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Abstract 
Although data-independent acquisition (DIA) shows powerful potential in 
achieving comprehensive peptide information acquisition, the difficulty in 
determining the precursor m/z and distinguishing fragment ions has posed 
challenges in DIA data analysis. To address this challenge, a common ap-
proach is to recover the correspondence between precursor ions and fragment 
ions, followed by peptide identification using traditional data-dependent ac-
quisition (DDA) database searching. In this study, we propose a cosine simi-
larity-based deconvolution method that rapidly establishes the correspon-
dence between chromatographic profiles of precursor ions and fragment ions 
through matrix calculations. Experimental results demonstrate that our me-
thod, referred to as CosDIA, yields a peptide identification count close to that 
of DIA-umpire. However, compared to DIA-umpire, we can establish the cor-
respondence between original MS/MS spectra and pseudo-MS/MS spectra. 
Furthermore, compared to the CorrDIA method, our approach achieves higher 
efficiency in terms of time, reducing the time cost of the analysis process. These 
results highlight the potential advantages of the CosDIA method in DIA data 
analysis, providing a powerful tool and method for large-scale proteomics re-
search. 
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1. Introduction 

The bottom-up proteomic approach based on liquid chromatography-tandem 
mass spectrometry (LC-MS/MS) is widely acknowledged as the primary method 
for protein analysis and identification. Analyzing and identifying proteins within 
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biological systems are crucial for a deeper understanding of disease mechanisms 
and drug development. The main workflow of proteomic analysis involves sev-
eral steps: initially, specific enzymes are used to digest proteins within the bio-
logical system into a mixture of peptides. Subsequently, the mass spectrometer 
ionizes these peptide mixtures and introduces them into the instrument, where, 
influenced by electric fields and gravity, these peptide mixtures generate mass 
spectrometric data [1] [2]. Analysis of this mass spectrometric data enables the 
identification of peptides and proteins. During the phase of data acquisition in 
mass spectrometry, two modes are commonly employed based on the method of 
acquisition: data-dependent acquisition (DDA) and data-independent acqui-
sition (DIA) [3]. Data-dependent acquisition (DDA) is generally more suitable 
for small sample sizes and relatively simple protein identification, whereas da-
ta-independent acquisition (DIA) is better suited for large sample sizes and com-
plex protein identification. 

Currently, traditional protein identification methods primarily utilize mass 
spectrometric data acquired through data-dependent acquisition (DDA). In 
the cycle of DDA, for each obtained MS1 spectra, the mass spectrometer se-
lects a narrow isolation window and sequentially isolates and fragments the 
highest-intensity peaks in the MS1 spectra, generating MS/MS spectra (as shown 
in Figure 1, DDA-MS). Since DDA employs narrow isolation windows, the 
MS/MS spectra produced have minimal ion interference. However, DDA over-
looks lower-intensity peaks in the MS1 spectra as it selects the top N peaks in 
terms of intensity for fragmentation, which may lead to the omission of some 
peaks with lower intensities [4]. Furthermore, due to the stochastic nature of 
liquid chromatography and the variability in the top N peaks in the MS1 spectra, 
the repeatability of mass spectrometric data obtained under the same experi-
mental conditions is relatively poor. To address the limitations of DDA, da-
ta-independent acquisition (DIA) was introduced. In the cyclic data acquisition 
process of DIA, for each acquired MS1 spectra, the mass spectrometer chooses a 
larger isolation window and unbiasedly fragments all precursor ions within that 
window, generating MS/MS spectra [5] (as illustrated in Figure 1, DIA-MS). 
Since DIA uniformly fragments all precursor ions in the MS1 spectra, it theoret-
ically enables the collection of information from all precursor ions. Compared to 
DDA, DIA can capture information from low-intensity peaks in the MS1 spec-
tra. Additionally, due to the isolation window’s inclusive nature, DIA’s data ac-
quisition method offers better reproducibility. Unlike DDA, DIA’s MS/MS spec-
tra contain the chromatographic profile information of fragment ions. However, 
due to the broad isolation windows used in DIA, it results in highly complex and 
co-fragmented MS/MS spectra [6]. This not only disrupts the correspondence 
between precursor and fragment ions, but also introduces issues of fragment ion 
interference in DIA’s MS/MS spectra, posing significant challenges for the anal-
ysis of DIA data. 

To address the challenges of determining precursor m/z and distinguishing 
fragment ions in data-independent acquisition (DIA), the primary approach  
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Figure 1. Comparison of DDA and DIA methods. 

 
currently used for DIA data analysis is the pseudo-MS/MS spectra method [7]. 
The pseudo-MS/MS spectra method involves splitting DIA MS/MS spectra into 
multiple MS/MS, each containing the fragmented information of a single pre-
cursor ion, through spectrum deconvolution algorithms. Subsequently, tradi-
tional data-dependent acquisition (DDA) identification tools can be used to 
identify proteins from these split MS/MS spectra, enabling effective analysis and 
identification of DIA MS/MS spectra. Currently, there are several tools available 
for pseudo-MS/MS spectra splitting, including DeMux [8], DIA-Umpire [9], 
Group-DIA [10], and CorrDec [11], among others. The CorrDec method has al-
ready been integrated into the metabolomics analysis platform MS-DIAL [12] 
[13]. 

In summary, we propose a spectral deconvolution algorithm that combines co-
sine similarity calculation with matrix operations, named CosDIA. For the de-
convolution of DIA spectra, CosDIA is capable of obtaining the correspondence 
between pseudo-MS/MS spectra and the scan numbers of the original DIA spec-
tra, facilitating the traceability of the analysis results of the pseudo-MS/MS spec-
tra. Moreover, by storing chromatographic curves in a matrix and performing 
similarity calculations, CosDIA reduces the time required for spectral deconvo-
lution. These features enable CosDIA to more rapidly deconvolute DIA data and 
obtain additional corresponding relationships. 

2. Workflow and Method 

First, based on the information contained in the configuration file, we per-
formed the following steps: extracted the chromatographic profiles of precursor 
ions and fragment ions, and identified isotope peak clusters in the spectra and 
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their charge states. Additionally, we identified noise peaks and removed them 
along with their corresponding chromatographic profiles from the spectra. These 
chromatographic profiles were organized and stored in a matrix for subsequent 
rapid similarity calculations. Combining the information about the identified 
isotope peak clusters, we could determine the charge states of the top N precur-
sor ions. Finally, we applied the generated pseudo-MS/MS spectra to the pFind 
[14] tool for protein identification. The entire workflow was illustrated in Figure 
2. 

2.1. DIA Mass Spectrometry Data 

Data-independent acquisition (DIA) was a method of generating MS/MS spec-
tra by co-fragmenting precursor ions within isolation windows in the MS1 spec-
trum. Consequently, DIA data acquisition was characterized by the challenges of 
determining precursor m/z and distinguishing fragment ions. To mitigate the 
complexity of DIA spectra and facilitate data analysis, DIA data acquisition was 
categorized into three primary methods. The first method involved full-window 
fragmentation, exemplified by the MSE technique. The second method em-
ployed isolation window fragmentation, subdividing DIA data acquisition into 
fixed and variable isolation windows. Fixed isolation window methods main-
tained a constant window width, while variable isolation window methods al-
lowed width adjustments during data acquisition as needed, offering greater 
flexibility for different sample types or experimental conditions. The third ap-
proach was the incorporation of additional data dimensions, known as 4D-DIA 
methods, such as DIA-PASEF [15] and Scanning SWATH [16]. These methods 
introduced extra data dimensions, such as ion mobility, to enhance the informa-
tion richness of DIA data, ultimately improving the accuracy and comprehen-
siveness of data analysis and identification. These approaches aimed to address 
the difficulties associated with determining precursor m/z and distinguishing 
fragment ions in DIA data while enhancing precision and completeness in data 
analysis. 

Due to the non-uniform distribution of precursor ions in the MS1 spectra of 
DIA data, employing identical isolation windows could lead to increased ion in-
terference in windows with densely distributed parent ions, thus elevating the  
 

 
Figure 2. The workflow of the CosDIA method. 
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complexity of the resulting MS/MS spectra. In our research, we opted for DIA 
mass spectrometry data with HeLa proteins as the sample, digested with trypsin, 
and employed variable isolation window fragmentation. Our original data was 
sourced from ProteomeXchange (PXD005573) and specifically utilized the raw 
data from a 0.5-hour chromatographic gradient. 

2.2. Chromatographic Profile Extraction 

In the context of DIA methodology and the acquired mass spectrometry data, 
the relationship between MS1 and MS/MS spectra could be described as follows: 
sequentially in time, each MS1 spectrum corresponded to multiple MS/MS spec-
tra. This correspondence could be further explained as multiple MS/MS spectra 
sequentially aligning with different isolation windows in the MS1 spectrum (as 
shown in Figure 3(a)). To extract the chromatographic profiles of fragment 
ions, we grouped multiple MS/MS spectra originating from the same isolation 
window within a specific time range (as illustrated in Figure 3(b)). Similarly, to 
extract the chromatographic profiles of precursor ions, we group MS1 spectra 
corresponding to each grouped of MS/MS spectra in chronological order. Since 
the MS/MS spectra within each group all originated from the same isolation 
window, aligning the peaks within the MS/MS spectra in each group within an 
error margin allowed them to be connected sequentially in time, resulting in the  
 

 
Figure 3. Chromatographic profile extraction. 
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formation of chromatographic profiles for fragment ions (as depicted in Figure 
3(c)). This process was repeated multiple times across several groups of MS/MS 
spectra, ultimately yielding multiple chromatographic profiles (as seen in Figure 
3(d)), with each profile representing the specific movement trajectory and ab-
undance distribution of particular ions. 

In our experiment, we began by identifying the DIA MS/MS spectra to be de-
convoluted. Subsequently, within a ±0.1-minute range around each cycle in the 
DIA MS/MS spectrum, we located the corresponding DIA MS/MS spectra that 
shared the same positional alignment. Similarly, based on the retention time, we 
found the corresponding DIA MS1 spectra. For each group of identified DIA 
MS/MS spectra, we recorded which MS/MS spectrum needed to be deconvo-
luted, its origin from the isolation window in the MS1 spectrum, as well as the 
scan numbers and retention times for all MS/MS spectra within that group. 
Within each set of DIA MS/MS spectra, we aligned the corresponding peaks in 
the before-and-after MS/MS spectra for each peak in the MS/MS spectrum to be 
deconvoluted. We set the error tolerance between peaks at 0.02 daltons. By lo-
cating the corresponding peaks in the before-and-after MS/MS spectra from a 
given peak in the MS/MS spectrum to be deconvoluted and connecting these 
peaks within the retention time range, we obtained a chromatographic profile 
for the MS/MS spectrum to be deconvoluted. This step ensured the accuracy of 
the generated chromatographic profiles. Subsequently, we stored each group of 
DIA MS1 and MS/MS spectra as matrices. In our DIA mass spectrometry data, 
each DIA MS/MS spectrum contained one-dimensional information, recording 
the origin isolation window from its MS1 spectrum. Therefore, we could deter-
mine which isolation window in the MS1 spectrum the chromatographic profiles 
of fragment ions originated from. This greatly aided in reducing the search space 
for similarity calculations between precursor ion and fragment ion chromato-
graphic profiles. 

2.3. Chromatographic Profile Similarity Calculation 

Due to the characteristics of DIA mass spectrometry, where all precursor ions 
within an isolation window were co-fragmented to generate MS/MS spectra, it 
could be challenging to determine the precise source of precursor ions in DIA 
MS/MS spectra. Additionally, in DIA MS/MS spectra, fragment ions might have 
originated from multiple precursor ions, making it difficult to establish associa-
tions between specific fragment ions and precursor ions. To address this issue, 
we recovered the correspondence between MS/MS spectra and individual pre-
cursor ions by comparing the similarity between the chromatographic profiles of 
precursor ions and fragment ions. In our experiment, we initially identified oth-
er DIA MS/MS spectra originating from the same isolation window within a 
±0.1-minute range around the DIA MS/MS spectrum to be deconvoluted. By 
aligning and connecting the peaks in the preceding and subsequent DIA MS/MS 
spectra, we created chromatographic profiles for fragment ions (as illustrated in 
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Figure 4). Similarly, we aligned and connected the corresponding peaks in the 
DIA MS1 spectra, resulting in chromatographic profiles for precursor ions. 

For all chromatographic profiles of precursor ions P( 1 2, , , np p p ) and all 
chromatographic profiles of fragment ions F( 1 2, , , nf f f ), where n represented 
the number of ions, the cosine similarity calculation formula for chromatographic 
profiles was as follows [17]: 
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To calculate the similarity between chromatographic profiles of precursor ions 
and fragment ions more efficiently, we converted the generated chromatograph-
ic profiles into matrix form. The number of rows in the matrix represented the 
quantity of precursor ion chromatographic profiles, while the number of col-
umns represented the number of DIA spectra in a given group (as illustrated in 
Figure 4). Each element in the matrix stored the corresponding peak intensity 
values. This means that each row represented a chromatographic profile. Since 
the chromatographic profiles of fragment ions were formed in the retention time 
dimension by MS/MS spectra co-fragmented at the same position in the MS1 
spectra, this implied that the generated chromatographic profiles of fragment 
ions all originated from the respective isolation windows in the MS1 spectra. 
This aided in reducing the search space when calculating the similarity between 
chromatographic profiles of precursor ions and fragment ions. 

 

 
Figure 4. Chromatographic curve storage. 
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We calculated the cosine similarity between a row in the matrix of chromato-
graphic profiles of precursor ions and every row in the matrix of chromato-
graphic profiles of fragment ions. This provided the similarity between each 
chromatographic profile of precursor ions and all chromatographic profiles of 
fragment ions. By performing these similarity calculations row-wise between 
these two matrices, we obtained a similarity matrix that captured the similarities 
between all chromatographic profiles of precursor ions and fragment ions. The 
number of rows in the similarity matrix corresponded to the quantity of precur-
sor ion chromatographic profiles, and the number of columns corresponded to 
the quantity of fragment ion chromatographic profiles. The values in the matrix 
represented the similarity scores between chromatographic profiles of precursor 
ions and fragment ions. In this case, we had 25 chromatographic profiles of pre-
cursor ions and 50 chromatographic profiles of fragment ions (as shown in Fig-
ure 5). Each row in the matrix represented the similarity scores between a single 
chromatographic profile of a precursor ion and all chromatographic profiles of 
fragment ions. We computed the number of values in each row greater than 0.6 
and used this count as the score for that precursor ion. Consequently, we selected 
the top 30 precursor ions with the highest scores to serve as the precursor m/z 
for the pseudo MS/MS spectra. 

2.4. Removing Isotopic Clusters and Determining Parent Ion  
Charges 

The presence of isotopic clusters of precursor ions in the MS1 spectra could in-
troduce interference when calculating the similarity between chromatographic 
profiles of precursor ions and fragment ions. Since the chromatographic profiles  
 

 
Figure 5. Chromatographic curve similarity calculation. 
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corresponding to isotopic clusters had similar shapes, this could lead to high- 
scoring precursor ions and their isotopes being included in the topN list when 
calculating similarity with fragment ion chromatographic profiles. As a result, 
this may have caused other genuine precursor ions to go undetected. 

To address this issue, we could use the calculation of chromatographic profiles 
of precursor ions and fragment ions to determine the precursor ion’s mass-to- 
charge ratio (m/z) and charge state. In the MS1 spectra, we could infer the charge 
state of precursor ions by computing the differences in m/z between pairs of 
peaks. The difference δ between peaks was approximately equal to Mneutron/c, 
where c was the charge state of the precursor ion, and Mneutron represented the 
mass of a neutron. According to the calculation formula, the peak spacing cor-
responding to precursor ions with different charge states being 1.003 da (+1 
charge state), 0.5015 da (+2 charge state), 0.3343 da (+3 charge state), and 0.2508 
da (+4 charge state) (as illustrated in Figure 6). For those precursor ions for which 
isotopic peaks were not found, we defaulted to assuming a +2 charge state. It’s 
worth noting that, for established isotopic clusters, if the peak spacing between 
peaks in the cluster met the distribution requirements of an isotopic cluster and 
the peak intensities in the cluster did not exhibit a pattern of alternating high 
and low, then it could be confirmed as an isotopic cluster. Otherwise, the con-
structed cluster was not an isotopic cluster. 

In our experiment, to improve computational speed, we first identified all 
isotopic clusters in the MS1 spectra and added all peaks except the first isotopic 
peak to the isotopic list. Then, we iterated through the precursor ion list, which  
 

 
Figure 6. Isotopic peak cluster and its charge. 
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was sorted in descending order of scores, to identify precursor ions that existed 
in the isotopic list. We removed these precursor ions from the precursor ion list 
to avoid the influence of isotopes. 

2.5. Identification of Pseudo-MS/MS Spectra 

The pseudo-MS/MS spectra generated from the deconvolution results were 
stored in .mgf format, which was is the same as the traditional data storage for-
mat used in DDA. It’s important to note that the scan numbers in the deconvo-
luted results were obtained from the original DIA MS/MS spectra. As a result, 
traditional database search software could be used for the identification of de-
convoluted results, such as pFind [18], DIAmeter [19], de novo [20], and other 
similar software. In our experiment, we chose pFind to identify our deconvo-
luted results and DIA-umpire’s deconvoluted results. When identifying these 
two sets of deconvoluted results, we used the same parameter settings. As shown 
in Table 1. 

3. Results 
3.1. Experimental Parameters 

When considering the reproducibility of the experiment and the stability of the 
results, the choice of parameters such as retention time, chromatographic curve 
similarity threshold, and the number of top N pseudo-MS/MS spectra to extract 
becomes crucial. To assess the impact of different parameters on the experimen-
tal results and find the optimal parameter combinations, we employed a rigorous 
controlled variable method. In our experiment, we carefully selected 1500 DIA 
MS/MS spectra for testing and used the pFind software for the identification of 
pseudo-MS/MS spectra while maintaining a false discovery rate (FDR) of 1%. 
Through statistical analysis of the results obtained from pFind, we were able to 
clearly determine the optimal parameter combination. When considering the re-
tention time of chromatographic curves, we found that setting it to 0.2 minutes 
resulted in the best identification outcomes. Additionally, we also established 
that a chromatographic curve similarity threshold of 0.6 produced the optimal 
identification performance (as shown in Figure 7). 

3.2. Isotope Peak Cluster Calculation 

In the field of protein mass spectrometry, the presence of isotope clusters can  
 
Table 1. Database search parameters of pFind. 

Parameter Value 

Precursor Tolerance ±20 ppm 

Fragment Tolerance ±20 ppm 

FDR Less than 1% at Peptides Level 

Fixed Modifications Carbamidomethyl (C) 

Peptide Length [6, 100] 
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Figure 7. Effect of different parameters on experimental results. 

 
interfere with the similarity calculations of chromatographic curves for both 
precursor ions and fragment ions. This interference occurs because the chroma-
tographic curves of isotope clusters typically exhibit highly similar characteris-
tics. This similarity can lead to the inclusion of isotope clusters as high-scoring 
peaks when calculating similarity with fragment ion chromatographic curves, 
causing pFind to identify redundant peptides. To reduce the interference of iso-
tope clusters in chromatographic curve similarity calculations, we first identify 
isotope clusters in the MS1 spectra. Then, before performing chromatographic 
curve similarity calculations, we remove all peaks except the monoisotopic peak. 
By doing so, we only use data from monoisotopic peaks in the similarity calcula-
tions for precursor ions and fragment ions, reducing the influence of isotope 
clusters. As an example, in a specific MS1 spectrum, we identified four isotope 
clusters and determined the corresponding monoisotopic m/z using our isotope 
algorithm. In subsequent chromatographic curve similarity calculations, we only 
utilized the data from these monoisotopic peaks to obtain more accurate results 
(as shown in Figure 8). 

3.3. Identification of Results and Time Spent 

In previous studies, we primarily used DIA-Umpire as the deconvolution tool. 
However, to compare the performance of different deconvolution tools, we ap-
plied both CosDIA and DIA-Umpire to perform deconvolution on the same 
HeLa dataset. The output results from these two tools were saved in the .mgf file 
format, allowing their outputs to be used with traditional data-dependent acqui-
sition (DDA) search software for mass spectrometry identification. In our expe-
riments, we utilized the database search software pFind to identify the pseu-
do-MS/MS spectra generated from the deconvolution results. We set the false 
discovery rate (FDR) at 1% as a condition to filter the peptide identifications. 

First, we collected and compared the peptide identification results obtained by 
pFind. For DIA-Umpire’s deconvolution results, we used the best deconvolution 
file, <filename>_Q1.mgf, for database searching. To validate the accuracy of the 
deconvolution results, we also compared the peptide identification results ob-
tained by pFind with those from DIA-NN [21]. It was observed that in CosDIA’s  
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Figure 8. Precursor ion isotopic peak cluster. 
 

 
Figure 9. Venn diagram of pFind identified peptides. 

 
identification results, 44.9% of the peptides were not identified by DIA-Umpire, 
while in DIA-Umpire’s identification results, 44.8% of the peptides were not 
identified by CosDIA (as shown in Figure 9(a)). Furthermore, in CosDIA’s iden-
tification results, 22.2% of the peptides were not identified by DIA-NN, while in 
DIA-Umpire’s identification results, 18.7% of the peptides were not identified by 
DIA-NN (as shown in Figure 9(b)). 

In comparison to DIA-Umpire, our approach, based on a spectrum-centric  
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Table 2. Hardware parameters, data and time spending. 

Parameter Value 

Raw HeLa-0.5h.raw 

CPU Intel(R) Core(TM) i7-11800H @ 2.30 GHz 

Memory 32.0 GB 

Operating System Windows 11 64 bit 

CorrDIA Time Spending(s) 1,814,400 

CosDIA Time Spending(s) 3772.3 

 
deconvolution strategy, allowed us to establish a correspondence between pseu-
do-MS/MS spectra and original MS/MS spectra. Furthermore, we also recorded 
the computer hardware configuration, data, and the corresponding time con-
sumption, as detailed in Table 2. 

4. Conclusions 

One method of data analysis in data-independent acquisition (DIA) is the pseu-
do-MS/MS spectra approach, which primarily aims to establish the correspon-
dence between individual precursor ions and their fragment ions. The core of 
this method involves computing the chromatographic similarity of precursor 
and fragment ion chromatograms to resolve this correspondence. Due to DIA 
data involving the simultaneous fragmentation of all precursor ions within isola-
tion windows, the MS/MS spectra in DIA contain a large number of peaks, lead-
ing to a significant increase in computational complexity when comparing chro-
matographic similarities. To address this issue, we store precursor and fragment 
ion chromatograms from within the isolation windows in matrices, facilitating 
efficient similarity calculations. Additionally, to establish the association between 
pseudo-MS/MS spectra and the original MS/MS spectra, we extract chromato-
grams centered around the original MS/MS spectra and perform similarity cal-
culations with the fragment ion chromatograms to determine the correspon-
dence. 

We compared two different methods, CosDIA and DIA-Umpire, in our expe-
riments. The results indicate that they tend to identify a similar number of pep-
tide segments effectively. However, our method offers the additional advantage 
of establishing the correspondence between original MS/MS spectra and pseu-
do-MS/MS spectra. In terms of time efficiency, we compared our method with 
CorrDIA [22]. Due to our utilization of matrix operations, our approach proves 
to be more computationally efficient. 

Since we extract chromatographic curves centered around original MS/MS 
spectra, there may be some redundancy in the number of identified peptide 
segments. DIA MS/MS spectra are generated through shared fragmentation, 
which could introduce some interference in the chromatographic curves, poten-
tially leading to lower identification rates for pseudo-MS/MS spectra. The chro-
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matographic curve similarity determination method relies on cosine similarity, 
which might have limitations in sensitivity. The pseudo-MS/MS spectra method 
primarily relies on the consistency of chromatographic curves for the dissection 
of original MS/MS spectra. With the rapid development of deep learning, one 
potential approach is to initially obtain data identification results through data-
base search software. Then, based on these identification results and their corres-
ponding chromatographic curves, you can create positive and negative instances 
[23]. Using these instances, you can train a model, and then employ the trained 
model to compute the similarity of chromatographic curves between precursor 
ions and fragment ions [24]. The multi-parameter nature of deep learning may 
offer better results. As mass spectrometry instruments continue to evolve, mass 
spectrometers increase their ability to distinguish chromatographic curves by 
collecting additional new dimensions of information, thereby enhancing their 
ability to deconvolute spectra. For example, ion mobility and sliding quadrupole 
technologies are introduced during the collection process. Furthermore, in the 
data preprocessing stage, deep learning or machine learning methods can be uti-
lized to differentiate and remove isotope peak clusters and their corresponding 
chromatographic curves. 
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