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Abstract

In this paper, an extended spectral conjugate gradient method is proposed for solving
unconstrained optimization problems, where the search direction is a linear combination of
the gradient vector at current iteration and the search direction at the previous iteration.
Instead of specifying a fixed expression to compute each combination coefficient in the
existent methods, only suitable conditions are presented for the combination coefficients
such that the values of coefficients are chosen freely in a range. Under some mild
assumptions, with step lengths satisfying the Armijo condition, global convergence is
established for the developed algorithm. It is shown that some existent methods are the
special cases of the presented method in this paper.

Keywords: Unconstrained optimization; conjugate gradient method; line search; global
convergence.
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1 Introduction

Consider the following unconstrained optimization problem:
min ( ), nf x x RÎ ， （1）
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where : nf R R® is a continuously differentiable objective function. Amongst all existent
solution methods for solving (1), nonlinear conjugate gradient method is paid a lot of attentions
recently owing to the simplicity of computation and the requirement of low memory. In this
connection, one can see, for example,[1-14] and the references therein.

As an extension of the ordinary conjugate gradient methods, spectral conjugate gradient method is
often more efficient in numerical performance than the others since it incorporates the advantages
of spectral method and conjugate gradient method into constructing a search direction. For recent
advancement his aspect, see, for example, [3,6,8,10-14].

Different from the existent spectral conjugate gradient methods, where the search direction is a
linear combination of the gradient vector at current iteration and the search direction at the
previous iteration, in this paper, we intend to investigate an extended spectral conjugate gradient
method for solving unconstrained optimization problems. Instead of specifying a fixed expression
to compute each combination coefficient in the existent methods, only suitable conditions are
presented for the combination coefficients such that the values of coefficients are chosen freely in
a range. Thus, the proposed method in this paper is an extended version of spectral conjugate
gradient method. Under some mild assumptions, with step lengths satisfying the Armijo condition,
we will establish global convergence for the developed algorithm. To show the generalization of
the method, some existent methods will be proved to be its special cases.

The rest of this paper is organized as follows. In next section, a generic framework of spectral
conjugate gradient method is presented. Some sufficient conditions are given to establish the
global convergence in Section 3. In Section 4, it is shown that several existing methods are the
special cases of our method. Some final remarks are given in the last section.

2 Generic Framework of the Developed Method

In the classical conjugate gradient method, a search direction kd at the current iterate point kx is
determined by

0,

1,

0,
1,k

k k k

g if k
d

g d if kb -

ì - =ï= í
- + ³ïî

（2）

Where k is called the conjugacy coefficient, kg is the value of the gradient function g at kx .

Different from the classical conjugate gradient method, in a spectral conjugate gradient method,
the search direction kd is defined as follows:

0

1

, 0,
, 1,k

k k k k

g if k
d

g d if kq b -

ì - =ï= í
- + ³ïî

（3）
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where k is called a spectral coefficient. It is easy to see that (3) reduces to (2) if 1kq = . Since
there are two types of parameters can be suitably chosen to obtain a search direction in (3), it is
possible that (3) combines the advantages of spectral method and conjugate gradient method.

However up to now, in the existent methods, it is by specifying a fixed expression for the spectral
coefficient and the conjugacy coefficient in (2) or (3) such that a desired search direction kd is
obtained to improve the efficiency of algorithm and establish the convergence. Instead, in this
paper, we are going to present an extended spectral conjugate gradient method, which allows the
spectral coefficient and the conjugacy coefficient to be chosen freely in a range defined by some
suitable conditions (see Assumption 2 in Section 3). In addition, we extend (3) to the following
more generic form:

1 2

0

1 1 2 1

0,
( , ,..., , , ,..., ) 1,k

k k k l k k k l

g if k
d

D g g g d d d if k- - - - - -

ì - =ï= í ³ïî
(4）

where 1 2 2: l l nD R R+ + ® is a vector-value function, it is called the direction function,

10 l k£ £ and 20 1l k£ £ - .If 1 0l = , 2 0l = and D is linear, then（4）reduces (3).

Remark 1: In the generalized spectral conjugate gradient method (4), to obtain a suitable search
direction kd , the direction function D should owns some properties such that the performance of
the corresponding algorithm is improved. In particular, if D is a linear combination of the
vectors kg , 1kg - ,…,

1k lg - , 1kd - , 2kd - ,…,
21k ld - - , then the choices of combination coefficients

play an important role in the design of efficient algorithm and in the establishment of
convergence. It really is an interesting issue to specify analytic expression to compute all the
coefficients or to present some suitable conditions for these coefficients, but we focus on
presenting suitable conditions on the coefficients in (3) for convenience of establishing the global
convergence for the developed algorithm.

In the end of this section, we state a framework of the extended spectral conjugate gradient
algorithm as follows.

Algorithm 1:
Step 0.  Choose a tolerant constant 0e > . Choose an initial point 0

nx RÎ . Let : 0k = .

Step 1.  If kg e£ , then the algorithm stops. Otherwise, compute kd by (4). Go to Step 2.

Step 2.  Determine a step length k by a line search strategy.

Step 3.  Set 1 :k k k kx x da+ = + , and : 1k k= + . Return to Step 1.
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3 Global Convergence

In this section, we are going to find some conditions which ensure the global convergence of
Algorithm 1. For sake of simplicity, it is studied for the case that 1 0l = , 2 0l = and D is linear
in (4), which is defined as in (3).

We first give two mild assumptions on the structure of Problem (1).

Assumption 1:
(1) The level set 0{ ( ) ( )}nx R f x f xW= Î £ is bounded for a given initial point 0x .
(2) In some neighborhood N of W， f is continuously differentiable and its gradient is
Lipschitz continuous. It says that there exists a constant 0L> such that

( ) ( ) , ,g x g y L x y x y N- £ - " Î
(5）

The following conditions are on the direction and the step length generated by Algorithm 1.

Assumption 2:
(1) (a) For 0k ³ , we have

2T
k k kg d g= - （6)

(b) For 0k ³ , the inequality
2

2
1

k
k

k

g
g

b
-

£ （7)

holds.
(2) For 0k ³ , define

k k kca a= % (8)

where k% is a step length satisfying:

( ) ( ) T
k k k k k k kf x d f x g da da+ £ + (9)

with a constant (0,1)d Î . For such an k , suppose that { kc } is bounded.

Remark 2: It is noted that Assumption 2(1) is on the search direction, and Assumption 2(2) on the
step length.

Before stating a theorem of global convergence, we first prove the following lemma.
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Lemma 1: Under Assumptions 1 and 2, it is obtained that
4

2
0

k

k k

g
d³

< ¥å (10)

Proof: From the Armijo line search rule, we know that 1
k%r a

- satisfies the following inequality
1 1

1( ) ( ) T
k k k k k k kf x d f x g dr a s a r- -+ - >% % (11)

From Assumption 1(2), we have

( ) ( ) ( )1 1 1 T

k k k k k k k k k kf x d f x g x t d dr a r a r a- - -+ - = +% % %

( )( )1 1 1 TT
k k k k k k k k k kg d g x t d g dr a r a r a- - -= + + -% % %

21 2 2 .T
k k k k kg d L dr a r a- -£ +% %

where ( )0,1kt Î is a constant scalar such that 1
k k kx t r a-+ Î W% .

Therefore, from (11), it is obtained that
21 1 2 2

1
T T

k k k k k k k kg d g d L ds a r r a r a- - -< +% % %

It reads
22 2

1(1 ) 0T
k k k k kg d L ds a r a-- + >% %

From (6), it follows that
2

1
2

(1 ) k
k

k

g
L d

r s
a

-
>%

Taking

( )11
m

L
r s-
=

.
Then, from the line search rule (8) and Assumption 1, it follows that there exists a constant M
such that

( ) ( )
1 1

1 1
0 0

n n
T T

k k k k k k k
k k

g d c g d%s a s a
- -

= =
- = -å å

( )
1

1 1
0

n
T

k k k
k

c g ds a
-

=
£ -å %

( ) ( )( )
1

1
0

1
n

k k
k

c f x f x
-

=
£ - +å
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( ) ( )1 0 12nc f x f x c Mé ù= - <ë û
where { }1 max kc c=

.

Combined with (6), we have

( )
1

1 1
0

2
n

T
k k k

k
c M g ds a

-

=
> -å

1 2
1

0
( )

n

k k
k

gs a
-

=
=å

1 2
1

0
( )

n

k k k
k

c gs a
-

=
=å %

4
1

1 2 2
0
( )

n
k

k k

g
mc

d
s

-

=
³ å

where { }2 min kc c= .The desired result is obtained.

Now, we are in a position to present the main theorem in this paper.

Theorem 1: Let { }kx be a sequence generated by Algorithm 1.Under Assumptions 1 and 2, the
following result holds:

lim inf 0kk
g

® ¥
= . （12）

Proof : Suppose that there exists a positive constant 0e > such that

kg e³ （13）
for all k.  Then, from (3), it follows that

2 T
k k kd d d=

( )( )1 1
T T

k k k k k k k kg d g dq b q b- -= - + - +

( ) ( )22 22
12 T T

k k k k k k k k kg d g g dq q q b -= - + +
2 2 2 2 2 2

1|| || 2 2 || || ( ) || ||T
k k k k k k k k kg d g g dq q q b -= - - +

2 2 2 2
1( ) || || 2 || || .T

k k k k k k kd d g gb q q-= - -

Dividing by ( )2T
k kg d in the both sides of this equality, then from (6), (7), we obtain

( )22 2 22
1

4 4

2 T
k k k k k k k k

k k

d d d g g
g g

b q q- - -
=

( )22
1

4 2 2
1

1 1k k

k k k

d
g g g

q-

-

-
£ - +
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2
1

4 2
1

1k

k k

d
g g
-

-

£ +

1
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1k
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-

=
£ å

2

k
e
£

The last inequalities implies
4

2
2

1 1

1k

k kk

g
kd

e
³ ³

³ = +¥å å
which contradicts the result of Lemma 1. Therefore,

lim inf 0kk
g

® ¥
=

The proof of the desired result is completed. ■

4 Remarks on the Existent Methods

In this section, we shall give some remarks on the existent spectral conjugate gradient methods. It
is shown that they are special cases of the proposed method in this paper.

It is first noted that, in [7], the conjugate and spectral parameters of the search direction are taken,
respectively, as follows:

2

2
1

,k
k

k

g
g

b
-

= 1 1
2

1

T
k k

k
k

d y
g

q - -

-

=

The step size k in [7] is chosen by

2

k

T
k k

k
k Q

g d
d
da = - （14）

where min, 0,
k

T
k k k kQ

vd d Q d
L

d
æ ö
ç ÷= Î ç ÷è ø

and
min

1L
v
d < ,L is a Lipschitz constant, { }kQ is a

sequence of positive definite matrices satisfying min max
T T T
k k k k k k kv d d d Q d v d d£ £

，
and minv

、 maxv are positive constants.

From Lemma 1 in [7], we have
2T

k k kd g g= -
From (14) and Lemma 1 of [7], it follows that
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2

2 2
min

k

T
kk k

k
k kQ

gg d
d v d

dda = - £

2

2
k

k
k

g
m

d
a >%

and

min

10 k
k

k

c
mv mL

a d
a

< = £ <
%

Therefore, the sequence { }kc is bounded.

On the other hand, it is obtained that
2T

k k kd g g= -
2 2

2 2
1 1

k k
k

k k

g g
g g

b
- -

= £

and

k k kca a= 

where
1

kc
mL
< is bounded. In other words, Assumption 2 holds.

From the above discussion, it is seen that the convergence result in [7] is a special case of that
obtained in this paper.

Secondly, we discuss the modified method A in [6]. The search direction of the modified method
A in [6] is

0

1

, 0,
, 1,k

k k k k

g if k
d

g d if kq b -

ì - =ï= í
- + ³ïî

where

( )1 1
2

1

,
T

k k k
k

k

g g d
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q - -

-

-
=

and
2

2
1

.k
k

k

g
g

b
-

=

We can prove the following result.
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Lemma 2: Suppose that kd is determined by the modified method A in [6]. Then, the following
result

2T
k k kg d g= -

holds for any 0k ³ .

Proof: Firstly, for 0k = , it is easy to see that is true since 0 0d g= - .

Secondly, assume that
2

1 1 1 , 1T
k k kg d g k- - -= - " ³

holds for 1k - . Then, from the modified method A of in [6], it follows that
2

1
T T
k k k k k k kd g g d gq b -= - +

2
1 1

12 2
1 1

( )T
kT Tk k k

k k k k
k k

gg g d g g d g
g g
- -

-
- -

-= - +

1 1
2

1

T
Tk k

k k
k

d g g g
g
- -

-

=

( )
2

2
12

1

k
k

k

g
g

g -
-

= -

2 .kg= -
Thus, it is also true with 1k - replaced by k . By mathematical induction method, we obtain the
desired result.

In the other hand, in [6], the step size

22

T
k k

k
k

g d
L d

a -= -

where L is a Lipschitz constant, so

1

1 10
2 2 (1 )

k
k

k

c
mL

a
a r d

< = < =
-

Therefore, it is obtained that
2

2 2

2 2
1 1
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T
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k k
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g g
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and

k k kca a= %

where
( )1

1
2 1kc
r s

<
-

is bounded. That is Assumption 2 holds.

From the above discussion, it is clear that the convergence result in the modified method A in [6]
is a special case of that obtained in this paper.

We now in a position to review the method presented in [14]. In [14], the step size ka is chosen

to be the largest component in the set { }, 0,1,...j jr = such that

2 2
1 2( ) ( ) || ||k T

k k k k k k k kf x a d f x a g d a dd d+ £ + - . (15)

We first prove the following theorem, which shows that the line search rule (15) is actually the
standard Armijo line search (9).

Theorem 2: Let ka be the largest component in the set { }, 0,1,...j jr = such that
2 2

1 2( ) ( ) || ||T
k k k k k k k k kf x a d f x a g d a dd d+ £ + -

Then, there a constant scalar ( )0,1s Î such that ka satisfies

( ) ( ) T
k k k k k k kf x a d f x a g ds+ £ + . (16)

Proof: Firstly, from (2.3) in [15], it follows that for all 0k > ,
2|| ||T

k k kd g g= -

Combined with the result of Lemma 3.1 in [14], which says
2

2

|| ||
|| ||

k
k

k

ga c
d

³ , where

1

2

(1 )min 1, ,c
L
d r
d

ì ü-ï ï= í ý
+ï ïî þ

1 2, 0, (0,1)d d r> Î , we have

2 2
1 2( ) ( ) || ||T

k k k k k k k k kf x a d f x a g d a dd d+ £ + -
2

1 2( )+ || ||T
k k k k k kf x a g d a c gd d£ -

1 2( ) +T T
k k k k k k kf x a g d a cg dd d= +

(17)

1 2= ( ) ( ) T
k k k kf x c a g dd d+ +

Next, we prove that 1 2cd d+ is a constant in the interval ( )0,1 .
On one hand,
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1
1 2 1 2 1 2

2

1min ,c
L
dd d d d d d r
d

ì ü-ï ï+ = + +í ý
+ï ïî þ

2
1 2 1 1

2

min , (1 )
L
d rd d d d
d

ì üï ï= + + -í ý
+ï ïî þ

On the other hand, since 2

2

1
L
d
d
<

+
, and 2 2

1 1 1 1
2 2

(1 ) 1 (1 )
L L
d r d rd d d d
d d

+ - = × + - ×
+ +

is a

convex combination of 1 and 2

2L
d
d+

, it is clear that 1 20 1cd d< + < .

Therefore, there exists a constant scalar 1 2 (0,1)cs d d= + Î such that ka satisfies

( ) ( ) T
k k k k k k kf x a d f x a g ds+ £ +

Remark 3: Theorem 2 indicates that the line search proposed in [14] is not a modification of the
standard Armijo line search. Thus, it is concluded that the efficiency of the developed algorithm in
[14] does not result from the used line search rule.

In addition, it is noted that, in [14], the conjugate parameter is chosen as
2

2
1

|| ||
|| ||

k
k

k

g
g

b
-

= .Whence,

it is easy to prove that
2= || ||T

k k kd g g- .
2 2

2 2
1 1

|| || || ||
|| || || ||

k k
k

k k

g g
g g

b
- -

= £

k k ka c a= 

where 1kc = is bounded. Therefore, Assumption 2 is satisfied, which implies that the
convergence result in [14] also is a special case of that obtained in this paper.

Remark 4: From the above discussion on the existent three algorithms, our algorithm is an
extension of them even if for the simplest case (3). Different from the other similar spectral
conjugate gradient methods available in the literature, the values of the spectral and conjugacy
parameters in the extended method (3) can be chosen in a suitable range, instead of fixed
expression for each parameter.

5 Final Remarks

In this paper, we have proposed an extended spectral conjugate gradient method. It has been
shown that the other three classes of existent methods are the special cases of the presented
method. Some suitable conditions were presented to ensure the global convergence of the
developed method.
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