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Vaccination is an effective way to prevent the spread of infectious diseases. In this study, we formulate a VSEIR mathematical
model to explore the effects of vaccination rate, vaccine efficacy, and immune decline on the COVID-19 transmission. The
existence and stability criteria of equilibrium states were determined by analyzing the model. Model analysis was performed.
One of the interesting phenomena involved in this issue is that diseases may or may not die out when the basic reproduction
number falls below unity (i.e., a backward bifurcation may exist and cause multistability). The disease eventually becomes
endemic in the population when the basic reproduction number exceeds one. By comparing different vaccination rates, vaccine
efficacy, and infection rate factors, the diseases can be eliminated, not only by vaccines but also by strict protective measures.
In addition, we used the COVID-19 number of reported cases in Xiamen in September 2021 to fit the model, and the model
and the reported data were well matched.

1. Introduction

Infectious diseases have always posed a severe threat to human
health. Many experts and scholars are exploring how to more
accurately assess the spread of infectious diseases and assist
medical workers in formulating scientific strategies for disease
prevention and control. Mathematical models provide scien-
tific tools that researchers can use to understand the causes
and patterns of disease transmission and help to identify
appropriate control interventions and control policies. Li
et al. simulated the third wave of COVID-19 epidemics in Paki-
stan and proposed that controlling the relevant parameters
could significantly reduce the number of infections [1]. Shen
et al. established an optimal control model, and the results
show that the control strategy can minimize the number of
infected individuals [2]. More references will be given in a later
discussion. In addition, the theory of fractional differential
equations has been developed relatively maturely and applied
to many fields [3–10]. He et al. proposed a new fractional-
order discrete-time SIR model with vaccines, which showed

that there is more complex dynamic system behaviour under
the action of vaccines [11]. Altaf Khan et al. demonstrated
the global properties of fractional-order Zikamodels using Lya-
punov function theory in a fractional environment [12].

Severe acute respiratory syndrome (SARS) in 2003 [13],
the 2009 influenza A (H1N1) outbreak [14], Ebola virus dis-
ease in 2014 [15], and the COVID-19 pandemic in 2019 [16]
each had a substantial impact on human health and on global
economic and social behaviour. For emerging infectious
diseases, owing to the lack of effective treatment due to insuf-
ficient understanding of the pathogenic virus, the world’s peo-
ple are pinning their hopes on vaccines. Although vaccines
have been and continue to be developed through the unremit-
ting efforts of scientists, effective and equitable management
poses a considerable challenge.

In some developed and developing countries, there is suf-
ficient financial and technical support to dominate the world
in the development of new vaccines. In some of the least devel-
oped countries, health conditions are relatively poor, and they
need vaccines to curb the spread of diseases. However, owing
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to vaccine research and development technology and public
health expenditure constraints, there can be a shortage of vac-
cine stocks or even no vaccines available. So far, seven
COVID-19 vaccines have been put into use, mainly the vac-
cines produced in China and some European and American
countries. The difference is that the vaccines in Europe and
American are mainly supplied to rich developed countries,
while the Chinese vaccine flows mainly to relatively poor
developing countries. High-income countries stocked vaccines
while developing countries struggle to get them. Nearly 70
low-income countries worldwide have a vaccination rate of
only 1 in 10 people [17]. The international community is also
actively cooperating in vaccination programs to promote equi-
table distribution of vaccines. The problem of uneven distribu-
tion of vaccines is difficult to solve in the short term.
Therefore, more realistic vaccination rates need to be explored.
Some people hope to see more information about the effects of
new vaccines, and the public has paid close attention to the
data on safety and efficacy. Most people considering vaccina-
tion seek better understanding of the vaccine before making
an appointment. As the COVID-19 pandemic has progressed,
more people have become willing to vaccinate, the scope of
vaccination has expanded, and the effects of vaccine use have
become more visible. Hence, in modeling infectious diseases,
the impact of different vaccination rates on disease transmis-
sion should be considered.

Most known pathogenic viruses are RNA viruses. Owing to
the specific molecular structure of the genetic material of RNA
viruses, they readily experience replication errors when repro-
ducing and so produce new viral subtypes. These new subtypes
can quickly affect the immune effect of vaccines. According to
the World Health Organization, only 2 of the more than 100
human papillomaviruses (HPV) that currently exist (types 16
and 18) cause 70% of cases of cervical cancer, although several
other low-risk subtypes can cause other lesions. Three different
vaccines have been used against these highly carcinogenic var-
iants [18]. On November 26, 2021, the World Health Organi-
zation announced a particular variant of the new coronavirus
called Omicron [19]. At that time, there was preliminary evi-
dence of increased transmission and resistance to vaccines
and an increased risk of reinfection. Since then, these traits
have been confirmed. Therefore, the impact of vaccination on
disease transmission cannot be assessed without considering
viral mutations. After vaccination, the human body produces
large amounts of antibodies, which can prevent the virus from
multiplying after exposure. However, the body’s natural metab-
olism and apoptosis can cause the antibody levels to decline.
The immune effect on the disease is therefore weakened.

The vaccine’s effectiveness cannot reach 100% [20]; the
infection is temporary. Studies have shown that six weeks after
the COVID-19 vaccine, the antibody levels in the vaccinated
people begin to decline, and within 10 weeks, they drop bymore
than 50%. Regardless of the vaccinated person’s age, chronic
disease status, or sex, the decline in antibody levels remains con-
sistent across all populations [21]. That is, the immunity gained
from either vaccines or recovery from infection is temporary.
Therefore, when simulating the disease transmission process,
both vaccine-induced immunity loss and the disappearance of
natural immunity must be taken into consideration.

Vaccines are the most effective preventive measure to con-
trol the development of the disease, but they are affected and
limited by many factors in the implementation process.
Scholars in many countries have tried to find the best vaccina-
tion strategies for vaccines from different perspectives and have
published many practical research results. For example, Zheng
et al. established an extended SEAIRD partition model to
describe the epidemic dynamics of single- and double-dose vac-
cination [22]. Deng et al. and Chen et al. produced a Filippov
epidemic model to consider the saturation function of vaccina-
tion and treatment strategies. They explored media effects on
the prevalence of vaccine-containing diseases [23, 24]. Acuña-
Zegarra et al. considered secondary infections after vaccination,
established a SIRSI model, and analyzed the dynamic behaviour
of the disease at immunization [25]. Omame et al. established a
gender-sensitive HPV model that studied and rigorously ana-
lyzed the effects of treatment and vaccination on their transmis-
sion dynamics [26]. Vaccination strategies cannot be developed
without taking into account vaccine availability, vaccination
rates, efficacy, and the actual situation of loss of natural immune
response and viral mutation [27–29]. In addition, Parsamanesh
et al. established a series of epidemiological models on vaccina-
tion and theoretically demonstrated the local and global stability
of the disease-free equilibrium point and the endemic equilib-
rium point, as well as various possible bifurcations [30–35].

While many researchers have studied the effects of vacci-
nation on disease transmission, one of the vaccinations and
vaccine decline was sometimes overlooked in previousmodels.
So, we consider improving existing mathematical models to
model the impact of vaccination and immunity decline (the
decline of natural and vaccine-guided immunity due to viral
mutations over time) on vaccine protection and disease
transmission.

The organization of the paper is as follows. Section 2 pre-
sents a mathematical expression for an epidemiological model
with linear vaccination rates considering both immune decline
and viral variation. In the next section, the positive and
bounded nature of the model solution is demonstrated. The
presence and basic reproduction number of disease-free equi-
librium points and the uniqueness of endemic equilibrium
points are given in Section 4. The local stability of equilibrium
points is discussed in Section 5. In Sections 6 and 7, mathemat-
ical proofs of the existence of forward and backward bifurca-
tion and related numerical simulations are given, respectively.
In the final section, we summarize the conclusions and discuss
further work.

2. Model

In this paper, we refine traditional vaccination models, taking
into account the effectiveness of vaccines and the loss of
immunity (vaccine-induced and natural). An epidemiological
model with vaccination was proposed to reflect the epidemio-
logical dynamics of epidemic transmission with preventive
measures. We consider dividing the population into five seg-
ments: vaccinated susceptible VðtÞ, unvaccinated susceptible
SðtÞ, exposed but incapacitated EðtÞ, symptomatic and capable
of infection IðtÞ, recovered RðtÞ.
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In vaccinated populations, due to the immune response
caused by vaccination, these individuals cannot be infected
with the virus, let alone transmit it. Over time, vaccine-
induced antibodies gradually decrease, and some individuals
return to the susceptible population and may be infected by
the virus. Susceptible people become exposed by coming into
contact with infected people. Here, an exposed person indi-
cates that they have been infected but cannot infect others.
These individuals are in the incubation period, and when they
pass the incubation period, they become symptomatic infected
people. The infected population is transferred to the recover-
ing population through treatment, but because natural immu-
nity also disappears over time, a subset of individuals in the
recovered population become susceptible again. A path map
of disease transmission is given in Figure 1.

The mathematical form of the corresponding VSEIR
model is expressed by the following ODES nonlinear system:

dV tð Þ
dt

= γS tð Þ − 1 − θð ÞβV tð ÞI tð Þ − δ + dð ÞV tð Þ,
dS tð Þ
dt

=Λ + δ1R tð Þ + δV tð Þ − βS tð ÞI tð Þ − γ + dð ÞS tð Þ,
dE tð Þ
dt

= βS tð ÞI tð Þ + 1 − θð ÞβV tð ÞI tð Þ − ε + dð ÞE tð Þ,
dI tð Þ
dt

= εE tð Þ − d + α + γ1ð ÞI tð Þ,
dR tð Þ
dt

= γ1I tð Þ − δ1 + dð ÞR tð Þ:

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð1Þ

The total population NðtÞ is

N tð Þ =V tð Þ + S tð Þ + E tð Þ + I tð Þ + R tð Þ: ð2Þ

The initial condition for model (1) takes the form

V 0ð Þ > 0, S 0ð Þ > 0, E 0ð Þ > 0, I 0ð Þ > 0, R 0ð Þ > 0: ð3Þ

Here, γ represents the maximum vaccination rate of sus-
ceptible people. Parameter θ indicates the effective rate of
vaccine; then, 1 − θ suggests the probability of vaccination
failure. We know that both vaccine-induced immunity and
natural immunity will gradually disappear so that δ and δ1
are vaccine-induced immunity and natural immunity loss
rate, respectively. ε represents the progression rate from
incubation to infection. The model parameter γ1 indicates
the treatment rate of infected individuals. Parameters d
and α are natural mortality and disease-related mortality
rate, respectively. β is the contact rate between susceptible
people and infected people. Λ indicates the recruitment of
susceptible population rate.

3. The Positive and Bounded of the Solution

This section is the fundamental property of model (1). When
t > 0, it is necessary to prove that the solution of model (1)
under the condition that a nonnegative initial value is always

nonnegative. The following theorem shows the positive and
bounded nature of model (1) solution.

Theorem 1 (positive). For all t ≥ 0, the solutions VðtÞ, SðtÞ,
EðtÞ, IðtÞ, and RðtÞ of model (1) with initial condition (3) are
positive.

Proof of Theorem 1. Define

M tð Þ =min V tð Þ, S tð Þ, E tð Þ, I tð Þ, R tð Þf g, ð4Þ

where VðtÞ, SðtÞ, EðtÞ, IðtÞ, and RðtÞ are any positive
solution of model (1) with initial condition (3). It is clear
that Mð0Þ > 0. Assuming that there exists a t1 > 0 such that
Mðt1Þ = 0 and MðtÞ > 0 for all t ∈ ½0, t1Þ. If Mðt1Þ = Sðt1Þ,
then VðtÞ ≥ 0, EðtÞ ≥ 0, IðtÞ ≥ 0, and RðtÞ ≥ 0 for all t ∈ ½0,
t1�.

It follows from the first equation of model (1) that

dS tð Þ
dt

≥Λ − βI tð Þ + γ + d½ �S tð Þ, t ∈ 0, t1½ �: ð5Þ

Both sides of the equation are multiplied by exp ðÐ t0ðβI
ðtÞ + γ + dÞdsÞ at the same time, which can be rewritten as

d
dt

S tð Þ exp
ðt
0
βI tð Þ + γ + dð Þds

� �� �
≥Λ exp

ðt
0
βI tð Þ + γ + dð Þds

� �
:

ð6Þ

Therefore, we get

S t1ð Þ ≥ S 0ð Þ exp −
ðt1
0

βI tð Þ + γ + dð Þds
� �

+ exp −
ðt1
0

βI tð Þ + γ + dð Þds
� �

×Λ
ðt1
0
exp

ðw
0
βI sð Þ + γ + dð Þds

� �
dw > 0,

ð7Þ

which leads to a contradiction. Therefore, we obtain SðtÞ > 0
for all t > 0. Similar can get VðtÞ > 0,EðtÞ ≥ 0,IðtÞ ≥ 0, and
RðtÞ ≥ 0.

V (t)

S (t)

E (t) I (t)

R (t)
𝛾S

𝛿V

(1 – 𝜃)𝛽VIdV

dE dI 𝛼I

dRdS

𝛽SI

Λ

𝛿1R

𝛾1I

𝜀E

Figure 1: Flow diagram of disease transmission routes.
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Theorem 2 (bounded). All solutions of model (1) with initial
condition (3) is positively invariant in the region Ω.

Proof of Theorem 2. Add all equations in model (1) to get

dN tð Þ
dt

≤Λ − dN tð Þ: ð8Þ

We can get

lim sup
t⟶∞

N tð Þ ≤ Λ

d
: ð9Þ

Let

Ω = V 0ð Þ, S 0ð Þ, E 0ð Þ, I 0ð Þ, R 0ð Þð Þ 0 ≤V tð Þ + S tð Þ + E tð Þ + I tð Þ + R tð Þ ≤ Λ

d

����
� �

:

ð10Þ

Proof is completed.

4. The Existence of Equilibrium Points and the
Basic Reproduction Number

4.1. Disease-Free Equilibrium Point and Basic Reproduction
Number. Let the right side of the equation of model (1) be
all zero, and we get the disease-free equilibrium point E0 =
ðV0, S0, 0, 0, 0Þ,

where

V0 =
Λγ

d d + γ + δð Þ , S0 =
Λ δ + dð Þ

d d + γ + δð Þ : ð11Þ

We give the basic reproduction number R0 of model (1)
using themethodof the next-generation regenerationmatrix [36].

Let X = ðE, I, R, V , SÞ; then, model (1) can be rewritten as

dX
dt

= F Xð Þ −V Xð Þ, ð12Þ

where

F Xð Þ =

βSI + 1 − θð ÞβVI
0

0

0

0

0
BBBBBBBBB@

1
CCCCCCCCCA
,

V Xð Þ =

ε + dð ÞE
−εE + d + α + γ1ð ÞI
−γ1I + δ1 + dð ÞR

−γS + 1 − θð ÞβVI + δ + dð ÞV
−Λ − δ1R − δV + βSI + γ + dð ÞS

0
BBBBBBBBBB@

1
CCCCCCCCCCA
:

ð13Þ

The derivatives of FðXÞ and VðXÞ are estimated at the
disease-free equilibrium point E0 as follows:

DF E0ð Þ =
F 0
0 0

 !
, DV Xð Þ =

V 0
J3 J4

 !
: ð14Þ

Here,

F =
0 βS0 + 1 − θð ÞβV0

0 0

 !
, V =

ε + d 0
−ε d + α + γ1

 !
,

ð15Þ

J3 =

0 −γ1

0 1 − θð ÞβV0

0 βS0

0
BBB@

1
CCCA, J4 =

δ1 + d 0 0

0 δ + d −γ

−δ1 −δ γ + d

0
BBB@

1
CCCA:

ð16Þ
Therefore, the basic reproduction number of model (1)

is determined by the spectral radius of FV−1, namely,

R0 = ρ FV−1	 

= βε S0 + 1 − θð ÞV0½ �

ε + dð Þ d + α + γ1ð Þ = Λβε δ + d + γ 1 − θð Þ½ �
d d + γ + δð Þ ε + dð Þ d + α + γ1ð Þ :

ð17Þ

Here, 1/ðd + α + γ1Þ indicates the average duration of ill-
ness for an infected individual; ε/ðε + dÞ is the probability that
an infected individual will survive the incubation period. The
expression ðβε½S0 + ð1 − θÞV0�Þ/ððε + dÞðd + α + γ1ÞÞ actually
represents the number of people an infected individual can
infect a new patient during infection. So, when R0 < 1, the
disease may go extinct, just maybe.

4.2. Uniqueness of the Existence of Endemic Equilibrium
Points. By model (1) can get E∗ = ððd + α + γ1Þ/εÞI∗ and R∗

= ðγ1/ðδ1 + dÞÞI∗. The first and third forms of model (1)
can be combined to obtain

V∗ = γ ε + dð Þ d + α + γ1ð Þ
βε δ + d + γ 1 − θð Þ½ � + β2ε 1 − θð ÞI∗ , ð18Þ

S∗ = ε + dð Þ d + α + γ1ð Þ
βε

−
γ 1 − θð Þ ε + dð Þ d + α + γ1ð Þ

βε δ + d + γ 1 − θð Þ½ � + β2ε 1 − θð ÞI∗
,

ð19Þ
where I∗ is the positive root of the following equation:

AI∗2 + BI∗ + C = 0, ð20Þ

where

A = δ1γ1β
2ε 1 − θð Þ − δ1 + dð Þ ε + dð Þ d + α + γ1ð Þβ2 1 − θð Þ < 0,

ð21Þ

B =DR0 R0 −Mð Þ, ð22Þ
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C = d δ1 + dð Þ ε + dð Þ d + α + γ1ð Þ γ + d + δð Þ R0 − 1ð Þ, ð23Þ
in which

Theorem 3. For R0 > 1, model (1) has a unique endemic equi-
librium point E1 = ðV∗, S∗, E∗, I∗, R∗Þ.

Proof of Theorem 3. Obviously, A < 0 always holds, when
R0 > 1 has C > 0. From the relationship between the roots
of the unary quadratic equations and the coefficients, we
can know I∗1 I

∗
2 = ðC/AÞ < 0; therefore, when R0 > 1, equation

(20) has a unique positive root E1 = ðV∗, S∗, E∗, I∗, R∗Þ.
Proof is completed.

Remark 4. When R0 > 1, the endemic equilibrium point
position of different situations is different, but there is always
only one endemic equilibrium point.

Equation (20) is a quadratic equation, in which the signs
of the coefficients B and C can change the case of the root of
the equation. The sign of the coefficient B is mainly deter-
mined by the relationship between R0 and M; obviously, M
> 0; we divide M into M > 1, M = 1, and M < 1 three cases.
We summarize the case of the positive root of equation
(20) in Table 1, and the corresponding schematic diagram
is shown in Figure 2 and M changes. Figure 2(a) is the case
when M > 1, Figure 2(b) is the case when M = 1, and
Figure 2(c) is the case when M < 1.

5. Local Stability of the Equilibrium Point

In this section, we give the stability proof of model (1) about
the disease-free equilibrium point E0 and the endemic equi-
librium point E1.

Theorem 5. If R0 < 1, the disease-free equilibrium point E0 of
model (1) is locally asymptotically stable, and when R0 > 1, it
is unstable.

Proof of Theorem 5. The Jacobian matrix at E0 is given as

J E0ð Þ =

− δ + dð Þ γ 0 − 1 − θð ÞβV0 0
δ − γ + dð Þ 0 −βS0 δ1

0 0 − ε + dð Þ βS0 + 1 − θð ÞβV0 0
0 0 ε − d + α + γ1ð Þ 0
0 0 0 γ1 − δ1 + dð Þ

2
666666664

3
777777775
:

ð26Þ

The characteristic equation is

λ + δ1 + dð Þ½ � λ + d + δ + γð Þ½ � λ + dð Þ λ2 + l1λ + l2
	 


= 0,
ð27Þ

and the eigenvalue is λ1 = −ðδ1 + dÞ, λ2 = −ðd + δ + γÞ, λ3
= −d, and λ4,5 = 1/2ð−l1 ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l1
2 − 4l2

p
Þ, where l1 = ε + α + γ1

+ 2d and l2 = ð1 − R0Þðε + dÞðd + α + γ1Þ. Therefore, when
R0 < 1, all roots of the characteristic equation are with nega-
tive real part, and the disease-free equilibrium point E0 is
locally asymptotically stable; when R0 > 1, λ5 = 1/2ð−l1 +ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l1
2 − 4l2

p
Þ > 0. At this time, the disease-free equilibrium

point E0 is unstable. Proof is completed.
Next, for R0 > 1, we analyze the local stability of the unique

endemic equilibrium point of model (1), and the Jacobian
matrix corresponding to model (1) at E1 = ðV∗, S∗, E∗, I∗, R∗Þ
is

D = d2 d + γ + δð Þ2 ε + dð Þ2 d + α + γ1ð Þ2 1 − θð Þ δ1 + dð Þ
Λε δ + d + γ 1 − θð Þ½ �2

, ð24Þ

M = δ + d + γ 1 − θð Þ½ �
d + γ + δð Þ + δ + d + γ 1 − θð Þ½ �2 ε + dð Þ d + α + γ1ð Þ δ1 + dð Þ − εγ1δ1½ �

d d + γ + δð Þ ε + dð Þ d + α + γ1ð Þ 1 − θð Þ δ1 + dð Þ > 0: ð25Þ

J E1ð Þ =

− 1 − θð ÞβI∗ − δ + dð Þ γ 0 − 1 − θð ÞβV∗ 0
δ −βI∗ − γ + dð Þ 0 −βS∗ δ1

1 − θð ÞβI∗ βI∗ − ε + dð Þ βS∗ + 1 − θð ÞβV∗ 0
0 0 ε − d + α + γ1ð Þ 0
0 0 0 γ1 − δ1 + dð Þ

2
666666664

3
777777775
: ð28Þ
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The characteristic equation is

λ5 + h1λ
4 + h2λ

3 + h3λ
2 + h4λ

1 + h5 = 0: ð29Þ

Here,

h1 = ε + α + γ + δ + γ + δ + 5d + 2 − θð ÞβI∗, ð30Þ

h2 = 2d + α + γ1 + εð Þ δ1 + dð Þ
+ γ + δ + 2d + 2 − θð ÞβI∗½ � ε + α + γ1 + δ1 + 3dð Þ
+ 1 − θð ÞβI∗ + δ + dð Þ½ � βI∗ + γ + dð Þ½ � − δγ,

ð31Þ

h3 = γ + δ + 2d + 2 − θð ÞβI∗½ � 2d + α + γ1 + εð Þ δ1 + dð Þ
+ 1 − θð ÞβI∗ + δ + dð Þ½ � βI∗ + γ + dð Þ½ � − δγf g ε + α + γ1 + δ1 + 3dð Þ
+ βI∗βε S∗ + 1 − θð Þ2V∗� 


,

ð32Þ

h4 = 1 − θð ÞβI∗ + δ + dð Þ½ � βI∗ + γ + dð Þ½ � − δγf g 2d + α + γ1 + εð Þ δ1 + dð Þ
+ β2εS∗I∗ 1 − θð ÞβI∗ + δ + dð Þ + γ 1 − θð Þ½ �
+ β2ε 1 − θð Þ2V∗I∗ δ1 + γ + 2d + βI∗ð Þ
+ β2εδ 1 − θð ÞV∗I∗ + βεI∗ βS∗ δ1 + dð Þ − δ1γ1½ �,

ð33Þ

Table 1: Equation (4). The sign change of factors B and C and the number of possible equilibrium points of endemic diseases.

Cases Compare M and R0
Coefficients

No. of possible positive roots
B C

M > 1
R0 >M + + 1

1 < R0 <M − + 1

R0 < 1 − − 0

M = 1
R0 > 1 + + 1

R0 < 1 − − 0

M < 1
R0 > 1 + + 1

M < R0 < 1 + − 2

R0 <M − − 0

B

R0 = 1
MO

R0 

(a)

B

R0 = M =1
R0

O

(b)

B

R0 =1
R0 

MO

(c)

Figure 2: Schematic diagram of the symbolic change of B when the relationship between R0 and M changes. (a) is the case when M > 1, (b)
is the case when M = 1, and (c) is the case when M < 1.
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h5 = βεI∗ βS∗ δ1 + dð Þ − δ1γ1½ � 1 − θð ÞβI∗ + δ + dð Þ + γ 1 − θð Þ½ �
+ β2ε δ1 + dð Þ 1 − θð ÞV∗I∗ δ + 1 − θð Þ γ + dð Þ½ �:

ð34Þ
It is easy to know that h1, h2, and h3 are all positive, and

if S∗ ≥ ðδ1γ1/ðβðδ1 + dÞÞÞ, then h4, h5 > 0.
If there is Δ2 > 0 and Δ3 > 0, then the Routh–Hurwitz

criterion shows that all roots of equation (29) have negative
real part. That is, the unique endemic equilibrium point E1 is
locally asymptotically stable, where

Δ2 =
h1 1
h3 h2

�����
�����,

Δ3 =
h1 1 0
h3 h2 h1

h5 h4 h3

��������

��������
:

ð35Þ

The mathematical expression of Δ3 here is very complex
and is not easy to derive directly. Nevertheless, we give a
numerical example that shows that Δ3 > 0 does hold. Further
discussion is summarized in the following theorem.

Theorem 6. If Δ3 > 0 and S∗ ≥ ðδ1γ1/ðβðδ1 + dÞÞÞ, then the
unique endemic equilibrium point E1 of model (1) is locally
asymptotically stable.

Proof of Theorem 6. Assuming Δ3 > 0, now let us prove Δ2
> 0, and before that, for the convenience of proof, the
following two conditions are already valid.

(1) From equations (18) and (19), we can obtain βε½S∗
+ ð1 − θÞV∗� = ðε + dÞðd + α + γ1Þ

(2) By 0 < θ < 1 gets βS∗ + ð1 − θÞβV∗ > βS∗ + ð1 − θÞ2β
V∗
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Figure 3: (a) Forward (transcritical) bifurcation and (b) backward bifurcation.

Δ2 = h1h2 − h3 = ε + α + γ1 + δ1 + 3dð Þ 2d + α + γ1 + εð Þ δ1 + dð Þ + ε + α + γ1 + δ1 + 3dð Þ2 γ + δ + 2d + 2 − θð ÞβI∗½ �
+ 1 − θð ÞβI∗ + δ + dð Þ½ � βI∗ + γ + dð Þ½ � ε + α + γ1 + δ1 + 3dð Þ − δγ ε + α + γ1 + δ1 + 3dð Þ
+ γ + δ + 2d + 2 − θð ÞβI∗½ � 2d + α + γ1 + εð Þ δ1 + dð Þ + γ + δ + 2d + 2 − θð ÞβI∗½ �2 ε + α + γ1 + δ1 + 3dð Þ
+ 1 − θð ÞβI∗ + δ + dð Þ½ � βI∗ + γ + dð Þ½ � γ + δ + 2d + 2 − θð ÞβI∗½ � − δγ γ + δ + 2d + 2 − θð ÞβI∗½ �
− γ + δ + 2d + 2 − θð ÞβI∗½ � 2d + α + γ1 + εð Þ δ1 + dð Þ − 1 − θð ÞβI∗ + δ + dð Þ½ � βI∗ + γ + dð Þ½ � − δγf g ε + α + γ1 + δ1 + 3dð Þ
− βI∗βε S∗ + 1 − θð Þ2V∗� 


> ε + α + γ1 + δ1 + 3dð Þ 2d + α + γ1 + εð Þ δ1 + dð Þ + ε + α + γ1 + δ1 + 3dð Þ γ + δ + 2d + 2 − θð ÞβI∗½ �h1
+ 1 − θð ÞβI∗ + δ + dð Þ½ � βI∗ + γ + dð Þ½ � − δγf g γ + δ + 2d + 2 − θð ÞβI∗½ � − βI∗βε S∗ + 1 − θð ÞV∗½ �

= ε + α + γ1 + δ1 + 3dð Þ 2d + α + γ1 + εð Þ δ1 + dð Þ + ε + α + γ1 + δ1 + 3dð Þ γ + δ + 2d + 2 − θð ÞβI∗½ �h1
+ 1 − θð ÞβI∗ + δ + dð Þ½ � βI∗ + γ + dð Þ½ � − δγf g γ + δ + 2d + 2 − θð ÞβI∗½ � − βI∗ ε + dð Þ d + α + γ1ð Þ > 0

ð36Þ
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Thus, all roots of the eigen equation (29) have negative real
part, and the unique endemic equilibrium point E1 of model
(1) is locally asymptotically stable. Proof is completed.

6. Bifurcation Analysis at R0 = 1
Now, we focus on the dynamic behaviour of model (1) at
R0 = 1. To do this, we choose β as the bifurcation parameter,
and R0 = 1 gets the corresponding threshold of

β∗ =
d d + γ + δð Þ ε + dð Þ d + α + γ1ð Þ

Λε δ + d + γ 1 − θð Þ½ � : ð37Þ

We use the central manifold theorem [36, 37] to explore
the behaviour of model (1) in the vicinity. Firstly, let V = x1,
S = x2, E = x3, I = x4, R = x5, dVðtÞ/dt = f1,dSðtÞ/dt = f2
,dEðtÞ/dt = f3, dIðtÞ/dt = f4, and dRðtÞ/dt = f5, so X =
ðx1, x2, x3, x4, x5ÞT . Then, model (1) can be rewritten as

dX
dt = f1, f2, f3, f4, f5ð ÞT : ð38Þ

Obviously, when R0 = 1, the Jacobian matrix JðE0Þ corre-
sponding to the disease-free equilibrium point E0 has a zero
eigenvalue at ðE0, β∗Þ and the remaining eigenvalues have
negative real parts. The right eigenvector and left eigenvec-
tors of model (1) at ðE0, β∗Þ are W = ðw1,w2,w3,w4,w5ÞT
and V = ðv1, v2, v3, v4, v5Þ, respectively. Over here,

w1 =
γ2

d + δ + γð Þ δ + dð Þ −
d + δ + γ 1 − θð Þ½ �γ
d d + δ + γð Þ 1 − θð Þ −

γ

δ + d

+ εδ1γ1γ d + δ + γ 1 − θð Þ½ �
d d + δ + γð Þ δ1 + dð Þ 1 − θð Þ ε + dð Þ d + α + γ1ð Þ ,

ð39Þ

w2 =
γd 1 − θð Þ − δ + dð Þ d + δ + γ 1 − θð Þ½ �

d d + δ + γð Þ 1 − θð Þ
+ εδ1γ1 δ + dð Þ d + δ + γ 1 − θð Þ½ �
d d + δ + γð Þ δ1 + dð Þ 1 − θð Þ ε + dð Þ d + α + γ1ð Þ ,

ð40Þ

w3 =
d + δ + γ 1 − θð Þ
1 − θð Þ ε + dð Þ , ð41Þ

w4 =
ε d + δ + γ 1 − θð Þ½ �

1 − θð Þ ε + dð Þ d + α + γ1ð Þ , ð42Þ

w5 =
εγ1 d + δ + γ 1 − θð Þ½ �

1 − θð Þ ε + dð Þ d + α + γ1ð Þ δ1 + dð Þ , ð43Þ

v1 = v2 = v5 = 0,
v4 = 1,

v3 =
ε

ε + d
:

ð44Þ

Now, we calculate the second-order partial derivatives of
f kðk = 1, 2,⋯,5Þ with respect to variables V , S, E, I, R and β
at ðE0, β∗Þ. We have
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Figure 5: Stable disease-free equilibrium point E1.
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∂2 f1
∂V∂I

= − 1 − θð Þβ∗,
∂2 f1
∂I∂β

= − 1 − θð ÞV0,
∂2 f2
∂S∂I

= −β∗,
∂2 f2
∂I∂β

= −S0,

∂2 f3
∂V∂I

= 1 − θð Þβ∗,
∂2 f3
∂S∂I

= β∗,
∂2 f3
∂I∂β

= S0 + 1 − θð ÞV0,

ð45Þ

and others are zero.
Apply the central manifold theorem to determine the

dynamic behaviour of the system. According to the literature
[36–38], there are the following two formulas:

a = 〠
5

k,i,j=1
vkwiwj

∂2 f k
∂xi∂xj

0, β∗ð Þ,

b = 〠
5

k,i=1
vkwi

∂2 f k
∂xi∂β∗

0, 0ð Þ:
ð46Þ

In this case, we have

a = v3w2w4
∂2 f3
∂S∂I

+ v3w1w4
∂2 f3
∂V∂I

= v3w4β∗ w2 + 1 − θð Þw1½ �
= v3w4β∗ 1 −Mð Þ,

ð47Þ

b = v3w4
∂2 f3
∂I∂β∗

= v3w4 S0 + 1 − θð ÞV0½ � > 0: ð48Þ

According to Equation (23), Equation (24), and Lemma
3 in reference [30], it can be known that the local dynamics
of model (1) around E0 are determined by a and b. So, for
b > 0, if there is M > 1, then a < 0; if there is M < 1, then a
> 0. The above discussion is summarized as follows.
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Figure 10: Effects of vaccination rates and exposure rates when vaccines are less effective.
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Theorem 7.When M > 1 (define M as Equation (25)), model
(1) goes through forward (transcritical) bifurcation, and
when M < 1, it produces backward bifurcation.

We choose α = 0:04, γ = 0:08, γ1 = 0:094, δ = 0:0001, δ1
= 0:7, ε = 0:00015, θ = 0:95, d = 0:0071, Λ = 10, and β ∈ ð
0:0255, 0:06Þ. The intuitive results of the bifurcation situa-
tion are programmed by the MATLAB 2019b software. In
Figure 3(a), when R0 exceeds unity, the stable disease-free
equilibrium point becomes unstable and a stable endemic
equilibrium point appears; that is, a forward (transcritical)
bifurcation appears. We choose α = 0:0001, γ = 0:08, γ1 =
0:094, δ = 0:005, δ1 = 0:7, ε = 0:9, θ = 0:95, d = 0:00071, Λ

= 2, and β ∈ ð0:00025499, 0:00035Þ. In Figure 3(b), as R0
changes, when R0 < 1, a stable disease-free equilibrium
point, an unstable endemic equilibrium point, and a stable
endemic equilibrium point appear. When R0 > 1, there is
an unstable disease-free equilibrium point and a stable
endemic equilibrium point; that is, the backward bifurcation
appears, at which R0 < 1 cannot be used as a threshold for
judging the disappearance of the disease.

7. Numerical Simulation

In this section, we mainly use the MATLAB 2019b to draw
numerical results. We present some different parameter
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Figure 11: Effects of vaccination rates and exposure rates when vaccines are more effective.
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combinations to give detailed numerical simulations of the
various situations in Table 1 and the stability of the disease-
free equilibrium point.

Case 1. R0 < 1. We choose α = 0:0001, β = 0:004, γ = 0:1, γ1
= 0:094, δ = 0:005, δ1 = 0:07, ε = 0:000055, θ = 0:8, d =
0:0071, and Λ = 5. A stable disease-free equilibrium point

E0 is obtained as shown in Figure 4, at which point the dis-
ease will eventually perish over time, regardless of the initial
size of the disease.

Case 2. R0 > 1 and M > 1. We choose α = 0:0001, β =
0:00125, γ = 0:2, γ1 = 0:094, δ = 0:002, δ1 = 0:08, ε = 0:0055,
θ = 0:9, d = 0:0071, and Λ = 20. At this time, M = 3:7189,
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Figure 12: 6 days of data fit and prediction for the model.
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Figure 13: 8 days of data fit and prediction for the model.
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R0 = 2:1136, Δ2 = 0:0402 > 0, and Δ3 = 1:692e − 04 > 0. We
have stable endemic equilibrium point E1 = ð0:9258, 0:0929
, 1:6145, 0:0877, 0:0947Þ × 1000 when 1 < R0 <M, as shown
in Figure 5.

We choose α = 0:0001, β = 0:00525, γ = 0:2, γ1 = 0:094,
δ = 0:002, δ1 = 0:08, ε = 0:0055, θ = 0:9, d = 0:0071, and Λ
= 20. At this time, M = 3:7189, R0 = 8:8773, Δ2 = 0:2992 >
0, and Δ3 = 0:0063 > 0. We have stable endemic equilibrium
points E1 ′ = ð0:0901, 0:0352, 2:4167, 0:1313, 0:1417Þ × 1000
when R0 >M; it is shown in Figure 6.

Case 3. R0 > 1 and M = 1. We choose α = 0:00011, β =
0:00004, γ = 0:008, γ1 = 0:0094, δ = 0:0001, δ1 = 0:007364, ε
= 0:025, θ = 0:95, d = 0:00071, and Λ = 2:5. At this time,
R0 = 1:8405, Δ2 = 2:1585e − 4 > 0, and Δ3 = 5:9043e − 9 > 0.
We have stable endemic equilibrium points E1 ′′ = ð0:6713,
0:2292, 0:3927, 0:9607, 1:1184Þ × 1000 when R0 >M, as
shown in Figure 7.

Case 4. R0 > 1 and M < 1. We choose α = 0:0001, β =
0:00088, γ = 0:08, γ1 = 0:094, δ = 0:005, δ1 = 0:7, ε = 0:3, θ
= 0:95, d = 0:00071, and Λ = 1:5. At this time, M = 0:4816,
R0 = 2:2163, Δ2 = 3:2675 > 0, and Δ3 = 1:2991 > 0. We have
stable endemic equilibrium points E1 ′ ′′ = ð0:1406, 0:1010,
0:3717, 1:1761, 0:1578Þ × 1000 when R0 >M; it is shown in
Figure 8.

Case 5. R0 < 1 and M < 1. We choose α = 0:0001, β =
0:00028, γ = 0:08, γ1 = 0:094, δ = 0:005, δ1 = 0:7, ε = 0:9, θ
= 0:95, d = 0:00071, and Λ = 2. At this time, M = 0:4333,
R0 = 0:9417, Δ2 = 1:5240 > 0, Δ2 ′ = 2:5229 > 0, Δ3 = 0:1227
> 0, and Δ3 ′ = 0:7508 > 0. We have a stable endemic equi-

librium points E1 ′′′′ = ð1:1331, 0:2822, 0:1070, 1:0154,
0:1362Þ × 1000 and a unstable endemic equilibrium points
E1 ′′′′′ = ð2:4831, 0:2147, 1:1331, 0:0863, 0:0116Þ × 1000,
when M < R0 < 1, as shown in Figure 9. At this time, R0 < 1
alone does not allow the disease to eventually die.

If R0 > 1, that is, a patient is infected with an average of
more than one new disease during the period of infection,
regardless of the initial size of the disease, the disease will
eventually form endemic over time. We choose α = 0:0001,
β = f0:005, 0:0025, 0:001g, γ = f0, 0:2, 0:5, 0:95g, γ1 = 0:094
, δ = 0:002, δ1 = 0:08, ε = 0:0055, θ = f0:7, 0:9g, d = 0:0071,
and Λ = 20, to discuss the impact of exposure, vaccination
rates, and vaccine efficacy on disease transmission when
the disease progresses to endemic.

When there is a low vaccine efficacy θ = 0:7, as shown in
Figure 10(a), if the protective measures (social distancing,
wearing masks, etc.) are not strictly implemented, vaccination
alone will not keep the number of patients low. As the protec-
tive measures become more stringent, the proportion of vacci-
nations will gradually increase, as shown in Figures 10(b) and
10(c). Then, there will be a significant decline in the number
of people who will eventually be sick. When there is a high vac-
cine efficacy θ = 0:9, as shown in Figure 11(a), if the protective
measures (social distancing, wearingmasks, etc.) are not strictly
implemented, the rate of infection will still remain consider-
able. Only vaccinations are given at this time; although the
number of patients will decline, it will remain high; as the pro-
tective measures becomemore stringent, the proportion of vac-
cinations will gradually increase, as shown in Figures 11(b) and
11(c). Then, there will be a significant decrease in the number
of people who will eventually become sick, especially when
the number of people affected decreases significantly. In the
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Figure 14: 10 days of data fit and prediction for the model.
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case of vaccination, it is also necessary to enact strict protective
measures to drive the disease to extinction.

To verify the plausibility of the model, we utilize the adap-
tive combination of Delayed Rejection and the Adaptive
Metropolis (DRAM) algorithm to perform the Markov Chain
Monte Carlo (MCMC) process, which is superior to the orig-
inal MCMC method without good prior distribution [39, 40].
Reference [41] provides the MCMC toolbox. We ran the algo-
rithm 10,000 times using MATLAB 2019b to fit the entire
parametric simulation process based on case data reported in
Xiamen, Fujian Province, from September 10, 2021, to Sep-
tember 29, 2021, which are derived from daily government
reports. Before fitting, we first used the statistics of the Seventh
National Census Bulletin of Xiamen Municipal Bureau of Sta-
tistics [42] to obtain the recruitment rate of susceptible popu-
lations Λ = 31:7808/day, natural mortality d = 0:0146 [43],
vaccine-induced immune decline δ = 0:0012396 [25], and nat-
ural immune decline δ1 = 0:00273973 [25]. Since data related
to vaccination are difficult to assess, we assume that the vacci-
nation rate γ = 0:5 and the vaccine effective rate θ = 0:5. Now,
fit the model with the reporting data.

First of all, six days of data were used to predict the devel-
opment trend of the disease. As shown in Figure 12, the devel-
opment trend of the disease is roughly the same as the actual
situation, but the time of no new cases lags behind the data
reported by at least five days. If the fitted data is increased by
two days and four days, as shown in Figures 13 and 14, the
disease development trend can be better matched with the
reported data, and the time of no new cases is advanced or
lagged by two days. The prediction of the epidemic is accept-
able. In addition, the fitting curve did not show a significant
decline on days 5 and 6 because the model did not consider
how changes in human behaviour would affect the spread of
the disease; i.e., people would consciously and autonomously
take precautions to avoid infection after the epidemic.

8. Discussion

We here present a mathematical model of VSEIR showing
declines in vaccine efficacy and immunity. The model con-
siders differences in vaccination rates due to people’s willing-
ness to vaccinate and the constraints of national economic
strength and scientific research conditions.

When measuring the impact of vaccines on disease trans-
mission, vaccination rates must not be ignored. No vaccine’s
effectiveness can reach 100%. Viral mutations can also affect
the protective effect of vaccines. Therefore, the rate of effec-
tiveness of vaccines must not be disregarded in the study of
the spread of infectious diseases.

The antibodies produced after vaccination gradually
decrease in concentration with the person’s metabolic activity,
and when the antibody level reaches the resistance threshold
against the virus, immunity has been lost. That is, the individ-
ual may be reinfected.

Based on this, considering vaccination and immunity
decline, we analyzed the VSEIR model. Usually, in infectious
disease models, the disease goes extinct when R0 < 1. But our
result is that when R0 < 1, the disease may not become extinct.
In dynamic systems, this result manifests itself as a backward

bifurcation when R0 passes through 1 under certain conditions.
The main reason for this result is that people who are vacci-
nated have less awareness of protection, which increases the
risk of infection. In the actual epidemic prevention process,
even if individuals are vaccinated, active protective measures
should be taken to reduce the risk of infection. Furthermore,
when R0 > 1, no matter how large the initial size of the disease
is, it eventually becomes endemic. Under the same parameters,
through the comparison of different exposure rates, vaccina-
tion rates, and vaccine efficiency, results have shown that vac-
cination alone cannot control the spread of the disease, and
strict protective measures are needed to keep the number of
patients low and then eliminate the disease.

We also fitted the model with the MCMC method based
on the reported data and obtained 8 or 10 days of data to
predict the disease, which can have a prediction result simi-
lar to the reported data.

Our study also has limitations. Firstly, if more complete
vaccination data are available, the effect of multiple doses of
vaccinations or boosted vaccination on disease transmission
can be considered. Secondly, when studying the impact of vac-
cination on disease transmission, it is also crucial to assess the
effects of human behavioural changes and migration on dis-
ease. Moreover, as the complexity of the model increases,
more complex dynamic behaviour may result.
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