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ABSTRACT 
 

Missing data is a common problem in real word studies especially clinical studies. However, most 
people working with such data, often drop missing cases from individuals with incomplete 
observations that occur when patients do not complete the treatment or miss their scheduled visits. 
This may lead to misleading results and ultimately affect the decision of whether an intervention is 
good or bad for the patients under treatment. The comparison of Complete Case (CC) and Inverse 
Probability Weights (IPW) techniques of handling missing data in various models has been 
addressed, however little has been done to compare these methods when applied to joint models 
of longitudinal and time to event data. Therefore, this paper seeks to investigate the impact of 
assuming CC analysis on clinical data with missing cases, comparing it with IPW method when 
fitting joint models of longitudinal and survival data setting full data model as the baseline model. 
This paper made use of randomized aids clinical trial data. The model with Deviance Information 
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Criteria (DIC) close to that of full data joint model is considered the best. From the results, joint 
models from full data, CC and IPW had DIC of 10603.94, 8410.33 and 10600.95 respectively. 
The joint model obtained from IPW data had a DIC too close to that of full data joint model as 
compared to model from CC data. 
 

 
Keywords: Joint model; missing data; longitudinal data; complete case; inverse probability weighting. 
 

1. INTRODUCTION 
 
The majority of clinical studies generate 
longitudinal and time to event data which 
sometimes depend on each other. However, in 
most cases, missing data occur in these data 
sets due to some patients not completing 
treatment or miss their scheduled visits. There 
are several ways of handling these missing 
cases. One is through Complete Case analysis 
(CC) where missing data is discarded and 
analysis only works with complete observations. 
This is only varied when data are missing 
completely at random [1]. This method is 
inefficient as it is biased. 
 
The other methods are inverse probability 
weighting (IPW) [2] and multiple imputations (MI) 
[1]. These methods attempt to fill in the missing 
data randomly using the previously observed 
data. 

 
These methods of handling missing data have 
been compared in several studies in terms of 
parameter estimation and standard errors. The 
comparison indicates that models fitted with 
incomplete data sets subjected MI and IPW 
methods gives less biased results compared to 
CC analysis. [3,4,5]. [6,7] also investigated MI 
and found out that it gives less biased results 
compared to CC analysis. Despite of all these, 
little has been done to compare these methods 
when fitting joint models of longitudinal and 
survival data in situations of missing data.  
 
Andersson et al. [8] used a joint model to model 
long-term trends in breast cancer while 
accounting for drop-out as well as for 
measurement error.  They argue that ignoring 
drop-outs when fitting a joint model may lead to 
biased results. Sweeting [9], also used a joint 
model to associate longitudinal measurements of 
aortic diameter with the risk of aneurysm 
rupture. He argues that a well fitted joint model 
can be used to make predictions that can be 
utilized within a fuller decision modelling 
framework, to allow planning of future 
interventions for patients under a ‘watchful 
waiting’ care pathway. 

Crowther MJ et al. [10] looks at application of 
joint model of longitudinal and survival data while 
incorporating delayed entry (missing data), which 
has received relatively little attention. They argue 
that, incorporating the missing entries requires 
introduction of methods of handling missing data. 
 
This paper seeks to examine the performance of 
CC and IPW methods when applied to missing at 
random (MAR) data in the joint models of 
longitudinal and survival data.  
 

1.1 Definitions and Notations 
 
1.1.1 Rubin’s classification of missing data 

mechanisms 
 
The missing data terminology used in this paper 
were developed by Rubin [11]. To describe these 
mechanisms, notations for missing cases are 
introduced. 
 
Let ���  denote indicator variable that takes on 

value 1 if subject � is observed at time �, and 0 if 
the subject was not observed at this time point. 
Here we consider whether the dependent 
variable �  was observed or not. For 
measurement at �  time points, then the �	�	1 
complete dependent variable vector is 
 

��
′ = (���, ���, … , ���). 

 
The �	�	1   missing data indicator vector for a 
subject is then 
 

��
′ = (���, ���, … , ���). 

 
Where the specific ���  values equal 1 or 0 

depending on whether ��� is observed or not 

 
(i.e., ��� 	= 	1 if subject � is observed at time �, or 

��� = 0  if subject �	is missing at time 	�	). 

 
Based on ��  the complete dependent variable 
vector	�� can be partitioned into its observed ��

�  

and unobserved �	�
�  components for a given 

subject � . Here, ��  is a potential dependent 
variable vector for subject � , which differs 
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notation-wise from usual treatment of this vector, 
and ��

�  as the actually observed dependent 
variable vector for subject �. Analogously, ��

�  is 
the component of the dependent variable vector 
that is missing. 
 
1.1.2 Missing completely at random (MCAR) 
 
This is the case where a patient is missing for 
completely random reasons at a particular time 
point that is, the missing responses probability is 
not related to the longitudinal outcome. For 
example, when a patient relocates to a different 
place or forgets to attend a scheduled 
appointment. This means that the indicators for 
missing data, �� do not dependent on both ��

�  
and ��

� ; they are independent of the values that 
were observed and those that were not. 
 
1.1.3 Missing at random (MAR) 
 
This occurs in cases where the probability of 
missing cases depends on both the covariates ��  
of a fully observed model and vector ��

�  of 
observed dependent variable but is unrelated to 
unobserved dependent variable vector ��

� . 
Example, when the doctor advises the patient to 
stop attending treatment due to measurements 
previously observed. 
 
1.1.4 Missing not at random (MNAR) 
 
This is where the missingness is related to vector 
��
�  of unobserved dependent variable taking into 

account the observed variables ��	���	��
�. This 

implies that there is an association between what 
would have been observed, ��

�  and the 
missingness ��� . A good example is when a 

patient stops treatment due to death which is 
related to his or her CD4 Count level, including 
those that would have been observed if he 
continued with the treatment.  
 

2. METHODOLOGY 
 

2.1 Description of the ART Data 
 
A completely fully observed data (data with no 
missing cases) has been considered as baseline 
data. The randomized AIDS clinical trial data 
containing both longitudinal and survival data 
used in this paper is publicly available for free to 
aid in research in HIV/AIDS in the website [12]. 
The dataset has a total of 1405 observations and 
467 patients who were followed in the clinical 
trial. This population consists of HIV+ patients 

who are at least 18 years old and are on 
Antiretroviral drugs (ARVs). The longitudinal 
variable was CD4 counts measured until the 
patient was lost to follow-up. The survival 
variable was time to death. The other 
explanatory variables considered in this paper 
are as in Table 1. 
 

Table 1. Explanatory variables used joint 
modeling of the ART data 

 
No Variable  Description 
1 Drug ddI, ddC 
2 Gender Male, female 
3 Age Years 
4 Weight Kilograms 
5 Marital status Not married, married, 

others 
6 Education level None,  primary,  

secondary, tertiary 
7 Employment Yes, no 
8 Clinic  Urban or rural 

 

2.2 Joint Model Application to Fully 
Observed Data  

 
A joint model comprising longitudinal and survival 
sub-models has been applied to fully observed 
data. This is set as a baseline model.  
 
2.2.1 Longitudinal data modeling 
 
First, we consider a linear mixed effects model, 
where longitudinal measurements, ���, … , ���� 	for 
the ���  subject at times	���,… ����  is given as: 
 

�� = ��(�)+���(s) + �� 
     = ���

� (�)��+ ���
� (�)��+ ��                         (1) 

��~  �(0, �),   ��~ (0, ��
��) 

 
In this case, � is a vector of responses that were 
observed with a dimension �� , ��  is a vector of 
fixed effects of dimension p, ��  is a random 
effects vector of dimension �, 	���

� (�) is a matrix 
of fixed effects covariates that are time-varying of 
(size �	�	�), 	���

� (�) is ( �	�	�) dimensional matrix 
of random effects covariates and �� represents a 
within-group error vector of dimension ��  with a 
Gaussian distribution. 
 
Here, ��(�)= ���

� (� ) ��  is mean response and 
���(s) = ���

� (�)�� contains random effects. ���(s) 
are the adjusted CD4 trajectories.	��� are random 
effect covariates while ���  are fixed effects 
covariates. 
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2.2.2 Survival data modeling 
 
The survival Cox proportional hazard model is 
given by; 
 

ℎ�(�)=ℎ�(�)��(�) 
          =ℎ�(�)exp	(���

� (�)��)                      (2) 
 
Where ℎ�(�)  represents baseline hazard 
function, ���

� (�) is a time-dependent covariates 
vector and ��  is a vector of fixed effects 
parameters. 
 
2.2.3 The joint models structure 
 
2.2.3.1 The longitudinal sub model specification 
 
The longitudinal sub-model as described by [13], 
is given as below; 
 

	�� = ��(�)+���(s) + �� 
     = ���

� (�)��+ ���
� (�)��+ �� 

��~  �(0, �), ��~(0, ���), log (��)~�(��,��
�)  (3) 

 
Where ��  is the within-subject variability which 
follows a log-normal distribution with mean �� 
and variance	��

� 
 
2.2.3.2 The survival sub model specification 
 
Specification of survival sub-model is given as: 
 

	ℎ�(�)= ℎ�(�)exp	(���
� (�)�� +���(�)				        (4) 

 
In this cases, the association function, ���(�), in 
(4) is similar to  ���(�) in longitudinal sub-model 
(3) which is given as; 

 
���(�)= ����� + ����� + ����� + �� log(��)+
���																																																																																				(5) 

 
Where  
 

��, ��, �� and ��, shows the association between 
the two sub-models, that is, the random 
intercepts, linear slope, quadratic slope and the 
CD4 variability, respectively.  

 
2.2.3.3 Bayesian estimation and inference 

 
The two sun models are then linked together 
using Bayesian estimation approach as follows: 
 

�(�, �, �|��, ��)

=��(�|��

�

���

, ��)�(�, �|�, ��, ��)�(��)��� 

Having a likelihood function given as 
 

�(�, �, �|��, ��)

=��(�|��

�

���

, ��)�(�, �|�, ��, ��)
��(1

− �(�, �|�, ��, ��)
(����)�(��)��� 

 

Where �� = {��, 	���}  represents the shared 
underlying process, �� = {��, �, ��, ��

�} and 
 �� = {��, �, ��

�}  represents population 
parameters specified in the mixed and survival 
models respectively.  �(.)  and  �(.)	  denotes 
density and distribution functions, respectively. 
 

2.3 Application of Joint Model to Fully 
Observed Data 

 
A joint model of longitudinal and survival data 
has been fitted to the HIV/AIDS data that has all 
observation, that is, data without any missing 
case. 
 

2.4 Application of the Joint Model to 
Complete Case Data 

 

About 30% missing at random (MAR) 
observations have been simulated from the fully 
observed data. We then discard the missing 
observations from the data. This forms our 
complete case data. The joint model of 
longitudinal and time to event data has been then 
applied to the complete case data.  
 

2.5 Application of Joint Model to the 
Inverse Probability Weighting (IPW) 
Repeated Measures Data 

 

We assume that the expected outcome is � , 
given the design variables � , and auxiliary 
variables �. We also assume that, �	 = 	1 depict 
that Y is missing. IPW can be described by 

introducing a response indicator, �	 = 	1	– 	� , 
such that �	 = 	0 when �  is missing and �	 = 	1 
when it is observed. 
 

In this case, the auxiliary information must be 
included in the history of the observed data,  
��
� = 	 (��, … , ����, 	��, … , ����) also in the model for 

�(�, �, �). The procedure for performing IPW on 
the incomplete data is as follows: 
 

1. Identify the regression model to be used if 
all the intended data were observed. 

2. Let  

denote the probability that  was 
observed. 



 
 
 
 

Nyaboga et al.; CJAST, 34(2): 1-10, 2019; Article no.CJAST.34913 
 
 

 
5 
 

3. Fit the model for  ∅�  and represent the 

estimated parameters by ��. 

4. Let  ����, ��
�; �� = ∏ ∅�

�
��� (�, ��

�; �)  to 

represent the probability that the patient 
was retained in the study to time �. 

5. By using independence correlation 
structure, fit the regression in Step 1, 
weighting the individual contributions to the 

model by �����, ��
�; ����.    

6. Estimate the error by use of the bootstrap 
technique. 

 

2.6 Comparison of Joint Models Obtained 
from CC and IPW Data with that of 
Fully Observed Data 

 
A joint model of longitudinal and survival data 
applied to fully observed data has been set as 
baseline model which is assumed to be the 
correctly specified model. The joint models 
fitted from CC and IPW datasets are compared 
with joint model fitted from the fully observed 
dataset. The precise nature of the joint models is 
selected using the DIC  (Deviance Information 
Criterion). The joint model with DIC close to that 
of a full data model indicates preferred model 
and the method used to estimate missing data in 
the said model is considered the best. 
 

3. RESULTS 
 

3.1 Descriptive Statistics of the 
Explanatory Variables in ART Data 

 
Table 2 shows descriptive statistics of the 
explanatory variables present in the Anti-
retroviral therapy (ART) data that was used to 
evaluate missing data estimation methods. A 
total of 467 HIV-positive patients on ART 
treatment were considered for the study. Out of 
these, 422 (90.36%) were males and 45 (9.64%) 
were females. The majority (49.89%) of the 
infected patients were below 25 years with mean 
age of 31.34 (SD=10.50), Most of the patients 
187 (40.04%) were married while 154 (32.98%) 
were not married. 126 (26.98%) were either in 
the divorced or widowed group. Patients who had 
no formal education were 13(2.78%) while those 
who had completed at least primary education 
were 87(97.22%). The majority (53.32%) of the 
patients were not employed. The mean CD4 
count at baseline was 7.13 (SD=4.71) cells/mm3. 
Finally, the mean weight at baseline was 51.30 
kg (SD=7.03). 
 

Table 2. Baseline characteristics of patients 
on ART. (N=467) 

 
Characteristics Descriptive 

statistics 
Gender  
Female    45(9.64%) 
 Male    422(90.36%) 
Age group   
Mean age(SD) 31.34(10.50) 
 <25    233(49.89%) 
 26-30    45(9.64%) 
31-35    58(12.42%) 
36-40    41(8.78%) 
41-45     41(8.78%) 
46+     23(4.93%) 
Education   
None 13(2.78%) 
 Primary    159(34.05%) 
 Secondary   116(24.84%) 
 Tertiary     110(23.55%) 
Marital Status  
Not married   154(32.98%) 
Married   187(40.04%) 
Others    126(26.98%) 
Employed  
Yes    218(46.68%) 
No    249(53.32%) 
Mean CD4+ at diagnosis (SD) 7.13(4.71) 
Mean weight(SD) 51.30(7.03) 

 
3.2 Fitting the Separate and Joint Models 

for the Fully Observed Dataset 
 
Table 3 summarizes the estimates, standard 
errors and p-values of the parameters of the 
separate and joint models run with full data (all 
cases observed). In longitudinal sub-model, the 
predictors, time and age, were statistically 
significant at 5% level of significance. The time 
effect coefficient has a negative sign indicating 
that CD4 cell count decreases on average with 
time. The estimate for gender in the longitudinal 
regression model has a negative sign though not 
significantly different from zero, suggesting that, 
throughout the follow-up, the male patients had 
lower CD4 cell counts than females. The 
coefficient for age is -0.057 (P-value 0.001), 
suggesting that as the age of patients increases 
there is a significant decrease in CD4 count 
cells/mm3 level over the time. Similarly, the 
predictor coefficient for weight (-0.009) indicates 
that CD4 count decreases over the period of 
study for a unit decrease in weight of the 
patients.  
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 Table 3. Separate and joint model of longitudinal and time to event fully observed ART data 
 

  Parameters                Separate analysis                  Joint analysis 
  Estimate Std. 

error 
P-
value 

Estimate Std. 
error 

P-value 

  Intercept 9.001 1.569 <0.001 8.894 0.024 <0.001 
  Obstime -0.147 0.012 <0.001 -0.161 0.002 <0.001 
  Drug(ddl) 0.605 0.433 0.163 0.582 0.010 0.182 
  gender(male) -0.563 0.740 0.447 -0.471 0.018 0.509 
Longitudinal Age -0.057 0.018 0.001 -0.052 0.004 <0.001 
sub-model Marital status 0.278 0.244 0.254 0.307 0.058 0.214 
(CD4 Count) Weight -0.009 0.011 0.427 -0.009 0.002 0.361 
  Education 0.203 0.177 0.252 0.187 0.041 0.271 
  Clinic -0.089 0.408 0.827 -0.125 0.121 0.857 
  Employment 0.043 0.417 0.918 -0.003 0.059 0.930 
  Intercept         
  Drug(ddl) 0.250 0.148 0.092 0.396 0.032 0.011 
  Gender(male) -0.156 0.245 0.523 -0.273 0.062 0.266 
Survival  Age 0.000 0.007 0.947 -0.012 0.002 0.086 
sub-model Marital status -0.062 0.098 0.529 0.018 0.028 0.919 
(time to death) Weight 0.019 0.010 0.071 0.023 0.002 0.032 
  Education -0.049 0.070 0.484 -0.009 0.016 0.906 
  Clinic -0.166 0.153 0.279 -0.233 0.040 0.187 
  Employment 0.175 0.156 0.263 0.252 0.031 0.095 
   ��     -0.276 0.002 <0.001 
   ��       363.501 43.627 <0.001 
  DIC         10603.94   

 
In survival sub-model, sex and age are not found 
to be significant predictors for death event of HIV 
patients. The risk of an educated patient being 
lost to follow-up is [exp(-0.049) = 0.952] times 
higher compared to an uneducated patient. 
Patients attending rural clinic have the higher 
hazard of loss to follow-up from the treatment as 
compared to the patients who belong to the 
urban area though not statistically significant. 
Body weight is associated positively with CD4 
count trajectory. Also, after initiation of ART, 
patients with higher body weight are associated 
with lower hazard for loss to follow-up.  
 
The parameter estimates for the two models i.e 
separate and joint models are quite similar to 
each other though not identical. The posterior 
estimates of the association parameters for the 
joint model are statistically significant, implying 
that there is an association between the two sub-
models. The parameter estimate of association 
due to the trend of CD4 is negative ( �� =
−0.276 ). This implies that there is a negative 
association between the slope of the CD4 count 
and the hazard of HIV patients who die while in 
ART treatment. This implies that there is a 
significantly reduced risk of dying in patients 
undergoing ART treatment with an increasing 
trend in the CD4 count. Also, the association 

parameter estimate due to CD4 count variability 
is positive (�� = 363.501). This indicates that the 
higher CD4 fluctuation in HIV-positive patients is 
significantly associated with the higher hazard of 
dying. 
 

The full data joint model has DIC of 10603.94. 
This Deviance Information Criterion is used as 
the reference for the other models. 
 

3.3 Application of Joint Model to 
Complete Case Data 

 

Table 4 shows the summary of the full data, 
observed data obtained after deleting the 
missing cases created from fully observed data 
and the missing cases on the longitudinal 
variable. 
 

Table 4. Summary of full, observed and 
missing values simulated on the longitudinal 

variable CD4 counts 
 

Observations Frequency Percentage 
   N (Full data) 1405 100.00 
   Observed  995 70.82 
   Missing   410 29.18 

 

Separate and joint models are then fitted from 
the complete case data. As shown in Table 5, 
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the separate and joint model parameter 
estimates for the complete case data are not 
similar to those of full data model. The Deviance 
Information Criteria (DIC) of the complete case 
joint model is 8410.332 which greatly varies from 
that of full data joint model. 
 
A comparison is made on a few selected 
parameter estimates for full data and complete 
case joint models. As shown in Table 6, in the 
longitudinal sub-model, the predictor age is 
statistically significant at 5% level of significance 
in full data joint model with P-value <0.001 but is 
not a statistically significant predictor in the 
complete case joint model (P-value 0.08). The 

coefficient for education is a statistically 
significant predictor in the complete case data 
joint model (P-value 0.02) but not in full data joint 
model (P-value 0.27). The coefficient for the 
employment has a negative impact on the full 
data joint model (-0.003) but positive impact on 
the complete case joint model (0.517). In the 
survival sub-model, age is statistically significant 
in the complete case data joint model (P-value 
0.04) but insignificant in full data joint model (P-
value 0.09). Body weight is statistically significant 
in full data joint model (P-value 0.03) but not 
significant in the complete case joint model (P-
value 0.15). 

 
Table 5. Separate and joint model of longitudinal and time to event complete case ART data 

 
  Parameters Separate analysis Joint analysis 
  Estimate Std. 

error 
P-
value 

Estimate Std. 
error 

P-
value 

  Intercept 8.432 1.750 0.000 7.618 0.023 <0.001 
  obstime -0.152 0.016 0.000 -0.159 0.003 <0.001 
  Drug(ddl) 0.705 0.453 0.121 0.353 0.010 0.413 
  gender(male) -1.167 0.783 0.137 -0.618 0.016 0.390 
Longitudinal Age -0.052 0.020 0.009 -0.037 0.005 0.081 
sub-model Marital status 0.294 0.285 0.304 0.394 0.042 0.070 
(CD4 Count) Weight -0.001 0.015 0.956 -0.011 0.001 0.196 
  Education 0.349 0.196 0.075 0.437 0.032 0.020 
  Clinic -0.246 0.442 0.579 -0.332 0.071 0.422 
  Employment 0.384 0.450 0.393 0.517 0.077 0.153 
  Intercept         
  Drug(ddl) 0.168 0.161 0.297 0.520 0.036 <0.001 
  Gender(male) 0.012 0.282 0.966 -0.446 0.051 0.120 
Survival  Age 0.001 0.008 0.873 -0.017 0.002 0.042 
sub-model Marital status -0.096 0.106 0.364 0.010 0.026 0.933 
(time to death) Weight 0.011 0.012 0.329 0.017 0.003 0.148 
  Education -0.055 0.075 0.459 -0.004 0.023 0.983 
  Clinic -0.219 0.164 0.182 -0.231 0.040 0.164 
  Employment 0.175 0.168 0.297 0.233 0.035 0.151 
   ��     -0.293 0.002 <0.001 
   ��       414.392 48.016 <0.001 
  DIC         8410.332   

 
Table 6. Comparison of the selected parameter estimates in the full data and complete case 

joint model 
 

  Parameters Full data joint model Complete case joint model 
  Estimate Std. error P-

value 
Estimate Std. error P-

value 
Longitudinal Age -0.052 0.004 <0.001 -0.037 0.005 0.081 
sub-model Education 0.187 0.041 0.271 0.437 0.032 0.020 
  Employment -0.003 0.059 0.930 0.517 0.077 0.153 
Survival  Age -0.012 0.002 0.086 -0.017 0.002 0.042 
sub-model Weight 0.023 0.002 0.032 0.017 0.003 0.148 
  DIC   10603.94     8410.332   
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3.4 Application of Joint Model to Inverse 
Probability Weighting Data 

 
Table 7 shows results of the joint model fitted 
from IPW data. From the results, the separate 
and joint models parameter estimates are almost 
similar to those from full data model though not 
identical. The DIC for the inverse probability 
weighting joint model is 10600.95 which is almost 
equal to that of the full data joint model. 
 

3.5 Comparisons of CC and IPW Data 
Joint Models with Full Data Joint 
Model 

 
Table 8, shows results of joint models applied 
to CC and IPW data, compared to full data joint 
model using the magnitude of DIC. From the 
results, Inverse Probability Weighting is found 
to be the best method of handling missing data. 
Inverse Probability Weighting model has 
Deviance Information Criterion very close to 

that of full data joint model which is set as a 
baseline model. Complete Case analysis shows 
a significant variation in its DIC compared to 
the full data model. 
 

4. DISCUSSION 
 

In everyday activities, it is important to address 
issues dealing with missing data since it occurs 
in almost all investigations in the real-world. It is 
more important to account for missing data 
especially on studies dealing with clinical data. In 
this paper, around 30% missing observations are 
imputed randomly on the longitudinal variable of 
the treatment and follow-up data used. 
Discarding all these missing cases and only 
working with complete data will result in a biased 
model. This paper addresses the performance of 
using the Complete Case analysis (CC) and 
Inverse Probability Weighting (IPW) methods for 
handling missing covariate values and applies 
them to joint models of longitudinal and survival 
data using the AIDS dataset. 

 
Table 7. Separate and joint model of longitudinal and time to event Inverse Probability 

Weighting ART data 
 

  Parameters Separate analysis Joint analysis 

  Estimate Std. 
error 

P-
value 

Estimate Std. 
error 

P-
value 

  Intercept 8.964 1.569 <0.001 8.887 0.022 <0.001 

  Obstime -0.146 0.012 <0.001 -0.166 0.003 <0.001 

  Drug(ddl) 0.608 0.433 0.161 0.586 0.010 0.191 

  gender(male) -0.557 0.740 0.452 -0.442 0.018 0.549 

Longitudinal Age -0.056 0.018 0.002 -0.058 0.003 <0.001 

sub-model Marital status 0.283 0.243 0.245 0.301 0.037 0.143 

(CD4 Count) Weight -0.008 0.011 0.460 -0.010 0.003 0.371 

  Education 0.204 0.177 0.251 0.268 0.040 0.086 

  Clinic -0.102 0.409 0.804 -0.125 0.086 0.785 

  Employment 0.039 0.418 0.926 0.043 0.100 0.864 

  Intercept         

  Drug(ddl) 0.252 0.148 0.089 0.304 0.027 0.003 

  Gender(male) -0.159 0.244 0.514 -0.178 0.096 0.549 

Survival  Age 0.000 0.007 0.946 -0.008 0.001 0.191 

sub-model Marital status -0.065 0.098 0.510 0.020 0.027 0.906 

(time to death) Weight 0.019 0.010 0.067 0.022 0.004 0.039 

  Education -0.050 0.070 0.479 0.016 0.015 0.712 

  Clinic -0.165 0.153 0.281 -0.247 0.029 0.075 

  Employment 0.173 0.157 0.268 0.279 0.034 0.080 

   ��     -0.273 0.001 <0.001 

   ��       501.507 32.577 <0.001 

  DIC         10600.95   
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Table 8. Summary of deviance information criteria for CC and IPW joint models compared to 
full data model 

 
  Model 
  Full data Complete case IPW 
DIC 10603.94 8410.33 10600.95 
Difference  
from full data 0.00 2193.61 2.99 

 
From the results obtained, the parameter 
estimates and standard errors of the joint model 
obtained from IPW are quite similar to those of 
full data joint model though not identical. The 
parameter estimates for CC joint model shows a 
huge variation compared to that of the full data 
model. This implies that under MAR mechanism, 
using CC analysis will give biased results as 
compared to IPW analysis for joint models. IPW 
joint model has DIC of 10600.95 which is too 
close to 10603.94 of the full data joint model. The 
CC analysis joint model has a DIC of 8410.33 
which was far from the full data model DIC. This 
huge variation further shows the biasedness of 
assuming missing data when fitting a joint model. 
 

5. CONCLUSIONS 
 
The results, in general, reveals that IPW is likely 
to be the best method of handling missing data 
under the MAR mechanism. In this paper, IPW 
joint model outperforms CC in terms of DIC when 
compared to full data joint model. This advantage 
of the IPW is well documented in terms of the 
MAR mechanism [14,15].  
 
The findings further suggests the 
inappropriateness of CC analysis. The study 
shows that CC analysis can lead to the loss of 
power of the covariates and imprecise parameter 
estimates. To avoid this, an application of IPW 
can be utilized. This study supports [16] 
recommendation to avoid CC analysis where 
possible.  
 
Missingness mechanism is simulated to be MAR, 
indicating that the CC performance is 
unsatisfactory under this assumption. This is in 
line with previous studies which shows that CC is 
more widely used under MCAR than under MAR 
[16]. Therefore, the preferred method of dealing 
with missing covariate values under MAR in joint 
models of longitudinal and survival data is IPW.  
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