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Abstract 

Dynamics of ions in biological ion channels has been classically analyzed us-
ing several types of Poisson-Nernst Planck (PNP) equations. However, due to 
complex interaction between individual ions and ions with the channel walls, 
minimal incorporation of these interaction factors in the models to describe 
the flow phenomena accurately has been done. In this paper, we aim at for-
mulating a modified PNP equation which constitutes finite size effects to 
capture ions interactions in the channel using Lennard Jonnes (LJ) potential 
theory. Particularly, the study examines existence and uniqueness of the ap-
proximate analytical solutions of the mPNP equations, First, by obtaining the 
priori energy estimate and providing solution bounds, and finally construct-
ing the approximate solutions and establishing its convergence in a finite di-
mensional subspace in L2, the approximate solution of the linearized mPNP 
equations was found to converge to the analytical solution, hence proof of ex-
istence. 
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1. Introduction 

Biological cells are composed of proteins arranged in folded chains of amino ac-
ids to form ionic channels that are nanoscopic water-filled pores to perform the 
role of controlling transport of ions in cell membranes. The channel maintains 
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correct ion composition and balance in cells that is crucial in their survival and 
numerous functions of propagating life such as, energy conversion, drug deli-
very, secretion, among others. These functions are varied and enabled by ability 
of the cells to carry strong and steeply varying distribution of permanent charges 
depending on combination of the nanotubes and prevalent physiological condi-
tions. 

Ion channels are characterized by their functioning, some are known to exhi-
bit complex switching properties similar to electronic devices, others have the 
ability to selectively transport or block a particular ion species, while others 
have no selectivity, see [1]. To develop deeper understanding of the processes 
in the channel both analytical and empirical investigation are critical. Numer-
ical experiments approximate transport through biological channels to deter-
mine amongst other things structures and conductance of ion channels as a 
means of minimizing cost and complementation of empirical findings, see [2]. 
Poisson Nernst Planck (PNP) equations for a long period of time has been 
adopted as a classical mathematical model and analysis tool of choice for study-
ing ion flow. The model couples electrostatics with diffusion process as a popu-
lar theoretical method to robustly simulate ion channel systems. However, the 
major drawback of PNP model is that it neglects finite size effects in biological 
channel systems resulting into significant inaccuracies. 

Incorporating electrostatic interaction of ions and finite size effects particu-
larly in narrow regions has been suggested, investigated and determined to 
impact in reduction of error in solution approximation. Energy Variational 
Approach was used by [3] to derive an accurate generalized Poisson Nernst 
Planck-Navier Stokes (PNP-NS) system which characterizes interactions of 
charged fluid and mutual friction between the crowded charged particles. A 
general method was thereafter developed to show that the system is globally 
asymptotically stable under small perturbation around a constant equilibrium. 
Subsequently, [4] derived mPNP system which includes an extra dissipation due 
to effective velocity differences between ion species, then using Galerkins me-
thod and Schauders fixed point theorem local existence theorem of the classical 
solutions of the mPNP system was established. 

Other forms of transformations though with inherent limitations to im-
prove accuracy in the approximation of ion flow parameters in cell mem-
branes have been suggested in several models such as steady state modified 
Poisson-Boltzmann (mPB) model. The mPB was later improved using Lam-
bert-W special functions and the existence and uniqueness of its weak solution es-
tablished. [5] equally derived a simple and effective modified Poisson Nernst 
Planck (mPNP) based on spartial modification of the diffusion coefficients of ions. 

The work presented here considers a mathematical model by Lennard Jones 
(LJ) in 2D. The model consists of nonlinear PDEs with transport properties as-
sumed to vary in continuous and differentiable manner. Critically in this study 
we employ the LJ repulsive potential for the finite size effects to device a further 
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improved PNP equation. We use the variational approach to derive the total 
energy for LJ repulsive potential which leads to generation of a system of equa-
tions that incorporates contribution of finite size effects. Consequently, analysis 
of the local existence of weak solutions of the resultant mPNP by constructing an 
approximate solution in a finite dimensional space in L2 is carried out. 

2. Model Description 

Deterministic mathematical model for simulating ion transport in bio cells are 
space and time dependent nonlinear PDEs posed as Initial value problems(IVP). 
Upon incorporating realistic and necessary physics for the flow phenomena the 
mPNP-IVP becomes complex deterring analytical determination of solution. In 
principle, to reduce intricacy in the approximation when fundamentally retain-
ing accuracy in the estimation of the flow parameters, interaction of charged 
particles alone is declared sufficient. This leads to dropping inclusion of charges 
interaction with the channel walls and fluid which are assumed to have minimal 
contribution in the approximation results. 

2.1. Modified Poisson Nernst-Planck (mPNP) Equation 

The integral form of energy equation that integrates finite size effects and inte-
ractions between charged particles can be modelled as repulsive or attractive 
spherical particles in the energy term. The energy of these effects in the micro-
scopic scale are summed to represent potential between the positive and negative 
charges [6] [7] [8] given by 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 d d
2

1 d d
2
1 d d
2

nn n n

np n p

pp p p

E c c

c c

c c

Ω

Ω

Ω

= Ψ −

+ Ψ −

+ Ψ −

∫∫

∫∫

∫∫

x y x y x y

x y x y x y

x y x y x y

              (1) 

where the repulsion or attractive potential between two balls of ions i and j of 
radius ia , ja  respectively situated at x  and y  in the two-dimensional spa-
tial domain Ω  given by  

( ) ( )12

12 ,i j
ij ij

a a
ε

+
Ψ − =

−
x y

x y
                    (2) 

ijε  is the chosen energy coupling constant and nc , pc  are the negative and 
positive charge densities, respectively. 

Variation of Equation (1) is achieved by differentiating it with respect to 
charge density to result into flux due to the finite size effects of the charge densi-
ties, [7]. When the fluxes are added to the Nernst Planck (NP) equation results 
into modified time dependent equations that incorporates finite size effects each 
representing rates of time change in concentration of the negative and positive 
ions, respectively as in Equations (3) and (4) below. 
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Coupling Equations (3) and (4) with Poisson Equation (5) below we obtain 
the governing equation  

( ) 0
1

,   , ,
N

i i
i

z ec i n pρ
=

∇ ⋅ ∇Φ = + ∀ =∑               (5) 

in which BK T  is the thermal energy, with BK  the Boltzmann constant and T 
is the absolute temperature, 0ρ  is the charge density of the protein, ,p nc  and 

,p nD  are the charge densities and diffusion coefficients for p and n ions respec-
tively, Φ  is the electrostatic potential,   is the dielectric coefficient, e is the 
unit charge, iz  is the valence and N is the number of ions. The energy varia-
tional approach applied to the energy of LJ repulsive spheres ensures that the 
resulting mPNP system satisfies the energy dissipation law given by; 

0
, , ,
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    (6) 

For brevity and without loss of generality, we assume non-standard values of 
the parameters to be 1Be K T D= = = = = , 1nz = −  and 1pz = , 0 0ρ = , 
and the flow to be two dimensional with a unit thickness. This simplification 
enables linearization of Equations (3), (4) and (5) to obtain governing equation 
of the flow through the convergent-divergent ion channel given by 

[ ] ( )n
n n n

c
c c c w

t
∂

−∇ ⋅ ∇ − ∇Φ = −∇ ⋅
∂

               (7a) 

( ) ( )0, ,p
p p p

c
c c c v T

t
∂

 −∇ ⋅ ∇ + ∇Φ = −∇ ⋅ Ω× ∂
         (7b) 

( )n pc c∆Φ = −                         (7c) 
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2.2. Boundary and Initial Conditions 

Consider a bounded domain dRΩ ⊂ , for d ∈ℵ , we seek the solutions 
( )( ), , ,n pc c x tΦ  in Ω  to the Cauchy problem described by Equation (7) sub-
ject to initial data  

( )( ) ( ) 2
0 0 0, , ,0 , ,    forn p n pc c x c c x RΦ = Φ ∈             (8) 

We specify the Dirichlet boundary conditions to represent fixed electrostatic 
potential at the boundaries as;  

( ) ( )0, 0,   1, 1t tΦ = Φ =                      (9) 

and prescribe Neumann boundary condition describing null charge density 
fluxes at the boundaries by;  

0ic
ν ν

∂Φ
= =

∂ ∂
                        (10) 

where ,i n p= ; and ν  is the unit outward normal. Throughout the paper we 
assume electro-neutrality conditions at the boundaries, implying that the; 

( ) ( )lim ,0 ,0n px
c x c x

→∞
=                     (11) 

3. Existence of Approximate Solution of mPNP 

In this section, energy method is used to prove existence of solution of the go-
verning equation for ion transport through cell membrane. This will start by first 
defining the space in which the solution is estimated, describing the local exis-
tence, determining prior energy estimate and finally working out the discrete 
solution and its convergence to the defined bound. 

3.1. Local Existence of Solution 

The approach involves determining the priori estimates on Sobolev norms of 
concentration nc , pc . Galerkin method, see [9] [10] is introduced to ap-
proximate the solution of mPNP equation by projection of the equation into 
finite dimensional subspace, kb . The fundamental objective of this method in 
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the proof of existence is to approximate ( )2, 0,n pc c L T∈  by functions 
( ), 0,nk pk kc c b T∈  which takes values in a finite dimensional subspace ( )2

kb L∈ Ω  
of dimension k. 

We project Equation (7) onto kb  to obtain nkc , pkc  which satisfies the eq-
uation upto a residual orthogonal to kb . This gives rise to a system of Ordinary 
Differential Equations (ODEs) in nkc , pkc  which has a solution by standard 
ODE theory. The resultant solution nkc  and pkc  satisfies an energy estimate 
of the same form as a prior estimate for the solution of Equation (7). These esti-
mates are uniform in kb , and permits us to impose the limit k →∞  to obtain 
solution of Equation (7) in a bounded domain NRΩ ⊂  for 2N ≤ . Sobolev 
spaces ( ),2k kH w= Ω , ( )c Ω  denotes spaces of continuously differentiable and 

( )kc Ω  denotes k times continuously differentiable functions,in addition 2.  
denotes 2L  norm, 1.  denotes 1H  norm and .

∞
 denotes L∞  norm. 

3.2. The Priori Energy Estimate 

In general, it is demanding to solve mPNP analytically because of nonlinearity, 
thus derivation of some energy estimates for the solutions of the system of Equa-
tion (7) by assuming v and w are given functions becomes a possible way for 
studying and analysing the physical problem. 

Lemma 1 According to [3], given 2RΩ ⊂ , taking 0T >  and 

( )2 2, 0, ;v w L T L∈ , then if ( ) ( ) ( )2 2 1
0, 0, ; 0, ;n pc c L T L L T H∞∈   there exists a 
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∫
 

Proof Multiplying Equation (7a) by nc  and integrate over the domain Ω , 
then using young’s inequality to simplify we obtain  

( ) ( )2 2

2 2

1 d .
2 d n n n n n nc c c c c w c

t Ω Ω
+ ∇ + ∇ ⋅ ∇Φ = − ∇ ⋅∫ ∫         (12) 

Integrating by parts and applying holder’s inequality, ab a b
Ω

≤∫ , in the 
last two terms of Equation (12) we get  

( )
( )

22 2

22 2

n n n n

n n n n

c c c c

c w c c w c
Ω

Ω

 ∇ ⋅ ∇Φ ≤ ∇Φ ∇

− ∇ ⋅ ≤ ∇

∫
∫

              (13) 

then by substituting in Equation (13) followed by imposition of Cauchy’s in-
equality in Equation (12) results into  
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2 2 2 2 2 22

22 2 2 2 2 2

1 d 1 1
2 d 4 4n n n n n nc c c c c w c

t
ξ ξ

ξ ξ
+ ∇ ≤ ∇Φ + ∇ + + ∇   (14) 

by further substituting 
1
4

ξ =  to simplify right hand side of Equation (14) we 
finally get  

2 2 2 42 4

22 2 2

1 d 1 .
2 d 2n n n nc c c c D w

t ξξ+ ∇ ≤ ∇Φ + +        (15) 

Similarly multiplying Equation (7b) by pc  and integrating by parts over the 
domain we obtain equivalence of Equation (12) as below  

( ) ( )2 2

2 2

1 d
2 d p p p p p pc c c c c v c

t Ω Ω
+ ∇ − ∇ ⋅ ∇Φ = − ∇ ⋅∫ ∫        (16) 

then following the same procedure as Equations (13) and (14) in Equation (16) 
we obtain  

2 2 2 42 4

22 2 2

1 d 1 .
2 d 2p p p pc c c c D v

t ξξ+ ∇ ≤ ∇Φ + +        (17) 

Applying Gronwall inequality in Equations (15) and (17) when taking 0β >  
and 0C >  gives  

( )( ) ( )( )

( )( ) ( )( ) ( )( )( )2
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∫

∫ ∫
(18) 

then by continuous embedding of 1H  into 4L , Equation (18) is simplified to 
obtain  

( )( ) ( )( )

( )( ) ( )( ) ( )( )( )
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∫

∫
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To obtain the energy estimates for the derivatives we multiply Equation (7a) 
by nc∆  and integrate by parts over the spatial domain Ω  we obtain 

( ) ( )2 2
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1 d .
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Re-evaluating two last terms of Equation (20) using Cauchy’s inequality give 
rise to Equations (21) and (22) below: 
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substituting Equations (21) and (22) in Equation (20) we have 

2 2
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and upon further simplification Equation (23) give rise to (24) 

2 2 2 2
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d .
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t
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Similarly multiplying Equation (7b) by pc∆  and following the same proce-
dure as in Equations (21)-(23) we get  
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5 6 7 82 22 2 2 2

d
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t
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then adding Equations (24) and (25) we have  
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2 2 2 2
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d , , , ,
d n p n p n pc c c c K c c D w v
t

γ∇ + ∆ ≤ ∇ + ∇    (26) 

where the constants , 0Dγ >  and 0K > . 
Finally when Gronwall inequality is imposed on Equation (26) we obtain  

( )( ) ( )( )
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          (27) 

ending proof of the lemma. 

3.3. Galerkin Approximation 

Next we use an ODE theory to get local in time solution to a finite dimensional 
approximation nkc , pkc  of Equation (7) satisfying the same energy bounds as 

nc , pc . Using Galerkin approximation we first construct finite dimensional ap-
proximation to Equation (7). Let ( )j je e x=  be smooth function and { } 1j j

e
∞

=
 

be an orthonormal basis for the functions in ( )2L Ω . Let ( )2
kb L∈ Ω  be a finite 

dimensional subspace given by  

( ) ( ) ( )2

1
; .

n

k j j
j

b u L u x d e x
=

 
= ∈ Ω = 
 

∑                (28) 

We define a projection operator nq  from ( )2L Ω  to kb  and if 
( ) ( )1 j jju u t e x∞

=
= ∑ , then ( ) ( )1

n
n j jjq u u t e x

=
= ∑  for ( )2u L∈ Ω . From the 

properties of orthogonal projection operator nq u u≤  holds for ku b∈ . 
Lemma 2 For any 0m >  and ( )2z L∈ Ω , 
( ) ( ), ,m m n m mu q z u z∇ ∇ = ∇ ∇ , ku b∀ ∈ . 
Lemma 3 If nz z→  in ( )1c Ω , then 0n nq z z

∞
− →  as n →∞ . 

https://doi.org/10.4236/ajcm.2020.103027


A. M. Gwecho et al. 
 

 

DOI: 10.4236/ajcm.2020.103027 481 American Journal of Computational Mathematics 
 

The proof of Lemma 2 and 3 is trivial see, [11]. 
Taking ,n ps c c= ; ,n nk pks c c= ; and ( ),p v w=  in Equations (7a) and (7b), 

we define Galerkin approximation by seeking solution n ks b∈  with finite re-
presentation given by  

( ) ( ) ( )
1

,
n

n j j
j

s x t a t e x
=

= ∑                    (29) 

satisfying 

[ ] [ ]t n n n n n ns s q s q s p∂ − ∆ = ∇ ⋅ ∇Φ −∇ ⋅               (30) 

subject to initial conditions 

( ) 0,0 .n ns x q s=                        (31) 

Through transformation we obtain equivalence of Equation (30) given by  

( ) [ ]d
d j j j j j ja e a e w e a w

t
′′ ′ ′ ′′ ′− = Φ − + Φ −              (32) 

with initial conditions given by  

( ) ( )00 .j ja e s=                         (33) 

The integral form of Equations (30) and (31) becomes 

( ) [ ]( ){ }0 0
, , d

t
n n n n n ns x t q s s q s s p x τ τ= + ∆ +∇ ⋅ ∇Φ −∫         (34) 

Theorem 1 For any integer n and real number 0T >  there exists a unique 
solution ns  to partial differential Equations (30) subject to initial condition (31) 
for ( )0,t T∈  also satisfying the ordinary differential Equations (32) with initial 
condition given by Equation (33). 

Proof Considering equivalence of Equations (30) and (32) subject to respec-
tive initial conditions as above, proof of existence of local solution when taking 
any fixed 1n ≥  for the system of Equations (30)-(31) in the interval ( )0,t T∈  
to imply existence of solution to the Equations (32)-(33). Hence, we proceed to 
multiply Equation (32) by ns  and integrate by parts in the domain to obtain 

[ ] [ ]2 21 d .
2 d n n n n n n n ns s q s s q s p s

t Ω Ω
+ ∇ = ∇ ⋅ ∇Φ ∇ + ∇⋅ ∇∫ ∫      (35) 

Following integration process as in Equation (13), the last two terms of Equa-
tion (35) reduces to  

[ ] [ ]
[ ] [ ]

22 2

22 2

, and

.

n n n n n n n

n n n n n n n

q s s s s s s

q s p s s p s s p s
Ω Ω

Ω Ω

 ∇Φ ∇ = ∇Φ ∇ = ∇Φ ∇


∇ = ∇ = ∇

∫ ∫
∫ ∫

     (36) 

Substituting Equation (36) in (35) then using Cauchy’s inequality gives  

2 2 2 2 2 22 21 d 1 1
2 d 4 4n n n n n ns s s s s w s

t
ξ ξ

ξ ξ
+ ∇ ≤ ∇Φ + ∇ + + ∇  (37) 

then taking 
1
4

ξ =  and applying continuous embedding of 1H  into 4L , [9] 
Equation (36) becomes  
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2 2 2 22 2

2 42 4

2 2

11

d
d

.

n n n n

n n

n n

s s s s p
t

s s p

s s p

+ ∇ ≤ ∇Φ +

≤ ∇Φ + +

≤ ∇Φ + +

           (38) 

Consequently applying Gronwall inequality in Equation (38) gives  

( ) ( )
22 2 22

0 110 0
d exp d

t tt
n n ns s s s pτ τ τ τ∇Φ  + ∇ ≤ + +  ∫ ∫    (39) 

and from parseval’s inequality given in [9], 

2

1

n

j
j

a
=

≤ ∞∑                          (40) 

we finally have ( )ja t  that can be determined for any ( )0,t T∈ . 
Theorem 2 For an integer n, the solution ns  in Theorem 1 satisfies the same 

priori energy bounds as on s. 
Proof; Using Lemma 2 to eliminate nq  in the inner product of Equation (30) 

and similar procedure as in Equations (20)-(27) to find the time integral esti-
mate of ns , we obtain the bounds of derivatives given by 

( ) ( )2 2 2 2
0 222 20 0

ˆ, , d exp d .
t tt

n ns x t s x s C pαγ τ τ τ ∇ + ∆ ≤ ∇ + ∇  ∫ ∫    (41) 

To prove boundedness of the derivatives in ns  we introduce the following 
lemma; 

Lemma 4 For an integer 1n >  and ( )0,t T∈ , the solution ns  in Theorem 
1 also satisfies  

;t n t ns s E∂ ∂ ∇ ≤                      (42) 

with E independent of n and T. 
Proof Consider 2L  estimate of Equation (30) and noting that nq  vanishes 

with respect to Lemma 2, we get  

( ) ( )2 2 2 2

2 22 2 2

t n n n n

n n n n n

s s s s p

s s s s p s p

E
∞ ∞∞ ∞

∂ ≤ ∆ + ∇ ⋅ ∇Φ + ∇ ⋅

≤ ∆ + ∇ ∇Φ + ∆Φ + ∇ + ∇

≤

 (43) 

Evaluating the derivative of Equation (43) with respect to x gives  
3 3

2 2 22 2

22 2

2

2
t n n n n n

n n n

s s s s s

s p s p s p

E

∞ ∞∞

∞ ∞∞

∂ ∇ ≤ ∇ + ∇ ∆Φ + ∇ Φ + ∆ ∇Φ

+ ∇ ∇ + ∆ + ∆

≤

   (44) 

Therefore the derivatives of ns  are uniformly bounded 
It is imperative to remark that a uniform bounds on ns  leads to uniform 

bounds on the derivatives. This uniform boundedness proves equicontinuity of 

ns . Thus by Arzela Ascoli theorem [12] there exists a subsequence njs  which 
converges uniformly to s on the interval ( )0, nt T∈ . 

Theorem 3 Let ns  is a sequence of functions nR R→  which is equicon-
tinous and bounded. Then there exists a subsequence { } 1nj j

s
∞

=
 which converges 
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in the sup norm to s, where s satisfies the integral equation  

( ) ( ) ( ) ( )( ){ }0 0
, , , d

t
s x t s x s x s sp xτ τ τ= + ∆ −∇ ⋅ ∇Φ −∫         (45) 

implying that s also satisfies Equation (7). 
Proof Since ns  and its derivatives have bounds independent of t and n, it 

follows that { } 1n n
s ∞

=
 forms an equicontinous family of functions which have a  

subsequence { } 1nj j
s

∞

=
 that converges in the sup norm for each ( )0,t T∈  to s. 

Since ( )( )20, ,njs s C T L→ ∈  it follows that 0nj ns s
∞

∇Φ − ∇Φ →  as j →∞ , 

nj ns s
∞

∆ − ∆  as j →∞ . Therefore each time integral  

( ){ }0
, d

t
nj nj nj njs q s s p x τ τ ∆ +∇ ⋅ ∇Φ − ∫              (46) 

is bounded independent in t. For any given x, { } 1nj j
s

∞

=
 converges uniformly for 

[ ]0,t T∈  as j →∞ . Therefore from dominating convergence and using lem-
ma 3, we obtain  

( ){ }
[ ]( ){ }

0

0

lim , d

, d

t
nj nj nj njj

t
n n n

s q s s p x

s s s p x t

τ τ

τ

→∞
 ∆ +∇ ⋅ ∇Φ − 

= ∆ +∇ ⋅ ∇Φ −

∫

∫
           (47) 

hence ( ) ( )lim , ,j njs x t s x t→∞ =  and s satisfies Equation (7). 
Having proved the existence and convergence of approximate solution, its 

important to note that the uniqueness of this solution conforms to proposition 
3.9 on uniqueness found in Equations (3.39)-(3.40), see [3]. 

4. Conclusion 

In this study mPNP differential equations which inco-orporate volume size ef-
fects is derived. The system of differential equations linearized and the proof of 
existence of its approximate analytical solution done. Lastly, a projection opera-
tor is used to map differential equation from L2 spaces into a finite dimensional 
subspace ( )2

kb L∈ Ω  of dimension k generating equations whose solutions 
converge to that of mPNP equations. In the next study we will examine the exis-
tence and uniqueness of numerical approximate solution using Galerkin ap-
proach for which we shall conduct a numerical experiment for a 2D flow 
through ion channels. 
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