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Abstract: Operating mode identification is an important prerequisite for precise deceptive jamming
technology against synthetic aperture radar (SAR). In order to solve the problems of traditional
spaceborne SAR operating mode identification, such as low identification accuracy, poor timeliness,
and limitation to main lobe reconnaissance, an efficient identification method based on sidelobe
reconnaissance and machine learning is proposed in this paper. It can identify four classical SAR
operating modes, including stripmap, scan, spotlight and ground moving target indication (GMTI).
Firstly, the signal models of different operating modes are presented from the perspective of sidelobe
reconnaissance. By setting the parameters differently, such as the SAR trajectory height, antenna
length, transmit/receive gain and loss, signal–noise ratio, and so on, the feature samples based
on multiple parameters can be obtained, respectively. Then, based on the generated database of
feature samples, the initialized neural network can be pre-trained. As a result, in practice, with the
intercepted sidelobe signal and the pre-trained network, we can precisely infer the SAR operating
mode before the arrival of the main lobe beam footprint. Finally, the effect of SNR and the jammer’s
position on the identification accuracy is experimentally detailed in the simulation. The simulation
results show that the identification accuracy can reach above 91%.

Keywords: synthetic aperture radar (SAR); operating mode identification; sidelobe reconnaissance;
machine learning

1. Introduction

Synthetic aperture radar (SAR), providing high-resolution two-dimensional images
independent from daylight, cloud coverage, and weather conditions, has become an important
means of intelligence acquisition [1–5]. Therefore, active jamming and anti-jamming
technologies for SAR have become a hot topic in the field of radar electronic warfare [6–10].
Deception jamming is a common and efficient kind of active jamming [11,12]. However,
in order to generate false targets with high fidelity in SAR images, some key parameters
must be obtained first, and then the jamming signal which is coherent with the SAR signal
in both range and azimuth direction can be generated [13–16]. At present, most of the
parameter reconnaissance technologies use the intercepted SAR signals to acquire intra-pulse
parameters such as bandwidth, frequency-modulated rate, and carrier frequency. The radar
parameters and the range of illumination are set differently in different SAR operating
modes, which means the risk level and adopted jamming methods for different operating
modes are not the same. Therefore, the research of the spaceborne SAR operating mode
identification is of great value.

Generally, classic and common SAR operating modes include stripmap, scan, and
spotlight [17]. Spotlight SAR plays an important role in the military with its high resolution,
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which is also the mode with the highest threat level. The method proposed in this paper has
good extensibility and this paper will take the above modes (stripmap, scan, and spotlight)
examples to carry out experiments without loss of generality. For stripmap SAR, with
the movement of the SAR platform, the antenna remains in a consistent direction and
illuminates the target area with a constant speed to obtain a continuous image [18–20].
The swath length of stripmap SAR only depends on the distance the satellite moves. The
azimuth resolution is limited by the size of the antenna, and it cannot be better than half of
the antenna length. Spotlight SAR adjusts the line of sight by controlling the azimuth beam
direction of the antenna to make it always point to the target area. Therefore, it can improve
the coherent accumulation time in azimuth, and thereby increase the synthetic aperture
length, and finally obtain a much higher azimuth resolution [21–24]. However, spotlight
SAR can only image a small area at a time and the beam coverage area is discontinuous.
Scan SAR controls the antenna beam to successively point to several sub-swaths along the
ground range direction [25–28]. Scan SAR obtains a much wider swath while degrading
the azimuth resolution. The pattern of the beam illumination of the three SAR operating
modes is shown in the figure below (Figure 1).
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Doppler history and the received power pattern of SAR signal were used to comprehen-
sively identify the operating mode of the spaceborne SAR. Besides, the characteristics of 
the received azimuth power pattern in stripmap, spotlight, and sliding spotlight SAR were 
also summarized. Moreover, a spaceborne SAR operating mode recognition method 
based on deep learning was proposed in [32], which largely improved the identification 
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Figure 1. Illustration of different SAR operating modes, where ‘SSW’ is the abbreviation for sub-swath.
(a) Stripmap SAR; (b) scan SAR; (c) spotlight SAR.

Aiming at solving the problem of SAR operating mode identification, researchers have
made some important achievements in the last decade. The spaceborne SAR reconnaissance
equation was established and the power curves of the received signal for stripmap and
spotlight SAR were analyzed in [29], but the identification of the SAR operating mode was
not further studied. The problem of the SAR operating mode identification was transformed
into the extremum search of the sum of the power deviation squares between theoretical
data and actual data in [30]. The genetic algorithm was used to obtain higher computing
efficiency than conventional global search algorithms. However, local convergence may
occur, so multi-station measurement could be employed to improve its stability, which
means the cost of measurement will be increased. Furthermore, in [31], the Doppler history
and the received power pattern of SAR signal were used to comprehensively identify the
operating mode of the spaceborne SAR. Besides, the characteristics of the received azimuth
power pattern in stripmap, spotlight, and sliding spotlight SAR were also summarized.
Moreover, a spaceborne SAR operating mode recognition method based on deep learning
was proposed in [32], which largely improved the identification speed and reduced the
complexity of the process, but did not consider the noise and the acquirement of the
a priori information. Currently, most of the relevant research studies are based on the
main lobe signals. However, in practice, the jammer based on main lobe reconnaissance
cannot provide overhead warning before the main lobe beam illuminates the target area.
Besides, the traditional SAR operating mode identification method is to extract the signal
features, and then identify the mode manually, which is inefficient and has poor anti-noise
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performance. To this end, the proposed method solves the above problems by modeling the
sidelobe reconnaissance signals and employing the neural network algorithm to perform
fast and accurate identification [33,34].

Compared with the existing literature, the main advantages and contributions of this
study can be summarized as follows:

1. The current spaceborne SAR operating mode identification methods are mainly
based on main lobe reconnaissance, which has the disadvantages of poor real-time
performance and low efficiency. To this end, the proposed sidelobe reconnaissance
signal model in this paper is more universal and helps achieve overhead warning
in advance;

2. Furthermore, we have discussed the effect of SNR and the jammer’s position with
detailed simulation experiments, and the results indicate that the performance of the
proposed method is still desirable at low SNR and is hardly affected by the jammer’s
position. It shows that the method has good robustness and practicability;

3. Finally, considering the very low SNR problem resulting from sidelobe attenuation,
the fractional Fourier transform (FrFT) algorithm is employed to estimate the
frequency-modulated rate, and pulse compression is further adopted to enhance
SNR equivalently.

The rest of this paper is organized as follows. Section 2 models the signal with
a three-dimensional antenna pattern from the perspective of sidelobe reconnaissance, and
further gives the complete SAR signal model. Section 3 introduces the fast identification
algorithm for the SAR operating mode based on machine learning and shows the process
of the dataset production. In Section 4, considering the effect of SNR, the position of the
jammer, and the number of the accumulated pulses, detailed simulation experiments are
carried out to verify the robustness of this method to these factors. In the end, a short
conclusion is drawn in Section 5.

2. Signal Model of Sidelobe Reconnaissance

Spaceborne SAR achieves high azimuth resolution by forming a narrow beam in
azimuth. When detecting only main lobe signals, the effective tracking time of the
reconnaissance system will be very short due to the high speed of the SAR platform
and the narrow beam in azimuth. Therefore, it becomes difficult to provide a SAR overhead
warning and then start the jamming system timely. Considering the truth that spaceborne
SAR usually has high emitting power and a low orbit, the receiving power of a sidelobe
signal is high enough, which makes sidelobe reconnaissance possible. Besides, sidelobe
reconnaissance has plenty of advantages, such as improving the discovery probability and
detecting the target even earlier so as to increase the tracking time.

In this section, the three-dimensional antenna pattern is modeled and the complete
radar equation of sidelobe reconnaissance is given. At present, antennas that are successfully
applied to spaceborne SAR mainly include: the planar microstrip array antenna, parabolic
antenna, and waveguide slot array antenna [35]. The antenna composition varies with its
form. For example, a parabolic antenna is comprised of a reflector and a feed system, while
a planar array antenna consists of an antenna array and a feed network. Considering that
spaceborne SAR mostly uses a planar microstrip array antenna, this article will model the
antenna pattern based on the planar array theory.

2.1. Radar Equation of Sidelobe Reconnaissance

The SAR signal intercepted by the ground-based jammer can be simplified as a periodic
pulse string with Gauss white noise. In free space, the power density of the signal at the
position of the jammer can be expressed as

Se =
PtGt(φA, φR)

4πR2Lt
, (1)
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where Pt is the radar transmitting power; Gt(φR, φA) is the transmitting gain of the antenna
in the direction of the jammer; φA is the azimuth angle of the antenna pattern and φR is the
range angle (the mathematical expressions of φA and φR in different operating mode will
be deduced in detail, respectively, in Section 2.2); R is the distance between the spaceborne
SAR and the ground-based jammer; and Lt is the transmitting loss of SAR, mainly including
the feed line loss between the SAR transmitter and its antenna.

The effective area of the jammer antenna is given by

Ar =
Grλ2

4π
, (2)

where Gr is the receiving gain of the jammer antenna in the direction of the spaceborne
SAR (it is assumed that the jammer antenna is isotropic, hence it will be set as a fixed value
in the experiment), and λ is the wavelength of the SAR signal.

In free space, the signal power at the jammer’s location can be expressed as

Pr f = Se Ar. (3)

Furthermore, the signal power at the input-side of the jammer can be expressed as

Pr =
Pr f

Lr
, (4)

where Lr is the receiving loss of the jammer, mainly including: the feed line loss between
the jammer antenna and the input end, and the polarization mismatch loss between the
jammer antenna and SAR signal.

Accordingly, the signal amplitude at the output-side of the jammer can be expressed as

As =

√
PtGt(φA, φR)Grλ2

(4πR)2LtLr
Z, (5)

where Z is the load impedance of the jammer.

2.2. Three-Dimensional Antenna Pattern

The modeling of the three-dimensional antenna pattern can be simplified as the
multiplication of two two-dimensional planar patterns, namely the azimuth plane and the
elevation plane. According to the planar array theory, assuming that the antenna ports
are evenly distributed, when the aperture size of the antenna is much larger than the
signal wavelength (generally more than four times), the antenna pattern of the azimuth
plane and the elevation plane can be approximated as a ‘sinc’ function [36–38], and the
three-dimensional antenna pattern in the form of amplitude can be expressed as

F(φA, φR) =

∣∣∣∣sin c
(

DA sin φA
λ

)
sin c

(
DR sin φR

λ

)∣∣∣∣, (6)

where DA is the equivalent azimuth antenna length, and DR is the equivalent range antenna
length; sinc(x) represents the normalized ‘sinc’ function.

As a result, the transmitting gain of the spaceborne SAR antenna in the direction of
the jammer can be expressed as

Gt(φR, φA) = Gt(0, 0)F2(φA, φR), (7)

where Gt(0, 0) is the gain peak of the main lobe beam, namely the transmitting gain when
φA = 0 and φR = 0.

The above is a general model of a three-dimensional antenna pattern applicable to all
operating modes of spaceborne SAR. The azimuth angle and range angle of the antenna
pattern in different operating modes vary in different ways. Based on the two assumptions
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of SAR uniform rectilinear motion and rectilinear geometry, we are going to deduce the
azimuth angle and the range angle of stripmap, scan, and spotlight SAR, respectively.
To start with, the geometric relationship of stripmap SAR is shown in the figure below
(Figure 2).
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As shown in the figure above, the x-axis is defined as the direction of the ground
range, the y-axis is defined as the velocity direction of spaceborne SAR, and the z-axis is
perpendicular to the ground. Setting the coordinates of SAR as R(0, Vrη, H), the coordinates
of the point target on the ground as A(RG, 0, 0), and the coordinates of the jammer as
P(x0, y0, 0), when the SAR operates in stripmap mode, the azimuth angle and range angle
of the antenna pattern can be expressed as

ϕA = arccos

 x2
0 + (y0 − Vrη)(−Vrηcx0/RG) + H2√

x2
0 + (y0 − Vrη)2 + H2 ·

√
x2

0 + (Vrηcx0/RG)
2 + H2

, (8)

ϕR = arccos

 RGx0 + (Vrηc)
2x0/RG + H2√

R2
G + (Vrηc)

2 + H2 ·
√

x2
0 + (Vrηcx0/RG)

2 + H2

, (9)

where Vr denotes the equivalent velocity of the SAR platform; η is the slow time in the
azimuth direction, and ηc is the beam center crossing time of the point target A(RG, 0, 0);
H is the SAR platform height; RG is the ground range from the point target A(RG, 0, 0) to
the SAR trajectory.

As for scan SAR, we set the coordinates of SAR as R(0, Vrη, H), the coordinates of the
point target on the ground as A(RG, 0, 0), and the coordinates of the jammer as P(x0, y0, 0),
just the same as in the case of stripmap SAR. Since the observation swath contains several
sub-swaths, the center of the beam footprint will be scanned along the center line of each
sub-swath in turn. The geometric relationship of scan SAR is shown in the figure below
(Figure 3).
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After the deduction, the azimuth angle and range angle of the antenna pattern can be
expressed as

ϕA = arccos

 x2
0 + (y0 − Vrη)(−Vrηcx0/RG(i)) + H2√

x2
0 + (y0 − Vrη)2 + H2 ·

√
x2

0 + (Vrηcx0/RG(i))
2 + H2

, (10)

ϕR = arccos

 RG(i)x0 + (Vrηc)
2x0/RG(i) + H2√

(RG(i))
2 + (Vrηc)

2 + H2 ·
√

x2
0 + (Vrηcx0/RG(i))

2 + H2

, (11)

where RG(i), i = 1, 2, 3, . . . , Ns indicates the ground range of the center line of each
sub-swath, and Ns is the number of the sub-swaths.

With regard to spotlight SAR, we set the coordinates of SAR as R(0, Vrη, H), the
coordinates of the point target on the ground as A(RG, 0, 0), and the coordinates of
the jammer as P(x0, y0, 0), just the same as in the case of stripmap SAR. The geometric
relationship of spotlight SAR is shown in the figure below (Figure 4).
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As a result, the azimuth angle and range angle of the antenna pattern of spotlight SAR
are deduced as follows

ϕA = arccos

 x2
0 + (y0 − Vrη)(−Vrηx0/RG) + H2√

x2
0 + (y0 − Vrη)2 + H2 ·

√
x2

0 + (Vrηx0/RG)
2 + H2

, (12)

ϕR = arccos

 RGx0 + (Vrη)2x0/RG + H2√
R2

G + (Vrη)2 + H2 ·
√

x2
0 + (Vrηx0/RG)

2 + H2

 (13)

2.3. Intercepted SAR Signal Model

Considering that spaceborne SAR generally transmits linear frequency-modulated
(LFM) signals and such signals are easily intercepted, this article will conduct modeling
based on LFM signals.

The SAR signal intercepted by the jammer can be expressed as

s(τ, η) = As · rect
(

τ − R(η)/c
Tr

)
exp

{
j2π fc[τ − R(η)/c] + jπKr[τ − R(η)/c]2

}
, (14)

where τ denotes the fast time; c is the speed of light; Tr is the pulse duration; fc is the
carrier frequency; Kr is the linear frequency-modulated rate of LFM signal; and R(η) is
the distance between the spaceborne SAR and the jammer, according to the rectilinear
geometry hypothesis, which can be expressed as

R(η) =
√

x2
0 + (Vrη − y0)

2 + H2. (15)

The spaceborne SAR signal demodulated by the jammer can be expressed as

s(τ, η) = As · rect
(

τ − R(η)/c
Tr

)
exp

{
−j2π fcR(η)/c + jπKr[τ − R(η)/c]2

}
. (16)

3. Fast Recognition Algorithm for SAR Mode
3.1. Method of Database Production

When conducting sidelobe reconnaissance, it is feasible to judge the SAR operating
mode by observing the maximum value of SAR antenna gain and its variation trend,
which can be represented by the variation trend of the amplitude peak value of received
pulses [31,32]. Based on this viewpoint, this paper will mainly take the amplitude peak
values of SAR pulses as the characteristic variable to identify the operating mode. Due
to the uncertainty of both the start-up time of spaceborne SAR and the position of the
point target, it will be difficult to intercept a bunch of SAR pulses that are long enough. In
order to simulate a fairly real scene, when generating intercepted signals, the jammer is
arranged at a position far away from the point target (about a few kilometers away), and
the spaceborne SAR is set to start up before its beam footprint gets close to the target area.
In addition, the number of pulses in a complete pulse bunch transmitted by the spaceborne
SAR is set as no more than 1000, which helps the reconnaissance system to identify the SAR
operating mode much faster and earlier. The two-dimensional signal data of each mode
intercepted by the jammer are shown in the figure below (Figure 5).
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The sample generation method is as follows (the number of the accumulated pulses is
set to 500 as an example): the amplitude peak values of 500 intercepted pulses are extracted
to obtain a matrix whose size is 500 × 1. Both the matrix and its corresponding label (in the
experiment, the labels for stripmap, scan, and spotlight are set as 0, 1, and 2, respectively)
constitute a database sample. By changing system parameters, like the signal-to-noise ratio
(SNR), the SAR operating mode, and other parameters, enough samples are generated in
batches as the train set and the test set, respectively. According to the above method, the
echo data in the above figure are respectively made into database samples, and the results
are shown in the figure below (Figure 6).
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As shown in the above figure, for a given jammer position, it can be clearly seen
that the variation of the signal amplitude in different modes has its own characteristics.
In this case, clearly, spotlight SAR goes through only a small portion of a sidelobe,
while stripmap SAR and scan SAR go through about an entire sidelobe. This is because
spotlight SAR usually has a longer synthetic aperture time. It is based on this feature
that we can make good use of the characteristics of the antenna pattern to identify the
SAR operating mode.

It should be noted that the samples in the above figure are generated under the same
set of parameters. In fact, sometimes the signals intercepted from stripmap, scan, and
spotlight SAR may be hard to identify. The following figure (Figure 7) shows two samples
generated under two sets of parameters, which have similar characteristics that are difficult
to identify for traditional methods.
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Figure 7. A sample example in difficult cases. (a) A sample of stripmap SAR; (b) a sample of
spotlight SAR.

3.2. Method of SAR Mode Identification

This subsection discusses the overall scheme for SAR operating mode identification.
The scheme of the SAR operating mode identification based on deep learning mainly
includes two parts: multi-mode SAR sample generation and operating mode identification
based on a neural network. Firstly, the samples are extracted in batches from the SAR
signal database generated by simulation, and then the samples are input into the neural
network for training. Finally, the pre-trained network is used to precisely predict the SAR
operating mode.

The key parameters (usually including pulse duration, the linear FM rate, and so
on) of the SAR signal are first estimated by the fractional Fourier transform (FrFT)
algorithm. FrFT is a linear transformation on the time-frequency plane by rotating the
time axis and the frequency axis counterclockwise at a certain angle [39–42]. Chirp signals
with a fixed frequency-modulated rate will have an energy peak in a certain fractional
domain. Therefore, FrFT can be used to detect chirp signals from white noise and estimate
intra-pulse parameters.

If the estimated signal bandwidth is less than the preset threshold for GMTI, then
the signal can be judged to be GMTI mode. Otherwise, we extracted the matrix of the
amplitude peak of the signal and then input the matrix into the pre-trained neural network
to identify the operating mode. The overall framework of the spaceborne SAR operating
mode identification system is shown in the figure below (Figure 8).
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4. Simulation and Analysis

In this section, the robustness of the proposed method to SNR, the jammer’s position,
and the number of the accumulated pulses is discussed in detail. In the experiment, a large
number of training samples are generated based on the parameters of several typical
spaceborne SAR. These parameters mainly include satellite orbital altitude, transmitting
carrier frequency, antenna size, and received signal-to-noise ratio. As a result, 3600 train
set samples were generated for each of the three operating modes of stripmap, scan, and
spotlight. The specific parameter-setting ranges for the train set are shown in the following
table (Table 1).

Table 1. Range of train set parameters.

Parameter Value Step−Size

Range antenna length 0.75 m, 1.5 m, 2.5 m
Azimuth antenna length 9 m~15 m 1.5 m

Carrier frequency 1.25 GHz, 5.4 GHz, 9.6 GHz
Bandwidth 10 MHz~30 MHz 10 MHz

Platform height 736 km~770 km 37.75 m
Elevation angle 10◦~20◦ 5◦

Squint angle 0◦~4◦ 1◦

Number of sub-swaths for scan SAR 4~6 1
Azimuth coordinates of jammer 1 1 km~2 km 1 km

Ground range coordinates of jammer 40 km~80 km 40 km
SNR 6 dB~15 dB 3 dB

1 The azimuth coordinates and ground range coordinates of the jammer are shown in Figure 2.
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The other parameters used to generate echoes are set to fixed values, as shown in the
following table (Table 2).

Table 2. The fixed parameters.

Parameter Value

Pulse duration 40 µs
SAR transmitting power 1.5 kW
SAR antenna gain peak 40 dB

Jammer antenna gain peak 20 dB
SAR transmitting loss 2 dB
Jammer receiving loss 2 dB

Jammer load impedance 50 Ω
Jammer sampling frequency 120 MHz

The simulation uses the back propagation (BP) neural network, which is set as
a four-layer network model. The feature numbers of each layer are, respectively, 1000, 100,
25, and 3. The network structure is shown in the following figure (Figure 9).
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Figure 9. The structure of the BP neural network, where ‘Ns’ denotes the number of the samples and
‘Np’ denotes the number of the accumulated pulses per sample.

The learning rate is set to 0.00001; the Adam optimizer and early-stopping is adopted;
and the batch size is set to 32. With the increase in epoch number, the prediction accuracy
of the train set and the test set is gradually improved, and the experimental results show
that the accuracy tends to be stable when the number of iterations reaches 2000.

In the experiment, accuracy and cost are used to describe the training process of the
neural network model. The accuracy denotes the prediction accuracy of the pre-trained
model for the test set. The accuracy can be expressed as

Accuracy =
TPA + TPB + TPC

Ntest
, (17)

where TPA, TPB, and TPC denote the number of times that both the predicted result and
the actual sample type are stripmap, scan, and spotlight, respectively; Ntest denotes the
number of samples in the test set.
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The cost is an important parameter that determines how well a machine learning
model performs for a given train set. Generally, the smaller the function value, the better
the model fits. The cost can be expressed as

Cost = − 1
Ntrain

Ntrain

∑
i=1

[
y(i) log ŷ(i) +

(
1 − y(i)

)
log

(
1 − ŷ(i)

)]
, (18)

where Ntest denotes the number of samples in the train set; y(i), i = 1, 2, . . . , Ntrain denotes
the label value of the i-th sample; and ŷ(i), i = 1, 2, . . . , Ntrain denotes the value that the
model classifier predicts for the i-th sample.

4.1. Effect of SNR on Identification Accuracy

SNR is the primary factor that affects the identification accuracy. The signal will be
submerged in the noise when the noise power is too high compared with the SAR signal
power. In this subsection, simulation experiments are conducted on the identification
accuracy for different receiving SNRs. In the following experiments, SNR is defined as
the ratio of the average SAR signal power to the average noise power during jammer
sampling. The specific parameter-setting ranges for the test set are shown in the following
table (Table 3). Besides, the other parameters are kept the same as in the process of the train
set production, and 108 samples are generated for each operating mode, respectively.

Table 3. Range of test set parameters.

Parameter Value Step−Size

Range antenna length 1 m~2 m 0.5 m
Azimuth antenna length 10 m~15 m 2.5 m

Carrier frequency 1.25 GHz~9.6 GHz 4.2 GHz
Bandwidth 10 MHz~30 MHz 10 MHz

Platform height 736 km~770 km 37.75 m
Elevation angle 12.5◦~20◦ 7.5◦

Squint angle 1◦~3◦ 1◦

Number of sub-swaths for scan SAR 4~6 2
Azimuth coordinates of jammer 2 km

Ground range coordinates of jammer 80 km
SNR −8 dB~12 dB 4 dB

In the experiment, the train set containing 10,800 samples and the test set containing
324 samples were input into the network, where the train set and the test set have the same
number of samples for stripmap, scan, and spotlight. When the number of the training
epochs is set to 2000, the accuracy for the train set and the loss curve are shown in the
figure below (Figure 10).
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In the process of producing the test set, the SNR is set from −8 dB to 12 dB and the
step-size is set to 4 dB. The prediction accuracy of the pre-trained network for each test set
is shown in the table below (Table 4).

Table 4. The prediction accuracy for different SNRs.

SNR −8 dB −4 dB 0 dB 4 dB 8 dB 12 dB

Accuracy (this method) 75.62% 80.86% 85.49% 87.04% 88.58% 88.89%

As shown in the table above, the average prediction accuracy rate can reach 85% when
the SNR is set above 0 dB. However, the identification accuracy apparently decreases with
the reduction of SNR, especially when the SNR is less than 0 dB.

When the SNR is set to 12 dB, the classification confusion matrix of the method
proposed in this paper is shown in the figure below (Figure 11).
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As shown in the above figure, stripmap samples are easier to identify than scan or
spotlight samples. At the same time, scan and spotlight samples are more likely to be
misidentified as stripmap samples. Two sample cases of misidentification are shown in
the figure below (Figure 12). We found that when the signal power is too low, which is
usually due to the intercepted signal being in the low-gain area of the antenna pattern, the
difficulty of identification will be increased. In this regard, we can deploy several jammers
at different locations (generally along the azimuth) to ensure that the intercepted signal
power is high enough.
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Since the proposed method is based on sidelobe reconnaissance, the signal experiences
sidelobe decay. In order to compensate for the case of low SNR, we further consider using
a matching filter to enhance the peak signal-to-noise ratio (PSNR), and the compressed
signals are used to make a mode identification. To this end, the fractional Fourier transform
(FrFT) algorithm is employed to obtain the required parameters. The detailed process to
obtain the filter is as follows.

First, pulse detection is performed and then some intra-pulse parameters such as pulse
duration and pulse repetition interval (PRI) can be estimated [43]. Then, we extract the
first several pulses intercepted and estimate the frequency-modulated rate by the FrFT
algorithm so that pulse compression can be performed.

The amplitude of a section of intercepted signal before and after pulse compression is
shown in the figure below (Figure 13).
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Figure 13. The amplitude of the signal before and after pulse compression. (a) Before pulse
compression; (b) after pulse compression.

The data set with pulse compression is trained and predicted with other settings being
unchanged. When the number of epochs is set to 2000, the accuracy for the train set and
the loss curve are shown in the figure below (Figure 14).
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loss curve.

Clearly, the network with pulse compression obtains an improved convergence rate
which results from a higher SNR. In the process of producing the test set, the SNR is set from
−8 dB to 12 dB and the step-size is set to 4 dB. The prediction accuracy of the pre-trained
network with pulse compression as well as the method proposed in [32] for each test set is
shown in the table below (Table 5).
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Table 5. The prediction accuracy with pulse compression for different SNRs.

SNR −8 dB −4 dB 0 dB 4 dB 8 dB 12 dB

Accuracy 89.81% 91.67% 91.67% 90.74% 90.43% 91.36%

Accuracy [32] 77.16% 82.10% 84.57% 86.73% 87.35% 88.58%

As shown in the table above, when the SNR is lower than 12 dB and higher than −8 dB,
the identification accuracy rate remains at about 90% and will not deteriorate rapidly with
the decrease in SNR. Therefore, the method based on the FrFT estimation algorithm can
cope with the situation of poor SNR.

A Gated Recurrent Unit (GRU) neural network, an improved recurrent neural network,
is employed in [32]. The experimental results show that the accuracy of the proposed
method is slightly higher than the method employed in [32] when the SNR is higher than
0 dB; but, the accuracy of the method with pulse compression is much higher than the
method employed in [32].

When the SNR is set to 12 dB, the classification confusion matrix of the method with
pulse compression is shown in the figure below (Figure 15).
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Figure 15. Classification confusion matrix of the method with pulse compression.

As shown in the above figure, compared with Figure 11, the identification accuracy has
been improved. Similarly, scan and spotlight samples are more likely to be misidentified as
stripmap samples.

4.2. Effect of the Jammer Position

Considering that the relative position of the jammer is unpredictable and uncontrollable
when intercepting SAR signals, this subsection will verify the robustness of this method to
the uncertainty of the relative position of the jammer.

A part of the antenna pattern in azimuth for the point target is shown in the figure
below (Figure 16). In the experiment, three typical jammer positions are selected along
the azimuth as marked in the figure below (Figure 16). Specifically, among them, one is
placed at the peak of the first sidelobe, one at the trough between the main lobe and the
first sidelobe, and one at the midpoint between the former two.



Remote Sens. 2024, 16, 1234 16 of 19

Remote Sens. 2024, 16, x FOR PEER REVIEW 18 of 21 
 

 

 
Figure 16. The antenna pattern in the azimuth plane for the point target. 

Three jammers are placed at A, B, and C, respectively, as shown in the figure above, 
the SNR is set to 12 dB, and other settings are consistent with the experiment in Section 
4.1. The training results are shown in the following table (Table 6). 

Table 6. The prediction accuracy when the jammer is set at points A, B, and C, respectively. 

Without Pulse Compression With Pulse Compression 
Position Accuracy Position Accuracy 

A 91.05% A 95.06% 
B 89.51% B 93.83% 
C 86.73% C 92.28% 

Apparently, when the jammer is deployed at the above three typical positions, the 
identification accuracy rate can maintain itself above 86% and the rate can reach above 
90% when pulse compression is employed. Hence, the robustness of this method to the 
jammer position is verified experimentally. 

4.3. Effect of the Number of the Accumulated Pulses 
The number of accumulated pulses required is closely related to the identification 

speed. As the number of accumulated pulses increases, the identification accuracy will 
increase, while the time required for identification will also increase. If an acceptable iden-
tification accuracy can be obtained with fewer pulses, the reconnaissance system for the 
SAR operating mode will be much more efficient. Therefore, this subsection discusses the 
relationship between the number of accumulated pulses and identification accuracy, so as 
to obtain an empirical optimal accumulated pulse number, which can provide a reference 
for future engineering application. 

The following experiments set the number of the intercepted pulses from 100 to 1000, 
respectively, and the SNR is set to 12 dB while other experimental settings are consistent 
with Section 4.1. The experimental results are shown in the table below (Table 7). 

  

Figure 16. The antenna pattern in the azimuth plane for the point target.

Three jammers are placed at A, B, and C, respectively, as shown in the figure above,
the SNR is set to 12 dB, and other settings are consistent with the experiment in Section 4.1.
The training results are shown in the following table (Table 6).

Table 6. The prediction accuracy when the jammer is set at points A, B, and C, respectively.

Without Pulse Compression With Pulse Compression

Position Accuracy Position Accuracy

A 91.05% A 95.06%
B 89.51% B 93.83%
C 86.73% C 92.28%

Apparently, when the jammer is deployed at the above three typical positions, the
identification accuracy rate can maintain itself above 86% and the rate can reach above 90%
when pulse compression is employed. Hence, the robustness of this method to the jammer
position is verified experimentally.

4.3. Effect of the Number of the Accumulated Pulses

The number of accumulated pulses required is closely related to the identification
speed. As the number of accumulated pulses increases, the identification accuracy will
increase, while the time required for identification will also increase. If an acceptable
identification accuracy can be obtained with fewer pulses, the reconnaissance system for
the SAR operating mode will be much more efficient. Therefore, this subsection discusses
the relationship between the number of accumulated pulses and identification accuracy, so
as to obtain an empirical optimal accumulated pulse number, which can provide a reference
for future engineering application.

The following experiments set the number of the intercepted pulses from 100 to 1000,
respectively, and the SNR is set to 12 dB while other experimental settings are consistent
with Section 4.1. The experimental results are shown in the table below (Table 7).
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Table 7. Accuracy results for the different numbers of accumulated pulses.

Without Pulse Compression With Pulse Compression

Np Accuracy Np 1 Accuracy

1000 88.89% 1000 91.36%
900 89.81% 900 87.35%
800 87.96% 800 88.89%
700 87.35% 700 88.27%
600 87.04% 600 90.12%
500 82.10% 500 87.96%
400 81.48% 400 87.65%
300 79.32% 300 81.79%
200 71.91% 200 78.09%
100 57.41% 100 63.58%

1 ‘Np’ denotes the number of the accumulated pulses.

The experimental results show that without pulse compression, the identification
accuracy will become less than 85% when the accumulated pulse number is reduced to
500. Furthermore, with the reduction of the accumulated pulse number, the accuracy will
decrease sharply. With pulse compression employed, the accuracy can still remain above
85% when the pulse number is reduced to 400.

In order to balance the identification accuracy and the speed, it is appropriate to set
the accumulated pulse number to 600 without pulse compression. Besides, the number can
be set to 400 with pulse compression employed.

5. Conclusions

To solve the problem of SAR operating mode identification, an intelligent model based
on sidelobe reconnaissance and machine learning is proposed in this paper. This method
uses the SAR signal intercepted by the ground-based jammer as the input and can identify
four operating modes (stripmap, scan, spotlight, and GMTI). The method takes account
of both identification accuracy and speed, and it has good robustness to low SNR and
uncertainty of the jammer’s position. Furthermore, pulse compression can be employed
to improve the robustness to low SNR. Finally, the experimental results show that the
method can maintain satisfactory performance even if the accumulated pulse number is
reduced to 400 when pulse compression is employed. In the future, in order to cope with
complex electromagnetic environments and the development of radar technologies, we
will further discuss some better machine learning algorithms to improve the employed
model in this paper.
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