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Abstract
With success on controlled tasks, deep generativemodels are being increasingly applied to
humanitarian applications (Nie et al 2017 Int. Conf. onMedical Image Computing andComputer-
Assisted Intervention (Berlin: Springer) pp 417–25, Yanardag et al 2017Deep Empathy). In this paper,
we focus on the evaluation of a conditional generativemodel that illustrates the consequences of
climate change-induced flooding to encourage public interest and awareness on the issue. Because
metrics for comparing the realism of differentmodes in a conditional generativemodel do not exist,
we propose several automated and human-basedmethods for evaluation. To do this, we adapt several
existingmetrics and assess the automatedmetrics against gold standard human evaluation.Wefind
that using Fréchet InceptionDistance with embeddings from an intermediary Inception-v3 layer that
precedes the auxiliary classifier produces resultsmost correlatedwith human realism.While
insufficient alone to establish a human-correlated automatic evaluationmetric, we believe this work
begins to bridge the gap between human and automated generative evaluation procedures, and to
generatemore realistic images of the future consequences of climate change.

1. Introduction

Historically, climate change has been an issue aroundwhich it is hard tomobilize collective action, notably
because public awareness and concern around it do notmatch themagnitude of its threat to our species and our
environment [1, 2]. One reason for thismismatch is that it is difficult for people tomentally simulate the
complex and probabilistic effects of climate change, which are often perceived to be distant in terms of time and
space [3]. Climate communication literature has asserted that effective communication arises frommessages
that are both emotionally charged and personally relevant over traditional forms of expert communication such
as scientific reports [4], and that images in particular are key to increasing the awareness and concern regarding
the issue of climate change [5].With this inmind, our project leverages theMUNIT architecture [6] to perform
cross-domainmultimodalmapping between a street-level imagewithout any flooding tomultiple versions of
this image under diverse flood transformations, to visually represent the impact of climate change-induced
flooding on a personal level (for results of ourmodel, seefigure 1).

Generally speaking, generativemodels suffer from a lack of strong evaluationmethods for comparing across
both differentmodels and differentmodes of the samemodel. Undeniably,much of the utility of generative
models arises from their ability to produce diverse, realistic outputs, in addition to controlling generation—such
as over specificmodes, class labels [7], or visual attributes [8]—using conditional constraints. Conditional GANs
have two inputs: the conditioning input (in our case, the image of a non-flooded house) and the randomnoiseZ
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which selects a style, defined as amode of the conditional distribution learned in an unsupervisedmanner.
Existingmethods for evaluating the quality and diversity of the generated outputs have strong limitations, and
are particularly scarce for conditionalmodels.Widely usedmetrics include using heuristic approximations
[9–11] that do not necessarily correlate with human judgment [12], rendering quantitativemeasurement of
progress difficult.We encountered this issue during the course of the development of ourmodel and in this
paperwe propose generally applicablemethods for quantifying the realism ofmodes learned by a generative
model.We start with a human evaluation of the images and styles produced by amultimodal generativemodel,
followed by a comparison of human and automated approaches for evaluating the output ofmultimodal
generativemodels, illustrated in the context of our image generation task.

2. Relatedwork

Todate, there have been twomain approaches proposed for generativemodel evaluation: automatedmetrics
such asKernel InceptionDistance (KID) [13], Inception Score (IS) [10] and Fréchet InceptionDistance (FID)
[11], which all aim to evaluate both the visual quality and sample diversity of generated samples at the
distribution level, and,more recently, human-centeredmetrics such asHYPE (Human eYe Perceptual
Evaluation) [12], which use human evaluators to assess image realism. Both approaches have their advantages
and drawbacks: while automatedmetrics are cheap and easy to compute, they need large sets of both generated
and real samples in order to produce reliable scores, which even then are not comparable between different
tasks. Humanmetrics, on the other hand,may bemore representative of human perception, but aremore costly
to compute and can vary depending on task design [14, 15].

Recent work has proposedways of extending existing automatedmetrics, for instance by using amodified
version of FID for conditionalmodels [16] and sampling heuristics such as the truncation trick [17]. However,
thesemodifications do not evaluate the visualfidelity between differentmodes, only within them in the case of
Fréchet JointDistance [16], which limits their application inmultimodal settings such as ours.Methods for
detecting artifacts [18] and artificialfingerprints [19] in generated samples also touch on perceptual fidelity, but
either, in the case of artifacts, are a subset of image realism or, in the case of artificial fingerprints, encompass
non-perceptual qualities that are imperceptible to a human viewer. Therefore, within the scope of our research,
we found no satisfactory automatedmetric that would allow us to evaluate the realism of the images that we
generated, andwe endeavoured tofind newways of doing so, whichwe describe below.

Figure 1.Generated images offlooded scenes fromourmodel on the right (input on the left), spanning a range of scenes including an
urban street, a city view, and a suburban scene. These images also span a range of performance on human perceptual realism, from
highly realistic on top to highly non-realistic on the bottom. ExactHYPE-Style scores are indicated in parentheses.
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3. Evaluating image realism

The research questions thatwe aim to answer are as follows: (1)What is themost effective way to evaluate the
realism of different styles generated by ourmodel? and (2)Canwe propose an automatedmethod that is
correlatedwith human perceptual realism for automatically selecting the bestmode on the flood generation
task?We frame this task at the style level: for each given style vector, which represents amode of the conditional
distribution, we aggregate acrossmultiple samples conditioned on the samemode. This style-level aggregation
avoids evaluating on individual samples, whichwould produce noisier comparisons.We accomplish this by
adapting theHYPEmetric for style-level assessment using crowdsourced human evaluation, and call our new
metricHYPE-Style (see section 3.1).We compareHYPE-Style against various automatedmetrics, which adapt
FID andKID to the style comparison task. For eachmetric, we also experiment with different Inception layers.

We analyze Pearson’s correlation coefficient r between each proposed automated style rankingmethod and
HYPE-Style to identify themethod that ismost correlatedwith humanperceptual realism. Themeasure r has
support [−1, 1], where values of 1 and−1 indicate strong positive and negative correlation, respectively, while
values around zero indicate low correlation. An r of 1 is themaximumperformance achievable on thismetric.
We also compute the 95%bootstrapped confidence intervals (CIs) on rusing 25 replicates in order to determine
the separability of the scores. For each replicate i, we computeHYPE-Style and an automated score using images
sampledwith replacement, fromwhichwe calculate ri.We report themedian r values, with 95%bootstrap CIs.

3.1.HYPE-style: human evaluation
In order to establish a human gold standard, we evaluated 500 image-style combinations drawn fromourmodel,
based on 25 input images of diverse locations and building types (houses, farms, streets, cities), eachwith 20
styles generated by ourmodel. To establish the human baseline, we presented 50 images to each of our human
evaluators: 25 realflooded images and 25 generated images. Following prior work, evaluators were calibrated
andfiltered by this tutorial of half real and half generated images, andwere given unlimited time to label an
image real or fake [12]. For each image, we compute the average error rate, which corresponds to the proportion
of human evaluators who judged the image as real. Higher values indicatemore realistic images.

Wemake severalmodifications to prior work in order to enable intra-style comparisons in conditional
generation. Instead of randomly sampling across all generated images, we constrain the procedure in two
ways:(1)we require that each style and image combination is evaluatedmultiple times, sowe have comparisons
between styles yet still within a given image, and(2)we ensure that evaluators do not seemultiple styles
generated from a given input image, as this visual redundancy would reveal that theywere generated. These two
adaptations increase the number of evaluators needed for this task, as evaluators are restrained to a limited set of
images sans input redundancy, while still needed to evaluate across different styles for given input images.

We also diverge from the original HYPEmetric when calculating scores, aggregating images by style into
groups and computing themicro-average of all human evaluator labels within each group. Specifically, for each
style s and image x, we havemultiple human labels lx

s marked either ‘real’ (1) and ‘generated’ (0) based on human
judgments of its realism andwe computeHYPE-Style=å li i

s for each style s, summing across images of that
particular style. Thus, higher scores on generated images indicate higher fool rates and seemmore realistic to
humans on average.We use these style-level scores as the human baseline, where higher scores indicatemore
realistic styles, whichwe callHYPE-Style. This human evaluation, whilemore precise and reliable, is expensive
and time-consuming to performper style: we thus set out tofind automatedmethods that aremost correlated
with human judgment to assess amuch larger set of styles than is cost-efficient forHYPE-Style.

3.2. Automated style rankingmethods
Weadapted FID andKID to compute distances between real and generated distributionswithin a single style,
and use these as the style scores.We also experimented with different layers of the Inception-v3 architecture
trained on ImageNet [10] that span low-level (pool1) to high-level (pool3) features. For our evaluation, we
included features from all three pooling layers, as well as the featuremap before the auxiliary classifier (pre-aux).
In total, we evaluate eight automatedmethods {FID, KID}×{pool1, pool2, pre-aux, pool3}.

As shown in table 1, both FID andKIDusing pre-aux embeddings exceed the othermetrics in correlating
with humanHYPE-Style scores, with amoderate correlation (r=0.433 and r=0.432, respectively). Following
thesemetrics, the observed order is: FIDusing pool3 embeddings (r=0.407), or the original FID score, then
KIDusing pool3 embeddings (r=0.367). Finally, FID andKIDusing pool2 and pool1 layers exhibit
extremelyweak correlationwith r<0.2.When comparing performance between layers, KID and FID track
each other, with pre-aux embeddings coming first, followed by pool3, pool2, and lastly pool1.

While the original FIDpaper proposed to use features from the third and last 2048-dimensional
pooling layer (pool 3) of an ImageNet-pretrained Inception-v3 network [11], we find empirically that the
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768-dimensional Inception-v3 layer just preceding the auxiliary classifier head (pre-aux) outperforms the
pool3 layer and other earlier pooling layers {pool1, pool2}. Intuitively, this is explained by the fact that the
pre-aux layer is themost feature-rich layer that is still regularized by the gradients from the auxiliary classifier.
This regularizationwould encourage the layer to encodemore general features that are less overfit to ImageNet,
which ismore useful on this task, whose domain differs significantly from ImageNet. ImageNet itself has, in fact,
also been criticized for generalizing poorly to test sets within its own domain [20].We found that the choice of
the pre-aux layer over pool3 and others is consistent across FID andKID, with scores of 0.433 and 0.432 on the
pre-aux layer against 0.407 and 0.367 on pool3 for FID andKID, respectively. As a note, the difference between
the FID layers’ r values are not fully separable based on their 95%bootstrappedCIs.We show the rank order
correlation betweenHYPE-Style with FIDon the pre-aux layer embeddings infigure 2, with exact numbers in
figure 3.

Table 1.Pearson’s r correlation coefficient. Results of Pearson’s r and bootstrap 95% confidence intervals between humanHYPE-Style
scores and all automatedmethods across different layers of an ImageNet-pretrained Inception-v3model, including the three pooling layers
(pool 1, pool 2, pool 3) and the layer preceding the auxiliary classifier (pre-aux). Higher values indicate greater correlation.

Pool1 Pool2 Pre-aux Pool3

FID 0.103 (0.53, 0.153) 0.146 (0.099, 0.193) 0.433 (0.390, 0.476) 0.407 (0.366, 0.448)
KID 0.010 (−0.041, 0.061) 0.034 (−0.015, 0.083) 0.432 (0.389, 0.475) 0.367 (0.322, 0.412)

Figure 2.Rank order correlation betweenHYPE-Style and the best performing automatedmetric using FIDonpre-auxiliary layer
embeddings. Pearson’s r correlation coefficient exhibitsmoderate correlation (0.433).

Figure 3.Box plot of FIDperformance using pre-auxiliary layer embeddings on different styles. The different styles are ordered by
HYPE-Style scores to observemoderate correlation.
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4.Discussion and futurework

In this paper, we contribute a human evaluationmetric for evaluating different styles on a generativemodel.We
also evaluate eight different automatedmethods, finding that using Inception embeddings preceding the
auxiliary classifier correlatesmorewith human perception on this task thanwidely usedmethods using the last
pooling layer. Ourwork ismotivated largely by the dearth of available, reliable evaluationmetrics for quantifying
the progress of this task.

While none of the automated approaches evaluated comes sufficiently close toHYPE-Style for standalone
use, ourwork still constitutes an initial foray into evaluating style-level attributes ofmultimodal cross-domain
mapping, an areawhere it remains difficult to usemainstream automated evaluationmetrics out of the box.
Specifically, FID is a biased estimator and does not performwell on datawith few samples.While KID remedies
some of this problem, it is still possible that the order ofmagnitude of data was still insufficient for KID to be
consistent and reliable without large number of runs. Nevertheless, bothmetrics have been shown to correlate
imperfectly with human judgment. Their deficiencies lie in their relative insensitivity to visual features over
semantic distortions and certain artifacts; these are a result of relying on embeddings from a pretrained
ImageNet Inception-v3model. Specifically, wefind that automatedmetrics fail to detect artifacts in regions
outside of thewaterflooding zones, e.g. the sky, that humans could immediately discern, as well as noise that
appears to look like verticalmotion blur in only parts of the image. An additional limitation of FID andKID is
that they are distribution-levelmetrics and thus cannot compare individual images.

As future work, we plan to both improve the realism of our generativemodel and explore improvedmethods
for evaluation, which persists as an open research problem in generativemodels. For instance, the performance
of the pre-auxiliary classifier embeddings suggest that we are operating outside the domain of ImageNet, and
from this insight, we are inclined to leverage other embedding spaces, e.g. theMapillary or Cityscapes datasets
[21, 22], which could providemore suitable street-level scenery features that is similar to ours. Using amethod
that is pretrained on ImageNet, thenfine-tuned on a relevant dataset could provide improvements to automated
evaluation.We could also explore differentmethods ofmeasuring precision on generated images [23]. The
variance offlooding severity is another area thatwould require conditional evaluation; that is, provided a certain
flood condition, e.g. 2 m sea level rise, whatwould this look like on a given image? Asfloodingmodels growmore
precise, we plan to juxtapose generated images of varying severity levels, using automated depth and height
estimation techniques to project levels offlooding on streets and buildings.

The ultimate vision of this work is to create an interactive,ML-basedwebsite which, given an image from
Google StreetView [24] based on a user-chosen location, is able to generate themost realistic image of climate
change-induced extremeweather phenomena given the contextual characteristics of that given image and the
future climate projections at that given location [25].While representing flooding realistically is the first step to
achieving this goal, particularly given the high population density of coastal regionsworldwide, we later aim to
represent other catastrophic events that are being aggravated by climate change (e.g. tropical cyclones or
wildfires) using a similar approach, in the hopes that thesewill help raise awareness of the far-reaching future
impacts of climate change.

Data availability statement

The data that support thefindings of this study are available from the corresponding author, AL, upon
reasonable request.
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