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ABSTRACT
The concept of double rational Chebyshev functions on the semi-infinite domain (0 < X,y < 00) and some

of their properties are introduced in this work. Also, the definition of derivatives for double rational Chebyshev
functions is improved. This new definition is employed to deal with partial differential equations with variable
coefficients derived on the interval [0,00) . The new definition with the spectral collocation method generates a
new improved scheme. Numerical results are show that demonstrates the validity and applicability of the two
techniques. The obtained numerical results are compared with the exact solution where it shown to be very
attractive with good accuracy.

Keywords: Double rational Chebyshev (DRC) functions, partial differential equations (PDEs), semi-
infinite domain, collocation method.

INTRODUCTION

The partial differential equations (PDES) have an important role owing to their applications in real
life  phenomena and applied mathematics for instance, the wave equation,
heat, Laplace, Helmholtz, Klein—-Gordon, and Poisson's equations. The spectral methods are one of
the most widely used methods to solve PDEs. Chebyshev polynomials are one of the most well-
known of those special functions. Chebyshev polynomials are orthogonal in the domain (-1<x<1)

and can be written the recurrence formulae as:

with respect to the weight function W(x) = =
1-x

T0=1L T)=x Tu()=2XT,()-T,(,  n=L

As a notation, Chebyshev polynomials are defined in a closed interval (—=1<Xx<1) in one
variable [1-6] but many of studies have worked to extended to multi-variable cases, especially in two
variables [7] and [8]. It is clear that if Chebyshev approach deals with problems defined on larger
domains, especially, when it has unbounded domain, it causes a failure and weak approximation. For
this it is more suitable to generate a new set of basis for the interval [0,00) using a transformation that
maps a finite domain into an semi-infinite interval this idea is introduced by Boyed in 1987 [9] where
the new basis will get most of the good numerical characteristics of the Chebyshev polynomials called
Rational Chebyshev (RC) functions that are orthogonal in L(0,c0). Ramadan et al. [10-17], Parand
and Razzaghi [18], Parand et al. [19], and Sezer et al. [20] are used RC functions to solve differential
equations and its applications.

All previous works and studies carried out for single variable using RC functions, we study the
definition of RC functions in two-variables. In this paper, the definition of double rational Chebyshev
(DRC) functions on the semi-infinite domain (0 < X,y <o), and some properties of DRC functions
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are obtained. Also, the derivatives of RC functions in two variables are improved in this work. The
DRC collocation technique is used for solving PDEs defined on the semi-infinite domains.

2 Double rational Chebyshev functions[8] and [22]

The RC functions Ry(x) of the first kind are functions in one variable X of degree n, defined by
the relation

R, (x) ZT”(;(_:]’ when  x=cot?(8/2), x e[0,). (2.1)

The DRC functions as:

_ _r(x1 e
Ron (% Y) =R, (X)R,(Y), where Rm(x)—Tm(XJrJ, Rn(y)—Tn[ij. (2.2)

The recurrence relation for DRC functions satisfies:

Rr 115 (% Y) = [2RI ()R, (x) = R, (IR (Y),

R s:1(% ¥) = R.()[2R,(Y)R, (¥) = Ry ()] (2.3)

The weight function in the double form is:

(xy) 2

wixy) = (x+)(y+1)’

It is the proper for choice for the DRC functions to be orthogonal, with the orthogonality condition

7% i=j=k=1=0
2
”T i=k=0,j=1=0
JO J.O Rilj(x’ y)Rk'I(X’ y)W(X’ y)dXdy: %2 | = k :O, J = I #0
ori=k=0,j=1=0
0 otherwise

The following relation is known as the product relation of DRC functions which can be
represented as:

1
Rm,n(X’ y) ' Ri,j (Xv y) = Z Rm+i,n+j (X, y) + Rm+i,\n7j\ (X’ y) + R\mfi\,mj (X’ y) + R\m—i\,\n—j\ (X’ y)]

3. The partial derivatives of DRC functions [21]

In the next propositions we improve the concept of partial derivatives of DRC functions in terms
of itself.

Proposition 3.1

The derivative of DRC functions of order (r,s)th is given in terms of itself by the relation
R (x,y) = R(x, y)(D,)" (D,)*, (3.1)
where, D, and D are (i+1)(j+1)x(i+1)(j+1) which can be obtained by D, =D, +D,,

where
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Dlzdiag(zrl, -rl, lrlj, r=0,1..,1i
4 4

D,=d .l = 0 s=r and d,, | =—I s=0,1 il &2
2570 ey s<r ai— =Hhen ]

wherel = (-=1)™*",¢c,=1and ¢, =2 for s>2,

and
® 0 07
0 e 0
D,=|. ¥ 7 |, @=5+S, and sy =-1, (3.3)
0 O w
where,

S, =diag[zs, —S,lsj, s=0,1,2, ..., 1,
4 4

and the components of S, ares,, obtained from:

0, >k
Su = ’
I(r)c,, I <k
where | is identity matrix, O is zero matrix and  is square matrix. The dimensions for these three
matrices are (j+1)x(j+1) which are components of the matrices D, andD,, .

Proof:

By using recurrence relation (2.3) we can demonstrate the partial derivatives of the DRC
functions, first dealing with the variable X , and by using the multiplication relation we get

d
&(Royn(x, y))=0, for all n, (3.4)
d 3 1
&(Rl,n (X, y)) = 1+ X)2 R,(y) = [Z Ry(X) = Ry(x) + Z Rz(x)j R.(Y), 5
= % Ron(X,Y) =Ry (X, y) + % R, (X Y),
and
2 Rian(6 1)) = -Z 2R (R0 (% Y) - Ry 10 (X, V)]
ox m+1,n \ /M X 1 m,n \ "™ m-1,n \ /s
= &[Z(Rl(x))(om (Rm,n (X, y))(OYO) - (Rm—l,n (X, y))(OVO)]
= [2(Ry ()™ (R (6 )™ + 2Ry (X)) (R 6 WS = (Ropsn (1) 1.
(3.6)

Using the relations (3.4), (3.5) and (3.6) and by using multiplication relation (2.4) for m=0, 1, ..
i, the components of the block matrix of derivatives D, can be shown as the following:

*
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(Ro,n (X, Y))(l’O) =0,

1 3 1
(Run I =7 Ron (X, 1) =Ry () + Re (X.9),
(3.7)

7 1
(Ro (6 N = =2R0, 06 9) +5 R4, ¥) = 2Ry (%, Y) + Reg (,9),

21 3
(RS,n (X' y))(ll()) = 3R0,n (X’ y) - 6Rl,n (X’ y) + I Rz,n (X1 y) - 3RC’,,n (X’ y) + Z R4,n (X! y)’

Similar to the partial derivative of the variable X, we can show the partial derivative of the
variable y , and from this we write the components of the matrix of derivatives Dy in form:

(Rm,o(x’ Y))(l’o) =0
3 1
Ru1 (%, y) ¥ = 4 R0 Y) = R (%) + 4 Ry (x,9),

(
(Rm,z(xv y))(LO) = _2Rm,0(xv y) + g Rm,l(x’ y) - 2Rm,2(xv y) + % Rm,s (X’ Y), (38)
(

21 3
Rm,3 (X! y))uYO) = 3Rm,0(Xi y) - 6Rm,1(x’ y) + Z Rm,z(xi y) - 3Rm,3(x! y) + Z Rm,4(X’ y)v

We assume:
(Reo (6 ) =Ry (6, 1)) = (R (%, 1) ¥ =0for m >iand N> .

This assumption is based on truncating the matrices D, and Dy to be square and the matrix
multiplication become possible.

Thus, to find R"(x, y) using the equalities (3.7), (3.8) as
RV (x,y) =R(x, y)D,,

RZ9(x,y) =R (x,y)D, = (R(x,y)D, D, =R(x, y)(D, ),

RO (x,y) = R®9 (x,y)(D, ) = R(x,¥)(D,)’

Then,
RUO(x,y)=R(x,y)(D,)". (39
Also,
R (x,y)=R(x, y)(D,)*, (3.10)
hence, from (3.9) and (3.10) we will have
R (x,y)=R(x y)(D,)'(D,)*. (3.11)

Proposition 3.2
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The modified partial derivatives of order (i, j)-th of the row vector R(X,y) takes the following
form:

ROV (x,y)=R(x,y)(D,)'(D,)! + jz_ls(fv*'*"*l)(x, y)(x, yXD,)'(D,)’
1=0 (3.12)

. ii}‘Bfk“fl,o)(x, y) (D, )k(Dy )j'
k=0

where, D, and D, are given before in proposition 3.1 as (3.2) and (3.3), where B, (X,y) , B,(X,y)are
1x(m+21)(n+1) row vectors:

B(x,y)=[0 0 ...0 dm+1,m+2Rm+1,0(X’ y) 00 "'dm+1,m+2Rm+1,l(X’ y)...

(3.13)
O O dm+1,m+2Rm+1,n(X’ y)]'

BZ(X, y)=[0 0.. dn+1,n+2R0,n+1(X’ Y) 00 "'dn+l,n+2R1,n+l(X1 y)
O O dn+1,n+2Rm,n+1(X1 y)]

Before we prove our proposition we note that the two summations in (3.12) are the actual terms to
get the equality sign that was truncated in (3.1) by our assumption:

(Run ()™ =Ry (% V)J*? = Ry n (x, 1)) =0, for m>i and N> j.

(3.14)

These added terms (two summations) will improve the obtained approximate solutions as will be
shown in the numerical examples in section 6.

Proof:
The first partial derivatives of the R(X, y) can be expressed with equality sign by

RV (x,y) =R(x,Y)D, +B(x,y), RV(x,y) =R(xy)D, +B,(x,Y), (3.15)
consequently, to obtain the matrix R"(x, y) , using (3.15) we get:

R™(x,y) = R(x,y)D, + B, (x, y),
R (x,y) = R™(x,y)D, + B (x,y) = (R(X,y)D, +B,(X,¥)) D, + B (x, ),

For this, by induction we get i-th partial derivative with respect to x as
: T :
RV (xy) =R, YD) + ZBI " H(xy) (D), i1, (3.16)
k=0

where

Bfi’o)(x, y)=[0 0..d Rrsni,fl)vo(xa Y) 00.. dm+1,m+2Rr(T:fl),1(X'y)
0 0. dyynoRY (X))

The j-th derivative of the relation (3.16) with respect to the variable y takes the following relation:

m+1,m+2
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_ Cia )
ROD(x,y) = ROV, y)(D,) + B (x,y) (D, )
k=0

= R(x,¥)D, (D,)" +B,(x, y)(D,)' + E)Bg‘k”‘l'l)(x, y) (D))",
and
RO (x,y) =R(x y)(D,)*(D,)' + BV (x, y)(D,)' + kﬁ)B&“”% y) (D,)",
finally, by induction we get (i, j)-th partial derivatives as

R(i,j) (X, y) — R(X, y)(Dy)J (Dx)i + SB(ZO,fHJ?l)(X, Y)(Dy)' (Dx )i
1=0 (3.17)

i-1 o
+ Y Bl L) (x, y) (D, ).
k=0

Similarly, if we begin with the partial derivative of the variable y then we find the (i, j)-th partial
derivatives as

RO (x,y) = R(x,Y)(D,) (D,)’ + J-Z?B(zi"“"l)(x, yXD,)
- 1=0 (3.18)

+ 3 BI 0 (x,y) (D)D),

k=0

Then from (3.17) and (3.18) we find that

R(i’j)(X, y) _ R(X, y)(DX)l (Dy)j + JZ: B&O’_Hj_l)(x, Y)(Dy )I(Dx )i

+> B9, y) (D,)4D,)’,

k

LN

I
o

which ends the proof .
4 Function expansions

A well-defined function u(x,y)where (0< X,y <o), can be expanded in terms of DRC
functions as:

uxy) =3 Ya R (xY), (4.1)

r=0s=0

where

— Lfiju(x’y)Rns(X’y)mKX,Y)dXdy
[ [ RE 06 y)w(x, y)dxdy

The expansion of u(x,y) in (4.1) is truncated ton, Mwheren, m<oo in terms of DRC
functions which it be represented by:

r,s

Uy =38R (xy). = RK YA, @2)

r=0s=0
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where R(X, y)is 1x (m-+1)(n+1) vector with elements R (X,y) and A is an unknown coefficient
column vector are of the form:

ROGY) =[Roo(X,Y) Rps1(%y) o Ron(XY) Rio(Xy) Rii(%y) o Rip(XY)

(4.3)
""" RmD(X!y) Rmi(xvy) e Rmm(xvyﬂr

A=[ay, 8; - 8gp o By e By Ano my - Annl - (4.4)
5 Applications to PDEs

To test the proposed definition we will use DRC technigue to solve PDEs with the unknown
function (X, y) ,and defined in the semi-infinite domain, which takes the form [22- 23]

iimmdeNwa=mKW,OSMW<w (5.1)

r=0s=0
with the non-local conditions

\ i J

> 220" dp)=x,

t=1 r=0 s=0
or
v i j
¢ (04" @, 6) = 9(x),
t=1r=05-0 t (5.2)
or

Voo

—

Z LA e, y)=h(y),

t=1 r=0 s=0

r+s

r,s 0
where the 9 (x,y)=n(x,y), &9 (x,y)= (% y)and p,o(x,Y), a(xy), Crs(X), u(x),

ox"oy
di'j‘(y) and h(y)are defined on semi-infinite interval and ¢,,¢,, ©,, ¢ are

invariable €[0, o) ,especial case if one of them or more of tends to infinity. We suppose that solution
u(x,y) to the analytical solution u(x,y) of Eqg. (5.1) from (4.1) and its (r,s)th partial order
derivatives which deduced in Eqg. (3.12) as:

u(x,y) = ZZAS Res (X ¥)= R(XY)- A, (5.3)

r=0 s=0

and

j-1 _ _
ROGY)(D) (D) + D B (x, y)(D, ) (D, )
u™9(x,y) = L =0 A. (5.4)

+> B (x,y) (D, )(D, )}
k=0

The collocation method is used here to demonstrate the solution of eq. (5.1), the collocation points
X, and Y, will defined in the following:
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1+ cos(f_”J 1+ COS{WJ
X, = ! _ V| (c=1.i-1 =1, j-1), (5.5)

T o ’ y’? - . ’
1- Cos(ij 1- cos(n_j
J

where 0<X;,y, <.

If the variables xand Y defined in finite interval X €[0,a] and y €[0,b]wherea and b any
positive numbers we prefer using another collocation points

c c
x =—7, 7=01,...,m, =—n, n=01...,n
ST Y, nﬂ n=01,

The DRC functions specified by convergent to X and Yy even if they tend to infinity, for this,

doesn't make failure in the method in unbounded domain. Then, substituting the collocation points
(5.5) into (5.1) we get

i

> 3P (% ¥, ) 1TV (X, ) =A% Y, (5.6)

r=0s=0

or briefly by using matrix form
i
Yy P u™=q, (5.7)

where P, ¢ is the block matrix which has the diagonal elements pr’s(X,, y,,) and the other elements are

zeros and Q is the block vector with the components ¢(X., y,]) . Bulging the collocation points (5.5)
into partial derivatives of approximate solution u(x,y) we get

U (X, o)

U(rys)(XO’ Y;)

o || ROY @)+ 3B )0, Y0,

urs) = . = o A, (5.8)
' +2 B (% y) 0,)(D,)
u(x, y;) = '
_U(r'S)(Xi,yj)_
where
R=[R(X,¥o) R(Xp,¥1) - R(X,¥;) R(X,Y¥o) R(x,y1) .o R(x,Yj) - R(X,Yo)
- ROG YD) ROGY) - ROG YT
Therefore, from Eqg. (5.8), we get a system of the form
_ it _ )
. R(x,y)(D,)'(D,)’ + Y BY "1 (x,yXD,)'(D,)
> P = A=Q, (5.9

i-1 . .
r=0 s=0 + Z B{—k“—l,o)(xy y) (Dx )k(Dy )j
k=0
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which is an (i+1)x(j+1) system of linear algebraic equations with (i +1)x(j +1) A, unknowns. By

using the collocation points (5.5) and substitute these points in the conditions (5.2) we get the
fundamental matrices of the form

| R(¢t,<ot)(Dx)f(Dy)5+’2B£°'-'“'-”(¢t,m(Dy)'(Dx)‘
Zb,s = /1=K',

t=1 r=0 s=0 +iB (~k+i-1,0) (¢t’¢t) (D )(D )J

<

R(x..6,(D,)" (D,)* + Z B (x.,6) (D,)(D,)

YY)

1 A=9g(x),
t=1 r=0s=0 + Bl(fkﬂfl’o)(xr ) (9t) (Dx )k(Dy )j
k=0
j-1
v i s R(gﬂ y77 )(Dx)r (Dy)s + Z Bgoy_”j_l)(gt , yﬂ) (Dy )I(DX )i
PIPILECHE N e
t=1 r=0 s=0 n Z Bl(—k+i—1,0)(8t’ yn) (Dx )k(Dy )J
k=0

(5.10)
The fundamental matrix (5.9) for eq. (4.1) is transformed to a system of (i+1)x(]+1)
algebraic equations for the (i +1) x (j +1) unknown RC coefficients
[Aoo Aoy ﬂ,oj Ao Ay e /1” e Aig Aig e /1ij].

We can write the matrix (4.8) as:

YA=Q or [Y;Q] (5.11)
Also, we write the fundamental matrix of the conditions from (4.10) as follows
XA=G, or [X;G] (5.12)

where X is a hx (i +1)(j+2) matrix and G is a hx1matrix, so that h is the rank of the all row
matrices as in (5.11) belong to the given conditions.

Thus, systems (5.11) and (5.12) will be expressed as follows:
Y'aA=Q"or [v:qQ7. (5.13)
Hence, the equations (5.13) can be compacted by putting the vectors (5.12) on conditions to the

equations (5.11). We use the generalized inverse [20] of Y " for solving equations (5.13), and then we
get the unknown A, ¢ from the following:

A =geninv(Y")-Q".

In addition, (5.9) or (5.11) is derived a modified scheme, also, if B, (X,y)andB,(X,y) are
vanish then the regular scheme applied, and they will removed from all steps (5.8) - (5.10).

6 Numerical examples
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In this section, we apply the DRC collocation method is on some test examples to obtain its
applicability and validity. AIll numerical examples are computed on the computer by
MATHEMATICA 7.0.

Problem 1
Consider the PDEs of order two

1 o 1 @ _ —4(x*-2) -
x+1" (X’y)+(x+1)(y+1)ﬂ (*.) (x+1)°%(y+1)°" Xy el0,e), (6D

and the conditions for this test example are:
u(x,y)=1 at x—>oo0 and at y — o0, 1(0,0) =1,

the fundamental matrix takes the form

P,,[R(D,)2 + BE(x, y)(D, f + BLO(x, y)(D, ]
{+ P.[R(D, (D, } + BLO(x, y)(D, } + BO(x, y)(Dy)‘]}A -9

Consider i=j=4, where, the approximate solution has the form
U(X,Y) = Ao,0Ro,0 (% ¥) + 201Ro1 (X, ¥) ++-+ Ay 4Ry 4 (%, Y),

For this, we compute the solve of the augmented matrix of the fundamental relation and conditions,
we will get the unknown coefficients of RC functions as,

/10,0: ﬂ1),1: :/10,420,
Ao=0,4,=1L,1,=0,..=4,=0,
Ao=0,4,=0, .. =4,,=0,

Ao =0, 4, =0, ... =4, =0,

Ao = A4y = .= 4, =0,
; ; . Xy—X—y+1
Then, using the relation (2.2) we get the exact solution w(x,y) =—"———>——, of problem (6.1).
(xX+D(y+1)
Problem 2 Consider Poisson’s equation
Fho+ yy =267, (6.2)

with the Dirichlet boundary conditions

w0, y)=e",  ux0=e>* uly)=e*Y, u(x,)=e*' where 0<xy<l.

The introduced two proposed techniques are using to solve Poisson’s equation (6.2). We see in
table 1 the comparison between the exact (which isz(X,y)=¢e""") and approximate solutions

tabulated (the numerical results for i=j = 8). In addition, table 2 compares the L,, L, error norms of

the modified and regular schemes with different values of i, j. In addition, we illustrate in figures 1
and 2 the absolute errors function for the two schemes at i=j = 8. Previous discussion shows that the
grater i, j give good accuracy and the present technique which used the improved scheme gives us
accuracy better than regular scheme.
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Table. 1 Absolute errors for various values of i, j wherey = 0.1 and X takes various values

X Exact solution I§<§Eeirger Aebrsr%I:Jt scrll\g %Oéif:i?:g Absolut error
0 0.9048374180 | 0.9048371375 | 2.804x107 | 0.9048374183 3.651x1010
0.1 0.8187307530 | 0.8187312589 | 5.058x107 | 0.8187307591 6.152x10°
0.2 0.7408182206 | 0.7408204798 | 2.259x10° | 0.7408182238 3.211x10°
0.3 0.6703200460 | 0.6703153776 | 4.668x10° | 0.6703200391 6.971x10°
0.4 0.6065306597 | 0.6065197858 | 1.087x10° | 0.6065306485 1.127x10®
0.5 0.5488011924 | 0.5488011924 | 1.044x10° | 0.5488019874 7.952x1077
0.6 0.4965853037 | 0.4965803342 | 4.96x10° | 0.4965853166 1.296x10°®
0.7 0.4493289641 | 0.4493302679 | 1.303x10° | 0.4493288701 9.478x108
0.8 0.4065696597 | 0.4065746321 | 4.972x10° | 0.4065696389 2.087x108
0.9 0.3678794411 | 0.3678840147 | 4.573x10° | 0.3678794401 1.725x10°
1 0.3328710836 | 0.3328715031 | 4.194x107 | 0.3328710844 8.791x10%°
Table. 2 Comparing the L, and L, error norms

L, regular L, modified L., Regular L., modified

scheme scheme scheme scheme
i=j=8 9.57079x10° 7.8361x1071? 1.29247 x107° 1.4324x10-6
i=j=10 4.37445x10-8 3.2145x10%® 1.77424x10°° 4.3217x1077

3

Figure.2 Error function for improved scheme at
i=j =10

Figure.l Error function for regular scheme at
i=j =8
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7. CONCLUSIONS

In this work, a collocation technique for linear PDEs defined on semi-infinite domain under
mixed conditions with variable coefficients is proposed. The technique is based on the approximating
the solution function by the truncated DRC series. The definitions of the partial derivatives of DRC
functions are introduced in a regular and an improved form. The regular and improved definitions
generate two schemes with the collocation method. The PDEs and conditions are transformed to block
matrix equations. This matrix equation is a system of linear algebraic equations with the unknown RC
coefficients. Test examples are used to demonstrate the applicability, effectiveness and the accuracy
of the proposed techniques. Also, the numerical results obtained that the improved scheme gives
better accuracy than the regular scheme.
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