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Abstract

It is widely believed that memory storage depends on activity-dependent synaptic modifica-

tions. Classical studies of learning and memory in neural networks describe synaptic effi-

cacy either as continuous or discrete. However, recent results suggest an intermediate

scenario in which synaptic efficacy can be described by a continuous variable, but whose

distribution is peaked around a small set of discrete values. Motivated by these results, we

explored a model in which each synapse is described by a continuous variable that evolves

in a potential with multiple minima. External inputs to the network can switch synapses from

one potential well to another. Our analytical and numerical results show that this model can

interpolate between models with discrete synapses which correspond to the deep potential

limit, and models in which synapses evolve in a single quadratic potential. We find that the

storage capacity of the network with double well synapses exhibits a power law dependence

on the network size, rather than the logarithmic dependence observed in models with single

well synapses. In addition, synapses with deeper potential wells lead to more robust infor-

mation storage in the presence of noise. When memories are sparsely encoded, the scaling

of the capacity with network size is similar to previously studied network models in the

sparse coding limit.

Author summary

A long-lasting question in neuroscience is whether synaptic efficacies should be described

as continuous variable or discrete variables. Recent experiments indicate that it is a combi-

nation of both: synaptic efficacy changes continuously, but its distribution peaks at several

discrete values. In this study, we introduce a synapse model described by a double well

potential, and investigate the memory properties of networks of neurons connected with

such synapses. Our results show in networks with a bimodal weight distribution, the stor-

age capacity depends on network size as a power law. In addition, we demonstrate that

networks with such synapses store information more robustly in the presence of noise,

compared to networks with synapses with a single well potential.
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1 Introduction

Synapses can change their strength in response to neuronal activity [1–5], and synaptic

changes are thought to be critical for the brain to build memories [6]. A popular theoretical

framework for studying learning and memory is the attractor neural network scenario [7–

9]. In this class of models, memories correspond to the stable fixed points of the neuronal

activity dynamics. External stimuli can modify the synaptic connectivity of the network

following certain plasticity rules, and these synaptic modifications can create new stable

fixed points of neuronal dynamics. An external input is said to be stored in the network if

there exists a stable fixed point that is highly correlated with it. An extensively studied

question is the storage capacity of such networks [10–12], i.e. the number of stored memo-

ries, or the amount of information that can be stored. One key question in theoretical neu-

roscience is to find biologically plausible learning rules that lead to reasonably large

storage capacities.

Multiple synaptic plasticity experiments have suggested that the strengths of individual syn-

apses are modified in a discrete manner. A few experiments have shown that synaptic plasticity

is well described by switches between two discrete states (all-or-none), rather than by arbitrary

continuous changes in efficacy [13, 14]. In addition, super-resolution imaging experiments

have shown that dendritic spines contain a small discrete (1-4) number of nanomodules (i.e.,

clusters of receptors) [15], consistent with plasticity experiments and indicating that synapses

are quantized. This picture of discrete synapses is in contrast with most studies of learning and

memory in neuronal network models, in which synapses are taken to be real continuous

variables.

Multiple efforts have been made to compute the storage capacity of networks with discrete

synapses. Sompolinsky studied a network with a specific binarized Hebbian rule [16], and

showed its capacity is close to the capacity of the Hopfield network [17]. Sompolinsky’s model

assumes synapses can still store all continuous changes in synaptic efficacy during the learning

phase, and synapses get clipped after they have learned all patterns. In contrast, Tsodyks [18],

and Amit and Fusi [19, 20] introduced online learning rules in which synapses are always dis-

crete. These studies found that discreteness of synapses can cause a large drop in storage capac-

ity [18, 19], unless stored patterns become extremely sparse [20, 21]. Later studies introduced

models with hidden states [22–25], but it remains unknown how these synaptic plasticity mod-

els perform in attractor neural networks.

While theoretical work has focused on either fully analog or fully discrete synapses, recent

experimental results suggest an intermediate scenario in which the synaptic efficacy can be

described by a continuous variable, but whose distribution is peaked around a small set of

discrete values [26]. Motivated by this data, we introduce and explore a model in which syn-

apses are described by a continuous variable that evolves in a potential with multiple minima

(‘potential wells’, see Fig 1A for an example with two wells). Synapses remain in the same

potential well when receiving weak or short-lasting stimuli, but can switch to a new state

when receiving strong or long-lasting stimuli. Our analytical and numerical results show this

model can connect models with discrete synapses which correspond to the deep potential

limit [20], and models in which synapses evolve in a single quadratic potential [27]. We show

that the storage capacity of the network with double well synapses (and thus a bimodal

weight distribution) has a power law dependence on network size. In contrast, models with a

single-well potential show a logarithmic dependence when the parameters of the potential

are not allowed to vary with network size N, as shown by previous studies [28]. We also show

that the networks with double well synapses store information more robustly in the presence

of noise.
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2 Model

We study a sparsely connected network of N binary neurons whose states Vi = 0, 1 (i = 1, . . .,

N) are given by a parallel update rule:

Viðt þ dtÞ ¼ Y½hiðtÞ � y� ð1Þ

where dt� 1 is the timescale of neuronal dynamics relative to synaptic dynamics, θ is a thresh-

old, Θ is the Heaviside step function, and hi(t) is the local field of neuron i:

hiðtÞ ¼
1

N

XN

j¼1

cijJijVjðtÞ; ð2Þ

where Jij is the strength of the synapse from neuron j to neuron i, and cijs are i.i.d Bernoulli

random variables, with cij = 1 with probability c� 1, and 0 otherwise for all i 6¼ j, while cii = 0

for all i.
Synapses are assumed to be evolving on a much slower time scale than neuronal dynamics,

and synaptic dynamics are supposed to be driven by external inputs that drive the network to

specific states. Each synapse evolves according to

dJijðtÞ
dt
¼ � r1

dUðJijÞ
dJij

þ
X

v�t

r2IðZ
v
i ; Z

v
j Þ þ r3�

v
ij

h i
dðt � vÞ; ð3Þ

where U is a potential function with multiple minima, δ is the Dirac delta function, fZvi g are i.i.

d random binary variables that represent the state of the neuron imposed by external inputs at

time v 2 Z, with PðZvi ¼ 1Þ ¼ f , PðZvi ¼ 0Þ ¼ 1 � f , and �vij are i.i.d random Gaussian variables

describing the noise at synapse j! i at time v. Note that the chosen time unit is the interval

Fig 1. (A) Sketch of the synaptic model. In the presence of external input, a synapse can stay in the same well (I), or

jump into another well (II), depending on its current state and the amplitude of the input. C describes the distance

between the two wells, while r1 characterizes its depth. The larger r1, the faster synapses decay towards the minima of

the potential. (B) Overlap between the input presented at time v and its corresponding attractor state, mv, as a function

of time elapsed since the presentation of this input u − v, for different values of r1. The solid lines represent the

theoretical prediction and squares represent the simulation results with a network of size N = 30, 000 (mean and

standard deviation computed over ten independent realizations). Dashed lines mark the storage capacity where mv
vanishes. For all lines, the value of C is chosen to optimize storage capacity. Other parameters are: r2 = 1, r3 = 0, θ = 0,

f = 0.5, c = 0.05.

https://doi.org/10.1371/journal.pcbi.1011354.g001
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between presentations of two successive external inputs. The dynamics of Jij is determined by

three terms, the potential U, external inputs I and noise �, of respective strengths r1, r2 and r3.

The first term in the r.h.s. of Eq (3) determines the dynamics of the synapse in the absence

of inputs. For simplicity, we use a double well potential U in which each well is given by a qua-

dratic function,

UðJÞ ¼
ðJ � CÞ2; J > 0;

ðJ þ CÞ2; J < 0:

(

ð4Þ

Thus, in the absence of inputs, each synapse decays to one of the two potential wells—a low

efficacy state Jij = −C, or a high efficacy state Jij = C—exponentially, with a time constant 1/

(2r1). Small values of r1 describe shallow potentials (and hence long decay times towards the

minima) while large values of r1 describe deep potentials (and hence fast decay times towards

the minima).

The second term IðZvi ; Z
v
j Þ in the r.h.s. of Eq (3) is activity-dependent. For binary neurons,

the function I can take at most four values, one for each combination of pre and post-synaptic

activity. We study two scenarios: In the balanced input case, the coding level is f = 0.5, and we

use

IðZvi ; Z
v
j Þ ¼

1; Zvi ¼ Z
v
j ;

� 1; Zvi 6¼ Z
v
j :

(

ð5Þ

Note that for U = 0 (i.e. the flat potential case), and in the absence of noise, the model leads to

a connectivity matrix J that is identical to the Hopfield model [17]. This model however suffers

from a ‘blackout’ catastrophe after a critical number of inputs, all memories suddenly become

irretrievable. In the case of a potential with a single well (C = 0) the model leads to a connectiv-

ity matrix that is identical to a ‘palimpsest’ model introduced by Mézard et al [27]. This model

instead can retrieve the most recently presented memories, but forgets memories some time

after they have been presented.

In the sparse input case, the coding level is f� 1. In this case it is no longer a good idea to

use a balanced function I, since this choice would lead to the vast majority of synapses being in

the high efficacy potential well. In this scenario, we use two different I functions. The first one

is inspired by the Tsodyks-Feigelman model [29, 30]

IðZvi ; Z
v
j Þ ¼

ð1 � f Þð1 � f Þ; Zvi ¼ Z
v
j ¼ 1;

� f ð1 � f Þ; Zvi 6¼ Z
v
j ;

f 2; Zvi ¼ Z
v
j ¼ 0:

8
>><

>>:

ð6Þ

In the sparse input case, we also use another I function, motivated by the plasticity rule in [20]:

IðZvi ; Z
v
j Þ ¼

I1; Zvi ¼ Z
v
j ¼ 1;

I2; Zvi 6¼ Z
v
j ;

0; Zvi ¼ Z
v
j ¼ 0:

8
>><

>>:

ð7Þ

where I1 > 0 sets the strength of potentiation when both pre and post-synaptic neurons are

active, I2 < 0 sets the strength of depression when one neuron is active while the other is inac-

tive, and no changes occur when both neurons are inactive. Here, we focus on I1 = 2C, I2 = −f
(1 − f). The rationale is that when the distribution of synaptic strengths peaks around ±C, a

potentiation strength of 2C leads to a transition from a lower to a higher state with high
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probability. When the connection is depressed, I2 takes the same value as in Eq (6), leading to

a small transition probability from a higher to a lower state. This scheme mirrors the learning

rule described in [20] for binary synapses.

The third term in the r.h.s. of Eq (3) is the noise term caused by fluctuations. These fluctua-

tions could be of multiple origins: Fluctuations of neural activity; or fluctuations in the state of

the synapse, due to fluctuations in vesicle release, numbers of activated receptors at the post-

synaptic side, and fluctuations in biochemical reactions involved in synaptic efficacy changes.

Once the input patterns fZvi g are given, the learning dynamics (3) are determined by four

non-negative parameters: C determines the distance between two minima of U; r1 how

strongly the potential U affects the dynamics (i.e. how fast synapses decay to the minima of the

potential); r2 is the input signal strength and r3 is the noise strength. In the presence of inputs,

a synapse can stay in its current state, or jump into another state depending on its position in

the potential well. This dynamics is illustrated in Fig 1A.

With such synaptic plasticity dynamics and appropriate parameters, the network described

by Eq (1) has multiple fixed points, that are close to the patterns imposed by the external inputs

that were presented most recently. A pattern is said to be stored in memory if a network con-

figuration close to the pattern is a stable fixed point of the dynamics. For this online synaptic

plasticity rule Eq (3), we found that the most recently shown patterns ηu, ηu−1, . . ., ηu−p can be

retrieved as stable fixed-point attractors at a given time u 2 Z, while older patterns cannot be

retrieved. p is defined as the maximal number of patterns that are still retrievable or, equiva-

lently, the maximal age at which patterns can still be retrieved. This scenario is similar to previ-

ously studied attractor neural network models with online learning and decay term in the

synaptic updates [27, 31], or networks with binary synapses [18, 32, 33] in which memories are

forgotten exponentially.

In order to calculate the storage capacity for the network defined by Eqs (1) and (3), we

consider a network at a particular time u when pattern u has just been presented, and investi-

gate whether a pattern shown in the past v< u is still stored in the connectivity matrix. To

determine whether there still exists an attractor state close to pattern v, we introduce the over-

lap between the pattern shown at time v and the network state at time u:

mv ¼
1

Nf ð1 � f Þ

XN

i¼1

ðZvi � f ÞVu
i ; ð8Þ

where Vu
j represent the network state at time u. The overlap mv measures the retrieval quality

of the pattern ηv stored in memory (see e.g. [30, 34]). States with mv* 1 mean that the net-

work can correctly retrieve the stored memory. In practice, in numerical simulations, the net-

work is initialized at Vi ¼ Z
v
i , and the dynamics is run until convergence to a fixed point.

Simulations reveal that sometimes, the network converges to the most recently shown pattern

instead of the pattern v. Thus, we need to consider also the overlap with the most recently

shown pattern, mu. In the balanced input case, we use analytical calculations to compute the

mean-field equations for the overlap mv, and whether solutions to these equations with mv> 0

are stable with respect to perturbations in the direction of the most recently shown pattern

[31]. Details of analytical calculations are described in Methods I and II. These calculations

rely on approximating distributions of synaptic inputs, conditioned on Zvi , Z
u
i , by Gaussian dis-

tributions. In the sparse input case, we used numerical simulations only, since this approxima-

tion is not accurate in this case for the values of f and N used in this paper.

The two overlaps mu and mv can be obtained by calculating the distribution of the local

field hi at the time t = u. In the large N limit (i.e., cN� 1), the local field defined in Eq (2) fol-

lows a Gaussian distribution and its mean and variance are determined by the distribution of
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Jij. The time-dependent distribution of synaptic weights whose dynamics obey Eq (3) can be

found numerically (see Methods I for details). Eventually, we obtain two self-consistency equa-

tions for mv and mu:

mv ¼ F
m10

ffiffiffi
2
p

d

� �

� F
� m11

ffiffiffi
2
p

d

� �

;

mu ¼ F
� m10

ffiffiffi
2
p

d

� �

� F
� m11

ffiffiffi
2
p

d

� �

;

ð9Þ

where FðxÞ ¼ 1ffiffi
p
p

R x
0
e� t2dt, and μ11, μ10, d are functions of mu, mv defined in Eqs (32) and (33)

(see Methods II for details). In practice, one can fix v and gradually increase u until there is no

solution satisfying mv 6¼ 0, or this solution becomes unstable when a small overlap mu is pres-

ent. The storage capacity p is then obtained at the maximum value of u − v where a stable solu-

tion mv 6¼ 0 exists.

3 Results

3.1 Learning and retrieval dynamics for balanced input in the absence of

noise

We start by considering the balanced input case ( f = 0.5), and zero noise (r3 = 0). Without loss

of generality, we can fix the value of r2 = 1, since the dynamics are invariant with respect to the

transformation

ðr2;C; Jij; r1; r3; yÞ ! ðxr2; xC; xJij; r1=x; xr3; xyÞ:

We also set θ = 0, since in this case the distribution of synaptic weights is symmetric around

zero. For a given set of parameters, we use both mean field and numerical simulations to com-

pute the overlap of a retrieved memory as a function of its age, and the storage capacity,

defined as the maximum age at which memory can be retrieved. Fig 1B shows the overlap of a

memory learned at time v, mv as a function of age (time u−v elapsed since the pattern was

learned), for different potential depths r1 (other parameter values are indicated in the caption).

We can see that the overlap decreases with age until it drops abruptly. The figure shows that

analytic results are in good agreement with simulations, using a network with 30,000 neurons.

It also shows that increasing r1 (i.e. the depth of the potential wells) decreases storage capacity.

This is consistent with previous observations that clipping synaptic strength reduces capacity

[35], and that online plasticity rules with discrete synapses typically have much lower capacity

than rules with continuous synapses [18–20].

The storage capacity p thus strongly depends on the depth of potential wells as measured by

r1, but it also depends on the width of the potential wells C relative to the jumps caused by

input patterns. To investigate the storage capacity of the network, we begin by examining the

single potential case, where the width of the potential wells C is set to zero.

Single well potential. When C = 0, the potential defined in Eq (4) becomes a single para-

bolic function. In this case, each synapse decays to zero exponentially with a time constant τ =

1/(2r1) in the absence of inputs, according to the dynamics defined in Eq (3). This scenario is

similar to the previously investigated palimpsest model [27, 36] or the pure forgetting model

of ref. [28]. The storage capacity p in this case depends on the time constant τ as [28]:

p ¼
t

2
logð

t0

t
Þ; ð10Þ

where τ0 = 2A(f)N, and where A(f) is a function of the coding level and thus is a constant in the
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balanced input case. When τ> τ0, no patterns are retrievable, similar to the Hopfield model

scenario when the number of patterns exceeds the critical value. When τ< τ0, the model can

always retrieve recent patterns and becomes a palimpsest model. By allowing the time constant

τ in Eq (10) to scale linearly with the network size N, the storage capacity p can have a linear

dependence with N, as investigated in previous studies [27, 36]. However, this scaling assumes

an unrealistically large synaptic decay time for large networks. In this study, we consider the

decay constant τ or potential depth r1 to be a property of individual synapses, rather than

being dependent on network size, and thus r1 * O(1) in the large N limit. In this scenario, the

weight dynamics with a single well potential only leads to a storage capacity that increases loga-

rithmically with N, as shown in Fig 2C.

In the following, we will demonstrate that the storage capacity of the palimpsest model with

fixed τ can be substantially enhanced by introducing the double well potential in the synaptic

dynamics.

Double well potential. The capacity of the model with double well potential is influenced

by the width of the potential wells C, and the model displays distinct behaviors depending on

r1. When r1 is small, the storage capacity p is optimized for C = 0 (single well potential), but

decreases only weakly with C, as shown in Fig 2A. In this case, the model is similar to the previ-

ously studied pure forgetting model [28], and the storage capacity only increases logarithmi-

cally with N, as demonstrated by the solid lines in Fig 2C.

However, when r1 is larger than a critical value r∗
1
, so that the potential significantly influ-

ences the dynamics of the weights in between presentations, the capacity is no longer maxi-

mized at C = 0. Rather, there is an optimal value C* that maximizes capacity, as demonstrated

in Fig 2B. When C = 0, the storage capacity increases logarithmically with the network size.

However, the storage capacity at the optimal value of C increases much faster than the storage

capacity with C = 0, as shown in Fig 2B. When C is increased beyond the optimal value, the

storage capacity drops abruptly since jumps induced by inputs are too small to cross the

boundary between the two wells. The optimal C depends on both r1 and N. We find that the

critical value of r1 at which the optimal C becomes nonzero is r∗
1
� 0:0075 as shown in Fig 3A.

In a broad parameter region, the optimal value C is larger than one, which means that multiple

pattern presentations are required to induce the switch between two stable states of synapses.

Our results also indicate that smaller r1 or larger N lead to a higher value of the optimal C
when r1 > r∗

1
.

For each value of r1 and N, we focused on the value of C that maximizes capacity. For the

region r1 > r∗
1
, we found that the optimal storage capacity p with double well potential can be

well described by a power law of the network size N

p � Na; ð11Þ

as indicated in Fig 2D. We show the dependence of the exponent a on r1 in Fig 3B, together

with representative distributions of weights at a few values of r1. This plot shows three qualita-

tively different regions:

Shallow potential region. In the flat potential limit (i.e., r1 < r∗
1
), p has a logarithmic depen-

dence on N, and thus the exponent a* 0. The distribution of the weights in this region is

unimodal. The model in this limit is equivalent to models with exponentially decaying memo-

ries [27, 36].

Intermediate region. When r1 increases beyond r∗
1
, the storage capacity of the network can

be significantly enhanced by optimizing the potential width C. In this region, the network

exhibits a bimodal weight distribution, and the exponent a is slightly larger than 0.5 (solid line
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in Fig 3B), while the network with unimodal weight distribution (C = 0) still gives a = 0

(dashed line in Fig 3B).

Deep potential region. When r1 further increases, the weights are more and more attracted

to the minima of the potential well in between pattern presentations, and the model becomes

more and more similar to a binary synapse model. In the large r1 limit, the exponent a tends

Fig 2. Dependence of storage capacity p on potential width C and network size N, for representative examples of the decay rate r1. (A) Dependence

of p on C for r1 ¼ 2� 10� 3 < r∗
1
. In the small r1 limit, the optimal potential width C* is zero (i.e., a single well potential), and p decreases weakly with C.

The number of stored patterns increases logarithmically with network size, as demonstrated in (C). (B) Dependence of p on C for r1 ¼ 0:05 > r∗
1
. The

number of stored patterns p reaches its maximum at a nonzero value of C. The optimal storage capacity increases as a power law of N, as demonstrated

in (D). (C) Storage capacity of the single-well potential model (C = 0) as a function of with network size N. The storage capacity decreases when r1

increases as indicated by Eq (10). (D) Storage capacity of the double well potential model (C = C*, full lines) as a function of network size N. When

r1 > r∗
1
, the optimal storage capacity is much larger than the storage capacity of the single well potential model (dashed lines with the same color). The

dashed-dotted black line represents p ¼
ffiffiffiffi
N
p

for reference. Other parameters in this figure are r2 = 1, r3 = 0, θ = 0, f = 0.5, c = 0.05.

https://doi.org/10.1371/journal.pcbi.1011354.g002
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to 0.5, and the distribution of weights becomes close to the sum of two delta functions δ(J +

C) + δ(J − C). This scenario is similar to the model with stochastic binary synapses studied in

[19, 20].

3.2 Comparison between double well synapses and binary Markovian

synapses

We now turn to a comparison between our model and models with binary Markovian synap-

ses. For a fair comparison between these two models, we binarize weights in the double well

model,

wijðtÞ ¼ signðJijðtÞÞ: ð12Þ

wij(t) is thus a binarized connectivity matrix whose entries take + 1 or −1 values, depending on

which well the current value of Jij belongs to. The binary Markov model has two states repre-

sented by + 1 and −1, and each weight has a probability of switching from −1 to + 1 when it is

potentiated (i.e., IðZvi ; Z
v
j Þ ¼ 1), or from + 1 to −1 when it is depressed (i.e., IðZvi ; Z

v
j Þ ¼ � 1).

The transition probability between the two states is set to be the same as the transition proba-

bility between the wells in the double well model. Note that while the dynamics of Jij in the

double well model is Markovian, the dynamics of binarized weights is not, since transitions

between states do not depend only on the current presented pattern and the current value of

wij, but also on the current value of Jij which is influenced by patterns shown in the past.

Fig 3. (A) Dependence of optimal potential width C* on network size N and potential depth r1. There is a critical value r∗
1

that separates two regimes:

When r1 < r∗
1
, capacity is optimized for a single well potential, C* = 0. When r1 > r∗

1
, C* is non-zero, and increases as N increases and r1 decreases,

indicating more pattern presentations are required to induce the switch between two stable states of synapses. Our analytical and numerical

computation suggest that r∗
1
� 0:0075, as indicated by the boundary of the black region. (B) Scaling exponent between p and N as a function of r1, with

r3 = 0. Solid red lines: theoretical prediction for optimal C. Dashed red line: Theoretical prediction for C = 0. Blue circles: Simulation results for optimal

C (mean and standard deviation computed over ten independent realizations). For r1 < r∗
1
, p* log(N) gives a = 0. When r1 > r∗

1
, the model with C =

C* has a power law dependence on N (red solid line), while the model with C = 0 gives a = 0 (dashed red line). The exponent a decreases with r1 and

converges to 0.5 in the large r1 limit. Insets show distributions of synaptic weights for representative examples. The distribution of Jijs goes from

unimodal when C = 0, to bimodal for the optimal C and r1 > r∗
1

to quasi-discrete when r1 becomes large.

https://doi.org/10.1371/journal.pcbi.1011354.g003
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For the comparison between the two models, we use two measures that quantify how much

information is stored in such models. In attractor neural networks, stored information is typi-

cally measured by the number of stored patterns p, as introduced in the previous section.

Another common measure is the signal-to-noise ratio (SNR) [22, 24, 37] defined for a connec-

tivity matrix w at some time t after a particular pattern has been presented as

SNRðtÞ ¼
P

ijcijw
ideal
ij � wijðtÞ �

P
ijcijw

ideal
ij � wijð1Þ

stdð
P

ijcijwideal
ij � wijð1ÞÞ

: ð13Þ

The SNR describes the degree to which the connectivity matrix at time t is correlated with an

ideal connectivity matrix, in which all synaptic weights are entirely determined by a particular

pattern stored at some time in the past. For instance, for binary inputs and binary synapses,

wideal
ij ¼ IðZ0

i ; Z
0
j Þ where IðZ0

i ; Z
0
j Þ is given by Eq (5). In Eq (13) the standard deviation is calcu-

lated over all elements in the matrix while wij(1) is the state of the connectivity matrix at

t!1. wideal
ij is the ideal state of the weight determined by the learning rule Eq (5). At time

t = 0, wideal
ij is 1 if it experiences a potentiation event and is −1 if it experiences a depression

event (i.e., in Eq (5)). Note that SNR ignores the neuronal dynamics and is usually considered

an upper bound on how memories stored in synaptic connectivity can be read out using neural

activity. In the binarized double well model, the SNR can be calculated using methods

described in Methods III. The SNR and the upper bound of SNR for the Markov model are cal-

culated using Eqs (41) and (43) [24].

Fig 4 shows comparisons between the two models. Fig 4A shows that the storage capacity,

defined by the number of patterns that can be retrieved as fixed point attractors, is much larger

in the model with double well synapses than in the model with binary synapses, with transition

probabilities chosen to match the probabilities of switching potential well in the double well

model. Fig 4B shows a comparison of the SNR of the double well model with that of a corre-

sponding Markov model. The Markov model and the double well model have the same initial

SNR when a pattern is first learned, because transition probabilities are identical in both mod-

els. However, the SNR of the Markov model initially decays slowly and then rapidly drops off

after t* 10, while the SNR of the double well model does not decrease monotonically due to

the analog depth provided by the double well synapses, which allows the synaptic state to have

a richer dependence on neuronal activity history. Consequently, the SNR of the double well

model can surpass the upper bound of SNR in the Markov model and decay more slowly than

the SNR of the Markov model, as shown in Fig 4B.

To better understand the history-dependent nature of double well synapses, we show the

changes in the distribution of potentiated connection JtijðZ
t¼0
i ; Zt¼0

j Þ over time in Fig 4C. After a

pattern is learned, the distribution of JtijðZ
t¼0
i ; Zt¼0

j Þ becomes asymmetric, and subsequent

uncorrelated patterns can cause a probability flux towards the positive side, as demonstrated

in Fig 4C. This happens in particular for the parameters of Fig 4 at t = 2, which leads to an

increased SNR from t = 2 to t = 3, as seen in Fig 4B. After a sufficient amount of time, the dis-

tribution eventually returns to a symmetric asymptotic distribution, resulting in a decay of the

SNR towards zero.

3.3 Robustness of stored information to noise

Neural circuits are required to not only learn new information but also to retain old memories.

Recent experiments suggest that a significant fraction of synaptic plasticity is random noise,

independent of learning [38, 39]. How can neural networks maintain long-lasting memories

in the presence of noise? One long-lasting hypothesis is that discrete-like synapses could
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Fig 4. (A) Comparison between the storage capacity of Markovian binary synapses and binarized double well synapses defined in Eq (12). The parameters of the

double well model are r1 = 0.1, r2 = 1, r3 = 0, θ = 0, f = 0.5, cN = 2000. The width of the potential C is chosen to maximize storage capacity. The transition

probabilities of binary Markovian model are chosen to match probabilities of switching wells in the double well model. (B) Comparison between the SNRs of

Markovian synapses and binarized double well synapses, as a function of time elapsed since the presentation of a given pattern. Green curve: SNR of the double

well model with C = C* calculated using Eq (40). Red line: SNR of the Markov model with the same transition probability. Black line: Upper bound of SNR for

two-state Markov models. Dashed line: critical SNR below which the memories are no longer retrievable [28]. The intersection between the SNR curve and this

dashed line determines the storage capacity of the network. (C) Cartoon of the temporal evolution of the distribution of synapses that undergo potentiation at

t = 0, i.e. those for which Zt¼0
i Zt¼0

j ¼ 1 just before potentiation (top) and after (bottom). The highlighted region denotes the region around the maximum of the

potential where synapses that reside in one of the wells can make a transition to the other well (r2 = 1). Just before potentiation (t = 0), the distribution is

symmetric. The distribution is then shifted up by r2, before decaying towards the respective wells. As the distribution becomes asymmetric near 0 (within the

range of 0 ± r2), the next presented uncorrelated patterns will cause more probability mass to shift towards the positive side than towards the negative side, as

demonstrated in the bottom figure. (D) Distribution of connections that have been potentiated at time t = 0, at later times t = 2 and t = 3. Black dots indicate ±r2

= ±1, while red dots indicate the minima of the potential, ±C = ±2.7. As demonstrated in (C), an uncorrelated pattern leads to a larger probability of switching

from the low well to the high well than the opposite transition, resulting in an increase in SNR from t = 2 to t = 3, as seen in (B). At longer times, the distribution

eventually returns to a symmetric distribution, leading to a decrease in SNR.

https://doi.org/10.1371/journal.pcbi.1011354.g004
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benefit neural networks by increasing their robustness with respect to noise (see e.g. [40]).

Here, we can verify this hypothesis in the model with double well synapses by adding noise to

the model. This noise is described by the last term in Eq (3), where r3 quantifies the magnitude

of the noise term.

We first investigated how the potential width affects the network’s storage capacity in the

presence of noise. We set the potential depth to a fixed value of r1 = 0.1 and calculated the stor-

age capacity for every combination of r3 and C. As illustrated in Fig 2B, there is an optimal

value C* that maximizes the storage capacity of the network without noise. If the potential

width increases beyond C*, the Hebbian learning term defined in Eq (5) is insufficient to

induce the transition between different states, resulting in an abrupt decrease in storage capac-

ity. For models with C< C*, the network’s storage capacity decreases monotonically with the

noise strength r3, as shown in Fig 5. However, for models with C> C* (e.g., C = 4, C = 5),

there is a peak in the storage capacity as r3 increases, indicating that noise facilitates the learn-

ing of new memories.

In summary, there are two potential ways in which noise can impact the double-well

model. In instances where the potential width C is small, noise interferes with the information

stored in the synapses, resulting in a reduction of storage capacity. When C is larger, the Heb-

bian learning term is insufficient by itself to induce transitions of sufficient numbers of synap-

ses, leading to an inability of the network to learn new memories. In this scenario, introducing

noise can help synapses make transitions between wells, therefore increasing the storage capac-

ity of the network. This scenario is comparable to the model presented in [19, 20].

We also analyzed the effect of potential depth on the robustness of stored memories. For

each fixed potential depth r1, we can choose the potential width C that optimizes the storage

capacity. With the optimal C, the storage capacity of the network always decreases when the

Fig 5. Dependence of Storage Capacity on Noise Strength r3 for different values of Potential Width C. When C is

small (e.g., C = 0, 1, 2, 3), the storage capacity p monotonically decreases with the noise strength r3. However, for larger

values of C (e.g., C = 4, 5), the storage capacity first increases with noise intensity, reaches a peak and then decreases.

Thus, noise facilitates the learning of new memories in such cases. Other parameters are given as N = 10, 000, r1 = 0.1,

r2 = 1, θ = 0, f = 0.5, c = 0.05.

https://doi.org/10.1371/journal.pcbi.1011354.g005
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noise strength increases, as shown in Fig 6. However, the storage capacity decreases more

slowly if the potential is deeper, which indicates the model is more robust to input noise. To

quantify this effect, we introduced a robustness parameter as

R ¼
�
�
�
dp
d~r3

�
�
�
� 1

ð14Þ

where ~r3 ¼ r3=M and M is the standard deviation of weight strength defined in Eq (22). ~r3

measures the perturbation to the weight caused by the input noise. A larger R means the stor-

age capacity decreases more slowly in the presence of input noise.

We explored how the robustness R depends on the depth of the potential r1. As shown in

Fig 6, when r1 increases, the storage capacity of the network in the absence of noise decreases.

However, the robustness R becomes larger, indicating a trade-off between storage capacity and

robustness as potential wells become deeper. From a biological perspective, each minimum of

the potential can correspond to a cluster of receptors [15]. The parameter r1 may be related to

the rate at which these clusters form. The timescale τ = 1/2r1 provides synapses with the analog

depth to retain the history information of neuronal activity. Our results indicate that the bal-

ance between the memory storage capacity and the robustness of stored information would

lead to an optimal r1.

3.4 Learning dynamics in the sparse coding limit

We next turn to a more biologically realistic scenario in which neurons are described by 0,1

variables, and the probability that a neuron is active in a given pattern, f, is f� 0.5. We study

Fig 6. Trade-off between capacity and robustness when varying potential depth r1. (A) The storage capacity decreases when the noise strength increases strongly

depends on r1. Small values of r1 lead to large storage capacity, but storage is highly sensitive to noise. Large values of r1 lead to small capacity, but storage is highly

robust. (B) The trade-off between p0 and R, where p0 is the storage capacity in the absence of noise (r3 = 0), and R quantifies robustness to noise, Eq (14). With deeper

potentials, the storage capacity is smaller but storage is more robust. Here, C is optimized for each value of r1 and other parameters are given as: N = 10, 000, r2 = 1, θ =

0, f = 0.5, c = 0.05.

https://doi.org/10.1371/journal.pcbi.1011354.g006
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the storage capacity of the network with double well synapses with the learning rules described

in Eqs (6) and (7) in the sparse coding limit f* ln N/N [41]. In this limit, it was shown that

networks with binary synapses and online learning have a storage capacity that is comparable

to the optimal capacity, unlike with other scalings of f with N where the capacity is sub-optimal

[20, 41–43]. We first focus on the noiseless case (r3 = 0). For each value of r1, we optimize the

storage capacity by adjusting the neuronal threshold θ and the potential width C. The relation-

ship between the storage capacity p and the network size N is shown in Fig 7 for different

choices of the learning rule and different potential depths r1.

We start with the learning rule defined in Eq (6), which is similar to the Tsodyks-Feigel’-

man learning rule [29, 30]. For this learning rule, we found that the optimal C is zero for all r1,

and the distribution of synaptic strengths is unimodal. As demonstrated in Fig 7, the storage

capacity of the network increases logarithmically with the network size N, with a prefactor that

is proportional to τ = 1/(2r1) as indicated by Eq (10). This case is similar to the model with

continuous synapses and exponentially decaying memories, as discussed in [27, 28, 31].

In contrast, the learning rule described in Eq (7), which is similar to the rule introduced by

Amit and Fusi [20], exhibits a large storage capacity when the potential is deep, as illustrated in

Fig 7B. In the deep potential regime, the weight distribution becomes strongly bimodal, with

two peaks centered around ±C. When there is a coincidence of pre and post-synaptic activity,

the learning rule in Eq (7) allows the synaptic connection to cross the potential barrier with

probability * 1. When one neuron is active while the other is silent, synapses switch to the

low state only with low probability. This scenario is similar to the model discussed in [20]. As

shown in Fig 7D, the storage capacity of this learning rule leads to p* (N/log(N))2 in the

sparse coding limit.

Our result demonstrates that the double well model can achieve a much larger storage

capacity in the sparse coding scenario than when memories are densely coded, similarly to pre-

viously studied models. In the flat potential case, the storage capacity scales as p* log(N), but

with a prefactor that increases when coding becomes sparse. However, in the deep potential

case, the capacity scales supralinearly with network size, p* (N/log(N))2, in the sparse coding

limit, while it is sublinear when coding is dense.

We also investigated the robustness of the network with learning rules defined in Eqs (6)

and (7) in the sparse coding case. We explored how the storage capacity changes in the pres-

ence of noise, in both shallow and deep potential scenarios. As shown in Fig 8, when the noise

strength r3 increases, the storage capacity of the network with deep potentials decays much

more slowly than the storage capacity of the network in the flat potential case. This result is

consistent with the result for the balanced input case. Notice that for the given network size

N = 1, 500, the storage capacity in the deep potential case is smaller than the storage capacity

in the flat potential case for small r3, despite the fact that it should increase faster with N. This

is because the flat potential case has a much larger decay constant, τ = 1/2r1, leading to a larger

prefactor in the relationship between N and p as indicated in Eq (10).

4 Discussion

A long-standing question in neuroscience is whether individual synaptic plasticity events are

better described as small changes on a continuum of possible values that are then stable over

long time scales, or as large changes among a small discrete set of states [13, 26, 44]. These two

scenarios have been studied essentially independently of one another, in networks with uncon-

strained analog synapses [17, 27, 30], or in networks with binary synapses [18–21].

In this study, we introduced a model that can interpolate between these two scenarios. Syn-

apses in our model evolve in a double well potential, whose shape is described by its depth r1
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and width C. When the depth goes to zero, the model becomes equivalent to classic models

with continuous synapses, while in the opposite limit of a large depth, the model becomes sim-

ilar to models with binary synapses. In the absence of inputs, a synapse decays to one of the

potential minima exponentially, with a time constant τ = 1/2r1. External input can cause syn-

apses to jump from one well to the other, leading to a stable change in the absence of noise or

additional external inputs leading to subsequent jumps. When the size of the jumps is smaller

Fig 7. Storage capacity of the model with double well synapses in the sparse coding limit. (A) Storage capacity of the network as a function of r1 with

the learning rule defined in Eq (6) (B) Storage capacity of the network as a function of r1 with the learning rule defined in Eq (7) (C) p as a function of N
in the flat potential case (r1 = 10−3) for the model with learning rule defined in Eq (6). Optimal p is plotted as a function of N in a semi-log plot. Dashed

red line: p = alog(N/b), a = 396.5, b = 294.5, R2 = 0.9964. (D) p as a function of N in the deep potential case (r1 = 0.5) for the model with the learning

rule defined in Eq (7). Dashed red line: p = a(N/log(N))b, a = 0.212, b = 1.91, R2 = 0.9927. In all panels, data points are averaged over 10 realizations, and

error bars represent the standard deviation. C and θ are chosen to optimize for storage capacity. Other parameter are given as: r2 = 1, r3 = 0, c = 1, f = 4

log(N)/N.

https://doi.org/10.1371/journal.pcbi.1011354.g007
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than the distance between the minimum of a well and the barrier that separates the two wells,

repetitive stimulation is needed for a synapse to jump from one well to the other. The number

of required stimuli is determined by the potential width C. These dynamics are reminiscent of

phenomena such as synaptic consolidation or late long-term potentiation. Experimental stud-

ies on plasticity in the hippocampus have shown that weak stimulation leads to synaptic

changes that decay to their initial value in a relatively short period. However, a strong stimula-

tion results in an enhanced synaptic connection, that persists for the entirety of the recording

[45]. This synaptic consolidation process involves multiple complex biochemical dynamics,

and our double well potential model could be seen as a minimal implementation of this idea in

the framework of attractor neural networks.

There are multiple lines of evidence that suggest that synapses have a small set of stable

states. Synaptic plasticity has been shown to be implemented by the addition of unitary synap-

tic ‘nanomodules’ to dendritic spines, the loci of excitatory synapses onto pyramidal cells, the

main excitatory neuronal type in the cortex and hippocampus [15]. These nanomodules con-

tain spatially localized clusters of pre-and postsynaptic proteins that are aligned with each

other. These clusters form due to a reversible diffusion-trapping process of receptors and scaf-

fold proteins on the membrane [46]. Our model can be seen as a minimal model for this sce-

nario, where the two minima of our potential well could correspond to spine configurations

with one and two clusters of receptors, which represent close to 90% of the observed spines in

[15]. The depth of the potential could be related to the rate at which these clusters form, which

depends on various factors, such as the fluidity of the synaptic membrane and the affinity of

the receptors for scaffold proteins. The potential width C determines the synaptic plasticity

gap, describing the number of stimuli required to induce the formation of new nanomodules.

The idea of discrete stable states is also consistent with electron microscopy data showing

Fig 8. Robustness of the double well model in the sparse coding case. Orange squares represent the storage capacity

for the model with the learning rule defined in Eq (6) in the flat potential case (r1 = 10−3). Blue squares represent the

storage capacity for the model with the learning rule defined in Eq (7) in the deep potential case (r1 = 0.5). Each point

is averaged over 10 independent realizations, and the error bar represents the standard deviation. Other parameters are

given as: r2 = 1, c = 1, N = 1, 500, f = 4log(N)/N.

https://doi.org/10.1371/journal.pcbi.1011354.g008
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distributions of spine sizes in the cortex are bimodal [26], and models of synaptic plasticity

relying on biochemical interaction networks of the post-synaptic density [47–49]. Our model

predicts that measurements of the efficacy of single synapses on long time scales, in conditions

in which learning occurs, should reveal a bimodal distribution.

Our results show that a network in which synapses have two potential wells, and conse-

quently there is a bimodal distribution of synaptic strengths, has a larger storage capacity than

a model in which synapses evolve in a single well, and therefore the distribution of weights is

unimodal, provided r1 > r∗
1

or equivalently t < t∗ � 1=ð2r∗
1
Þ. Furthermore, our results show

that C*, the optimal potential width, is greater than one whenever r1 is larger than its critical

value, as shown in Fig 3A. The optimal value of C increases with both network size N and the

time constant τ. For large networks, this implies that many repetitive stimuli are needed to

induce transitions between potential wells. In this regime, the storage capacity of the network

increases as a power law of the network size, instead of a logarithmic relationship. The expo-

nent is close to 0.5 for densely encoded memories, but it becomes equal to 2 (with logarithmic

corrections) with sparsely encoded memories when the number of active neurons per memory

is logarithmic in network size. These exponents are similar to networks with binary synapses

[20, 21]. Our results also suggest that synaptic noise can facilitate the learning of new memo-

ries, in situations in which the Hebbian learning term is insufficient to induce transitions

between potential wells. Overall, this suggests that a network with such synapses can store

memories robustly without requiring high precision in synaptic dynamics.

Our model captures the process of synaptic consolidation in an abstract fashion, as the

decay of the synaptic state towards one out of two potential minima. The decay is characterized

by a single time constant, τ, which results in a storage capacity that depends sublinearly on the

network size in the balanced input case. Experimental and theoretical work has revealed that

synaptic plasticity contains several phases across multiple time scales [50–54]. It will be inter-

esting to generalize the model we have proposed to include dynamics with multiple timescales,

which would account for various biochemical processes during synaptic consolidation. Such

an extension may increase the storage capacity of the network, leading to an almost linear

dependence on network size, as suggested by previous research [37]. The phenomenon of syn-

aptic consolidation can be well described by the theory of synaptic tagging and capture [50, 52,

55]. According to this theory, stimulation can result in the tagging of synapses. When weak

stimulation is applied, the tag gradually decays. Strong stimulation instead can tag more synap-

ses, initiating the production of plasticity-related proteins that lead to the consolidation of the

tagged synapses. Although our double well synapse model has some similarities with the the-

ory of synaptic tagging and capture, it does not account for a number of biological details. For

instance, our model only considered independent synapses, while in reality, different synapses

on the same dendritic tree can share tagging, since plasticity-related proteins are synthesized

in the soma of postsynaptic neurons, which are available to all presynaptic pathways. More-

over, experiments suggest that synapses have varying stimulation thresholds for discrete

changes in their efficacy [13], while we assumed homogeneous synapses. Future research will

be necessary to include these biological details or investigate these phenomena with more real-

istic neuron and network models. Another extension of our model would be to increase the

number of wells of the potential. We also note that other forms of memory consolidation are

likely to play an important role. A recent study demonstrated that adding a pattern reactiva-

tion mechanism in attractor neural networks with synapses evolving in a single well potential,

mimicking systems memory consolidation [56], can also produce power law scaling storage

capacity and lead to lifelong learning scenarios [28]. It will be interesting to incorporate synap-

tic consolidation and pattern reactivation together in an attractor neural network to explore

how double well synapses affect memory function in the context of lifelong learning.

PLOS COMPUTATIONAL BIOLOGY Attractor neural networks with double well synapses

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011354 February 7, 2024 17 / 25

https://doi.org/10.1371/journal.pcbi.1011354


5 Methods

I. The probability density function of synaptic weights

The goal of this section is to derive an equation for g(J, t), the probability density of synaptic

strength J at time t, and distributions of synaptic strengths conditioned by inputs experienced

in the past. We focus on the noiseless case (i.e., r3 = 0) and the balanced input case with input

function defined in Eq (5). From Eq (3), one can derive a master equation for g(J, t):

gðJ; tþÞ ¼
1

2

X

I¼�1

gðJ � r2I; t
� Þ; t 2 Z; ð15Þ

@gðJ; tÞ
@t

¼ r1

@

@J
@U
@J

gðJ; tÞ
� �

; t =2Z; ð16Þ

where t−,+ denote times right before or after a new pattern is presented. Eq (15) describes the

transitions from states g(J + r2, t−) and g(J − r2, t−) to g(J, t+) when an input is presented. Eq

(16) describes the temporal evolution of the distribution g in between presentations, due to the

potential term. With the piece-wise parabolic potential defined by Eq (4), the solution of Eq

(16) is given as:

gðJ; t þ DtÞ ¼ e2r1DtgðJ0; tþÞ; for all t 2 Z and 0 < Dt < 1; ð17Þ

where

J0 ¼
ðJ � CÞe2r1Dt þ C; J > Cð1 � e� 2r1DtÞ;

ðJ þ CÞe2r1Dt � C; J < � Cð1 � e� 2r1DtÞ;

(

ð18Þ

Note that g(J, t + Δt) = 0 when � Cð1 � e� 2r1DtÞ < J < Cð1 � e� 2r1DtÞ. After a sufficiently long

time, the distribution of synaptic weights should only depend on the time elapsed since the last

input presentation, and should therefore be periodic with period 1:

gðJ; t þ 1Þ ¼ gðJ; tÞ: ð19Þ

In addition, the probability density function should satisfy the usual boundary conditions,

lim
J!�1

gðJ; tÞ ¼ 0; ð20Þ

and the normalization condition

Z

gðJ; tÞdJ ¼ 1:

With Eqs (15) and (20), one can solve the asymptotic distribution of the weights right

before a new pattern is presented, g1(J)� g(J, t−) for sufficiently large t 2 Z!1. To obtain

the asymptotic distribution of weights, we discretize J to take Nd = 4000 regularly spaced values

in the range of [Jmin, Jmax]. The value of Jmax (Jmin) is large (small) enough so that, values out-

side the range are never visited. In practice, we set Jmin = −20, Jmax = 20. The initial values of

the distribution are taken to be random uniform i.i.d., such that the initial distribution is nor-

malized to 1. We then use a discretized version of equations (16,18,19) to update the distribu-

tion until convergence.
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The mean and root mean square (RMS) of asymptotic distribution g1(J) are given as

M ¼
Z

g1ðJÞJdJ ð21Þ

O ¼

�Z

g1ðJÞJ
2dJ
�1

2

ð22Þ

We next turn to the distribution of synaptic strengths, conditioned on plasticity events at

time t = v and t = u. We use the ηu to denote the most recently presented pattern and ηv to

denote the previously stored pattern where v< u. Distributions of synaptic strengths at time t,
conditioned on a plasticity event at t = v, are denoted by gsvðJ; tÞ, where σv = I(v) = ±1 denotes

potentiation or depression. Just after the presentation of the pattern, these distributions are

given by:

gsvðJ; vþÞ ¼ g1ðJ � svr2Þ; ð23Þ

The distributions then evolve according to Eqs (15) and (16), replacing g(J, t) by gsvðJ; tÞ. At

any given time, one can calculate the mean MsvðtÞ and RMSOsvðtÞ of the weight distributions

gsvðJ; tÞ:

MsvðtÞ ¼
Z

gsvðJ; tÞJdJ ð24Þ

OsvðtÞ ¼
�Z

gsvðJ; tÞJ
2dJ
�1

2

ð25Þ

Distributions of synaptic strengths at the time t = u,conditioned on plasticity events at time

t = v and t = u are denoted by gsvsu , where σv = I(v) = ±1 and σu = I(u) = ±1. The distribution of

gsvsu is given by

gsvsuðJ; uþÞ ¼ gsvðJ � sur2; u� Þ ð26Þ

Its mean and RMS are

MsvsuðtÞ ¼
Z

gsvsuðJ; tÞJdJ ð27Þ

OsvsuðtÞ ¼
�Z

gsvsuðJ; tÞJ
2dJ
�1

2

ð28Þ

II. Storage capacity of the double well potential model

We now turn to the question of whether at time u,the network is still able to retrieve a pattern

ηv that was stored at a previous time v< u. Here, we focus on the standard coding (‘balanced

input’) scenario f = 0.5, and θ = 0. Simulations show that sometimes, when initialized at a pat-

tern stored in the past, the network mistakenly retrieves the most recently shown pattern ηu
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instead [31]. To calculate the storage capacity, we thus need to define two overlaps:

mv ¼
4

N

XN

i¼1

ðZvi �
1

2
ÞVu

i ;

mu ¼
4

N

XN

i¼1

ðZui �
1

2
ÞVu

i ;

ð29Þ

where Vu
j represents the fixed point of Eq (1) with initial condition Vj ¼ Z

v
j , u > v 2 Z and ηu

represent the most recently shown pattern.

When the network has overlaps mv and mu with patterns shown at times u and v, the proba-

bility that a neuron is in a given state Vi, conditioned on Zui ; Z
v
i can be written as:

Pðsv; suÞ � PðVu
i ¼ 1jZvi ¼ sv; Zui ¼ suÞ ¼ svmv þ

1 � mv

2

� �

sumu þ
1 � mu

2

� �

; ð30Þ

where sv, su 2 {0, 1}. In Eq (30), the first(second) parenthesis on the r.h.s. gives the probability

that Vu
i ¼ 1 when Zui ¼ su (Zvi ¼ sv) in a network state with overlap mu (mv) with this pattern.

To proceed, we need to compute the distribution of local fields conditioned on the state of

the neuron in patterns shown at times u and v. The local fields are given by

hi ¼
1

N

XN

j¼1

cijJijV
u
j ; ð31Þ

where on the right hand side, the distribution of Jij are given by gsvsu where

su;v ¼ ð2Z
u;v
i � 1Þð2Z

u;v
j � 1Þ, and the distribution of Vu

j are given by Eq (30). For large cN,

(cN� 1), we can use the central limit theorem and approximate the local field distributions by

a normal distribution N ðmsv ;su ; dsv ;suÞ, where msv ;su (dsv;su) is the mean(standard deviation) of the

local field hsv ;su , conditioned on Zvi ¼ sv, Zui ¼ su. These two moments are given by

msv ;su ¼ c
X

s;s0¼0;1

Mð2sv � 1Þð2s� 1Þ;ð2su � 1Þð2s0 � 1Þðt ¼ uþÞPðs; s0Þ ð32Þ

dsvsu ¼
ffiffiffiffi
cf
N

r

Osvðt ¼ uÞ; ð33Þ

where sv, su, s, s0 2 {0, 1}. Here we used the fact that Osvðt ¼ uÞ ¼ Osvsuðt ¼ uÞ since the pat-

tern u only changes the average of the local field at t = u.

The overlaps mv, mu can be written as:

mv ¼
4

N

XN

i¼1

ðZvi �
1

2
ÞYðhiÞ

¼
1

2
Pðh11 > 0Þ þ Pðh10 > 0Þ � Pðh01 > 0Þ � Pðh00 > 0Þð Þ;

mu ¼
4

N

XN

i¼1

ðZui �
1

2
ÞYðhi � 0Þ

¼
1

2
Pðh11 > 0Þ þ Pðh01 > 0Þ � Pðh10 > 0Þ � Pðh00 > 0Þð Þ:

ð34Þ
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In the balanced input case, Msv t ¼ uð Þ ¼ � M� sv t ¼ uð Þ, Osvðt ¼ uÞ ¼ O� svðt ¼ uÞ and thus

h00 ¼ � h11;

h01 ¼ � h10;

d � dsvsu :

ð35Þ

The Eq (34) can be simplified to:

mv ¼ Pðh11 > 0Þ � Pðh10 < 0Þ;

mu ¼ Pðh11 > 0Þ � Pðh10 > 0Þ;
ð36Þ

Using the notation defined in Eqs (32) and (33), we obtain self-consistency equations for mv

and mu:

mv ¼ F
m10

ffiffiffi
2
p

d

� �

� F
� m11

ffiffiffi
2
p

d

� �

;

mu ¼ F
� m10

ffiffiffi
2
p

d

� �

� F
� m11

ffiffiffi
2
p

d

� �

;

ð37Þ

where FðxÞ ¼ 1ffiffi
p
p

R x
0
e� t2dt. Eq (37) can be solved numerically by updating Eqs (30), (32) and

(33) using mv, mu. The pattern ηv is retrievable if there exists a solution mv* 1, mu = 0, that is

stable to small perturbations mu = �. In order to solve this mean-field equation, we convert Eq

(37) to a map, in which the values of mu,v at a given time step are given by the r.h.s. of Eq (37)

where μ11,10 and d are computed using the values of mu,v at the previous time step. To check

the stability of the state with mv> 0, mu = 0, we take as initial conditions mv as 1 and mu as �.

We then proceed to update the values of mv and mu iteratively until convergence is reached. In

practice, we used � = 5 × 10−2.

III. Signal-to-Noise Ratio

We focus on the calculation of the signal-to-noise ratio in the balanced input case. We first

derive the SNR for the binarized double well model. In this case, wij has the equal probability

of being + 1 and −1, thus we have:

hcijwideal
ij � wijð1Þi ¼ 0

stdð
X

ij

cijw
ideal
ij � wijð1ÞÞ ¼

ffiffi
c
p

N: ð38Þ

Therefore, the SNR can be simplified as follows:

SNRðtÞ ¼
P

ijcijw
ideal
ij � wijðtÞ
ffiffi
c
p

N

¼
ffiffi
c
p

Nideal
ij � wijðtÞi:

ð39Þ

wij(t) is drawn from the distribution of gsv¼1ðJ; tÞ and the distribution of gsv¼� 1ðJ; tÞ with the

same probability in the balanced input case. The average wideal
ij � wijðtÞ can be calculated by:

SNRðtÞ ¼
ffiffi
c
p

2
N
Z

gsv¼1ðJ; tÞsignðJÞdJ �
Z

gsv¼� 1ðJ; tÞsignðJÞdJ
� �

¼
ffiffi
c
p

N
Z

gsv¼1ðJ; tÞsignðJÞdJ;
ð40Þ
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where gsvðJ; tÞ are defined through Eqs (15), (18) and (23), and we used the identity gsvðJ; tÞ ¼
g� svð� J; tÞ in the balanced input case.

The SNR for Markovian binary synapses SNRb is given in [57]:

SNRb ¼

ffiffi
c
p

N
2

p1 Mpot � Mdepð ÞetWw: ð41Þ

where

W ¼
1

2
Mpot þ

1

2
Mdep � I ð42Þ

where I is a 2 × 2 identity matrix, w = [−1, 1] is the efficacy of the synapse, p1 = [0.5, 0.5] is

the stationary distribution of synapses. Mpot(Mdep) is the 2 × 2 transition matrix when the syn-

apse is potentiated(depressed). Their value is determined by the transition probability between

two states.

SNRb depends on Mpot and Mdep, and the upper bound SNR∗b is given as [57]:

SNR∗b ¼
ffiffi
c
p

Ne� t; t � 1

SNR∗b ¼

ffiffi
c
p

N
et

; t > 1
ð43Þ
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