed scheme outperforms 
that other work 
 

We were also able to find from our simulations 
that the closer a relay is to the destination node, 
the higher the price it presents and the higher the 
utility it provides for the source node. For 
instance, in the 2-D graph in Fig. 4, relay 2 is 
closest to the destination node, and thus 
presents the highest utility to the source node. A 
reason for this is that the closer a relay node is to 
the destination node, the less the power it would 
need to forward the source node’s data to the 
destination node against the situation in which 
the relay node is further away from the 
destination node. So, the relay node located 
close to the destination node would most likely 
as the highest price and thus be the most likely 
selection candidate for the source node – which 
would give utility to both the relay and source 
nodes. 

 

 
 
Fig. 4. Graph showing the locations of the source, relay and destination nodes on a 2-D plane 
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Fig. 5. Plots showing the convergence of the source node power to the Nash equilibrium 
 

 
 

Fig. 6. Plots showing the convergence of the source node’s utility to the Nash equilibrium 
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Fig. 7. Comparison of the convergence of the proposed scheme with the work of Yuan et al, 
2011, using the bidding price 

   

5. CONCLUSION 
 

In this paper, we have proposed a new scheme 
for optimum resource allocation in cooperative 
communication networks using a kind of game 
known as the bidding game. We were able to 
solve this problem by mapping a cooperative 
network into a single-auctioneer multi-bidder 
game where the source node acts as the 
auctioneer and the relays act as the bidders. 
Through the implementation of this proposed 
power bidding scheme, the user can achieve the 
optimum in terms of the power bided for and the 
power sold, without violating the power 
constraints. Thus the motivation for embarking 
on this research and the contribution thereof 
have been achieved, for it will assist designers of 
future generation of wireless communication 
infrastructure in the area of efficient utilization of 
energy.   
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