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Abstract
Visual simultaneous localization and mapping (vSLAM) is inherently constrained by the static
world assumption, which renders success in the presence of dynamic objects rather challenging.
In this paper, we propose a real-time semantic vSLAM system designed for both indoor and
outdoor dynamic environments. By employing object detection, we identify 80 categories and
utilize motion consistency checks to pinpoint outliers in each image. Distinct methods are
presented for examining the motion states of humans and other objects. For detected humans, an
algorithm is introduced to assess whether an individual is seated, subsequently dividing the
bounding boxes of seated individuals into two parts based on human body proportions. We then
use the same threshold values for standing individuals to determine the states of the two boxes
belonging to seated individuals. For non-human objects, we propose an algorithm capable of
automatically adjusting the threshold values for different bounding boxes, thereby ensuring
consistent detection performance across various objects. Ultimately, we retain points within
static boxes contained in dynamic boxes while eliminating other points in dynamic boxes to
benefit from a larger number of detected categories. Our SLAM is evaluated on indoor TUM
and Bonn RGB-D datasets, with further testing conducted on the outdoor stereo KITTI dataset.
The results reveal that our SLAM outperforms most SLAM systems in dynamic environments.
Moreover, we test our system in real-world environments with a monocular camera,
demonstrating its robustness and universality across diverse settings.

Keywords: localization, SLAM, deep learning

(Some figures may appear in colour only in the online journal)

1. Introduction

Simultaneous localization and mapping (SLAM) plays an
integral role in robot vision. It can approximate the poses of the
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camera and rebuild the unknown environment through vari-
ous sensors. As camera-based systems are cheaper than other
sensor-based systems [1–3], many visual SLAM (vSLAM)
systems with good performance have been proposed [4–6]. In
particular, the method that works for all categories of cameras
is the cheapest. Whereas, if the method is limited by depth
information, only relatively expensive RGB-D cameras can
be used. However, most SLAM systems are constrained by
the static environment assumption and disturbed by dynamic
objects in the real world, causing many bad or unstable data
associations.
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For such problems, scholars usually use the idea of track-
ing only stable static features. Some use geometric-based
approaches, such as RANSAC [7] (random sample con-
sensus), to remove mismatches in the static or dynamic scene.
Although this method can remove outliers, it is useless when
dynamic objects occupy most of the views. Recently, more
researchers have focused on combining deep learning with the
traditional geometric methods to deal with dynamic objects.
Their main idea is to use semantic segmentation or object
detection to get masks or bounding boxes of objects defined
as movable and remove the feature points of those objects
through geometric information. The latest research result,
Crowd-SLAM [8], shows that the method based on object
detection can better process no predefined moving objects
than those based on semantic segmentation. However, there
are too many feature points in the bounding boxes. If all of
them are erased, there will not be enough data associations
for pose estimation, and the SLAM system will fail. At the
same time, semantic segmentation algorithms such as SegNet
[9] or Mask-RCNN [10] are difficult to achieve a good bal-
ance in segmentation accuracy, system load, and the number of
classes detected. In other words, the system can not run in real-
time when it is accurate enough and can detect many classes
of objects.

This paper proposes a real-time semantic vSLAM system to
solve the above problems. Our SLAM adopted ORB-SLAM3,
a state-of-the-art SLAM system that added a multiple map
system to increase the performance in the large-scale scene.
We deployed the dynamic point culling algorithm in the front
end of the SLAM system. First, we extracted the semantic
information of 80 different object classes in the environment
using the TensorRT optimized YOLOX [11], known as the
latest one-stage detector and can recognize many kinds of
objects with high accuracy in real-time. For the detected per-
son, we propose an algorithm for judging whether the person
detected is sitting, called Nine Head Body Checking (NHBC).
Then we divide the bounding box belonging to a sitting per-
son into upper body and lower body parts in a certain pro-
portion. Meanwhile, we use the moving consistency checking
to determine the motion state of points in all the boxes. If an
outlier is contained in the human box, the box will be determ-
ined as dynamic. In order to make our SLAM perform better
on different occasions, we propose an algorithm to check other
classes except for humans, adaptive threshold adjusting (ATA).
The box will be judged as moving if the number of outliers
inside it exceeds the threshold, which is adjusted automatic-
ally for different objects. Finally, to make the detected classes
benefit the system’s accuracy, we will preserve feature points
of static boxeswithin or outside the dynamic box and eliminate
other points in the dynamic box. This new dynamic point cull-
ing algorithm has increased the number of stable static points.
As shown in figure 1, it can be seen that the lower body points
and the static objects in the frame have not been culled, even
though some objects are partially obscured. The contribution
of this letter has three points:

• We propose a real-time dynamic semantic vSLAM
algorithm with high accuracy in both outdoor and indoor

Figure 1. A general description of detecting moving points in our
system. In example (a), the chair, book, and keyboard points are
marked as static, and the human’s upper body points are judged as
dynamic by combining the semantic and geometrical information in
our method. In case (b), the points associated with a moving book
without semantic prior are also determined as dynamic.

environments, which can be deployed on various cameras
and is not limited by depth information.

• A dynamic point culled algorithm benefits frommore detec-
ted classes, robust to known and limited unknown dynamic
objects in different environments.

• An algorithm almost unaffected by noise points for judging
moving bounding boxes is raised, which considers that all
detected objects are possible to move and checks the motion
states of people with different postures and objects using dif-
ferent methods.

The rest of the paper is built as follows. The next section
(i.e. section 2) describes works on improving SLAM in
dynamic environments. Section 3 displays a detailed approach
for improving dynamic SLAM using object detection. Finally,
sections 4 and 5 show the results obtained from experiments
and the conclusions drawn from the results, respectively.

2. Related work

2.1. Dynamic SLAM improved by geometry method

Sun et al [12] use particle filters to track and filter motion
patches in images. However, the discontinuous movement
will lead to tracking failure. Zhang et al [13] used depth
and intensity information to approximate the camera’s ego-
motion, which is then utilized to detect moving features and
is non-sensitive to slight motions. Dai et al [14] propose to
utilize point correlations to identify static and dynamic map
points. Scona et al [15] simultaneously approximate the cam-
era motion and probabilistic segmentation of the current RGB-
D frame. Du et al [16] use long-term consistency via condi-
tional random fields to detect dynamic components. The per-
formance is not very good for objects that remain static for a
long time before moving. The above methods only work on
RGB-D cameras, and most of them are constantly disturbed
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by slow objects and blocked objects. By contrast, our method
can handle the two kinds of objects.

2.2. Dynamic SLAM improved by the semantic method

Semantic segmentation or object detection can give prior
information about moving objects to the SLAM system. But
these works all assume that fixed few classes have the possib-
ility tomove in the scene. Bescos et al [17] raised DynaSLAM.
They use Mask-R-CNN to remove the points of objects
marked as potentially dynamic in 20 classes without check-
ing their motion state and a multi-view geometry method to
manage unknown dynamic objects. However, it is not a real-
time system. Redmon and Farhadi raised the CrowdSLAM,
which uses YOLOv3 [18] to detect and directly remove the
key points only in one class, people’s bounding box. Ji et al
[19] used semantic segmentation to remove objects defined
as highly movable in 20 classes and then detect unknown
dynamic objects by the reprojection errors of clustering the
depth image. In the above method, whether the box is mov-
ing or not, its key points will be culled, significantly reducing
the data associations and improving the probability of tracking
failure.

Furthermore, some researchers determine whether the seg-
mented objects are moving or not. Yu et al [20] raised DS-
SLAM. They combined SegNet and optical flow to remove
the moving points of humans in the image. Cheng et al [21]
raised DM-SLAM, which utilizes the Mask-R-CNN and epi-
polar geometry to detect the dynamic points of the few poten-
tial moving objects in the scene. Fan et al [22] utilize the
BlitzNet [23] to segment objects and the epipolar constraint
to remove outliers in the dynamic mask areas of a few classes
marked as movable. These works are not robust to unknown
objects, and the fixed threshold will make the algorithm sens-
itive to some objects and insensitive to others.

Many studies recently focused on the ORB-SLAM3, a
stable SLAM system proposed recently. Based on the ORB-
SLAM3, Hu et al [24] use the DeepLab v3+ [25] to dynamic
segment objects and filter them with multi-view geometry,
which is not capable of handling unknown objects. Liu and
Miura [26] use moving probability to update and propagate
semantic information to filter out moving points in tracking.
They only segment 20 classes of objects and do not apply their
method to other types of cameras. Although the abovemethods
rely on semantic information, they deal with people in differ-
ent postures and other objects in the same way.

3. System overview

We use semantic and geometric methods to filter out dynamic
feature points in RGB images. Firstly, we use the learning-
based method to get the object’s bounding box. At the same
time, the outliers in the image are obtained by the technique
of motion consistency check. Then, the efficient algorithm
we proposed detects and removes the moving points by com-
bining the two kinds of information. Our system is based
on ORB-SLAM3, a feature points-based system for static

environments. In particular, the semantic module of the sys-
tem refers to and improves the work of CrowdSLAM, while
the geometric module refers to the work of DS-SLAM. The
framework of the system proposed in our paper can be seen in
figure 2.

3.1. Semantic module

The semantic module predicts the bounding boxes of differ-
ent objects in RGB images using deep learning-based meth-
ods. We adopted the YOLOX, which performs better than the
latest version of the YOLO Series. It means that the YOLOX
has excellent accuracywhilemaintaining a high computational
speed. Furthermore, to reduce the processing time, we use the
GPU acceleration method, TensorRT [27], to optimize the net-
work of theYOLOXmodel. Different from other SLAMmeth-
ods, we believe that in complex scenarios, all objects have
the possibility of moving. At the same time, this also bene-
fits the construction of semantic maps later. So, to identify
as many categories as possible, We pre-train the YOLOX
model on the COCO dataset [28], which contains 80 classes
of objects. Then, Each box will be checked for motion consist-
ency combined with an adaptive threshold algorithm to ascer-
tain whether the object is dynamic.

However, the CrowdSLAM referred to in our system uses
YOLOv3, which only regards people as the potential mov-
ing object, making its application scenarios more limited.
Moreover, it does not use the geometric method to filter the
bounding box, eliminating too many key points.

3.2. Geometry module

The module is designed for obtaining the outliers in the input
image. We adopt the motion consistency checking method
proposed by DS-SLAM. Like DS-SLAM, we match Harris
corners by calculating the optical flow pyramid. If the distance
between the matching point and the pixel edge is very small
or the pixel blocks in the center of the matching pair are very
different, it will be abandoned. Then we calculate the distance
between a remaining point successfully matched and the epi-
polar line corresponding to it. The point will be judged outlier
if the distance exceeds our defined threshold.

3.3. Judging moving boxes

We use RANSAC with the most inliers to find the funda-
mental matrix to calculate the polar line of the current frame.
Specifically, The fundamental matrix maps the points in the
last frame to the search domain corresponding to them in the
current frame, namely, the epipolar line. Make p1, p2 represent
the points matched successfully in the last frame and current
frame, respectively, and P1, P2 denote their homogeneous
coordinate form:

P1 = [u1,v1,1],P2 = [u2,v2,1],

p1 = [u1,v1],p2 = [u2,v2]
(1)
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Figure 2. The general framework of our SLAM system. The black areas are the original ORB-SLAM3 tracking module, and the green
areas are our added or modified modules, consisting of a module using the semantic method, a module using the geometry method, a
moving box judging module, and a culling dynamic points module. The semantic module detects the objects in the new RGB image just
arriving and predicts the bounding boxes of them. The geometry module checks the moving consistency of these boxes. Then, the moving
boxes judging module can determine the motion state of boxes by combining the above information. Finally, the culling dynamic points
module removes the moving points according to the state of bounding boxes, and the rest points are used for pose estimation.

Algorithm 1. Moving boxes judgment algorithm.

Input: Bounding boxes set BHn of person, bounding boxes set BOn

of other objects;
Output: Dynamic bounding boxes DBn, static bounding boxes SBn;
1: function Judging(Set)
2: o← total number of outliers in Set;
3: if o> 0 then
4: Set→ DBn;
5: else
6: Set→ SBn;
7: end if
8: end function
9: for each bounding box BHn(i) of person do

10: if
WBHn(i)

HBHn(i)
< 3 then

11: Divide the box into 0.3
1.3 and 1

1.3 upper and lower parts BHU

and BHL;
12: Juging(BHU);
13: Juging(BHL);
14: else
15: Juging(BHn(i));
16: end if
17: end for
18: for each bounding box BOn(i) of other objects do
19: s← total number of key points tracked by the optical flow

in BOn(i);
20: o← total number of outliers in BOn(i);
21: if o

s > ϵ then
22: BOn(i)→ DBn;
23: else
24: BOn(i)→ SBn;
25: end if
26: end for

where u,v are the coordinate values in the image. The L1

represents the epipolar line, and its calculation method is as
follows:

L1 =
X
Y
Z

= FP1 = F
u1
v1
1

(2)

where X,Y,Z denote line vector, and F denotes fundamental
matrix. The method we calculate the distance between the

matched point and its corresponding epipolar line is as
follows:

D=
|PT2FP1|√

∥X2∥+ ∥Y2∥
(3)

where D denotes the distance. If the value of D exceeds
the preset threshold, the feature point will be judged as an
outlier.

The module utilizes semantic and geometry information
to determine whether a bounding box is moving. Firstly, we
use a unique method to handle the bounding box belonging
to people. In daily life, sitting people only have half of their
body in motion, while standing people’s whole body is mov-
ing. Therefore, we design a special algorithm, NHBC, to judge
whether a person is sitting. In the field of painting, painters
will use the length and width of heads to draw the body of
the human. For example, when people sit, the width is two
people’s heads, and the length is five. The basic theory is
shown in figure 3. The length to width ratio of people in stand-
ing posture is 9

2 ,
8
2 , and

7
2 and those of sitting is 5

2 . Hence, the
length-to-width ratio of sitting people is less than 3;When they
stand, the length-width ratio is usually 4, greater than 3. There-
fore, we mark the bounding box belonging to people whose
ratio is less than three as sitting posture. The length-to-width
ratio is determined as follows:

Ri =
Wi

Hi
(4)

where Ri represents the length-to-width ratio of the bound-
ing box i. The width and height of i are denoted as W i, Hi,
respectively. In order to divide the human hand into the upper
body at any time, according to the human activity in the data-
set, when the length to width ratio of the human’s box is
less than 3, we divide the box into 1

1.3 and 0.3
1.3 two parts. As

shown in figures 4(a)–(h), the hands of people are always con-
tained in the upper part. It is noteworthy that if only local
parts of the human body are observed, NHBC will fail. At this
time, taking figures 4(e) and (f) as examples, people occupy
most of the views, and their movement will be easy to be
checked. It alleviates the shortage of the algorithm to some
extent.
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Figure 3. Schematic diagram of different human body proportions
in standing and sitting in painting field. From left to right, there are
standing postures of 7 heads, 8 heads, 9 heads high, and a sitting
posture of 7 heads high, respectively. At the same time, these human
postures are all two head widths.

Then, the threshold of people and objects is determined
separately. It is because people and objects move in different
ways. Precisely, people often move local joints. Namely, only
one or two points are dynamic. As shown in figures 4(a)
and (b), the person in the figure has only hand joints mov-
ing, and only one or two feature point is dynamic. There-
fore, when an outlier is checked out in the person’s box, the
box will be marked as dynamic. Other objects do not always
move a tiny part like a human. So, more feature points should
be considered to judge. On the other hand, some objects are
extracted with few feature points, and others are extracted with
many points. In that case, if a fixed threshold is set, it will not
be suitable for all objects.

Therefore, we propose the ATA. Firstly, We divide the
outliers in the box by the total number of feature points
tracked by the optical flow in the same box. Then, if the
calculation result is larger than the defined value, the bound-
ing box will be marked as moving. Specifically, The algorithm
is not only robust for different kinds of objects but also
solves the problem that objects are mistakenly considered
to be dynamic when the object is occluded or the camera
moves itself to some extent. Finally, because false-negative
results (namely dynamic objects marked as static) have a ter-
rible impact on the SLAM system, we set a relatively low
threshold. For the upper and lower two parts, or the whole
body box of moving people, we set the threshold to one out-
lier, and for judging dynamic objects, the threshold is defined
as 40% outliers in the box. The percentage setting allows the
threshold to be automatically adjusted according to different

object boxes. Meanwhile, Objects less than 40% occluded
will not be judged as dynamic. Moreover, Judging based on
multiple outliers can effectively eliminate the influence of
noise and camera self-movement. Themoving boxes judgment
algorithm is displayed in algorithm 1, and the ε represents a
preset threshold value. The width of the bounding box BHn(i)
is defined as WBHn(i) and the height of the box is denoted
as HBHn(i).

Algorithm 2. Moving boxes judgment algorithm.

Input: Bounding boxes set BHn of person, bounding boxes set BOn

of other objects;
Output: Dynamic bounding boxes DBn, static bounding boxes SBn;
1: function Judging(Set)
2: o← total number of outliers in Set;
3: if o> 0 then
4: Set→ DBn;
5: else
6: Set→ SBn;
7: end if
8: end function
9: for each bounding box BHn(i) of person do

10: if
WBHn(i)

HBHn(i)
< 3 then

11: Divide the box into 0.3
1.3 and 1

1.3 upper and lower parts BHU

and BHL;
12: Juging(BHU);
13: Juging(BHL);
14: else
15: Juging(BHn(i));
16: end if
17: end for
18: for each bounding box BOn(i) of other objects do
19: s← total number of key points tracked by the optical flow

in BOn(i);
20: o← total number of outliers in BOn(i);
21: if o

s > ϵ then
22: BOn(i)→ DBn;
23: else
24: BOn(i)→ SBn;
25: end if
26: end for

3.4. Culling dynamic points

After each box ismarked, due to the ambiguity of the bounding
box, we only remove the points, which are outside the static
box and in the dynamic box at the same time. As shown in
figures 4(a)–(c), (f) and (g), the key points in the static box
belonging to a person’s box or intersecting with the human
box are preserved. This means that the more static boxes
make the more stable static points, namely, more accuracy for
the system. The dynamic points culled algorithm is shown in
algorithm 2.
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Figure 4. Examples of moving object detection. The first line presents bounding boxes detected by the proposed semantic module. The
second-row results from judging moving boxes and detecting dynamic points, with bounding boxes shown. The third row shows the same
results as the second but without the boxes shown. The dynamic points are marked as blue and the static points as green.

Algorithm 3. Dynamic points culled algorithm.

Input: Dynamic bounding boxes DBn, static bounding boxes SBn,
The set of key points for the current frame Kn;

Output: The set of key points judged as static for the current
frame Sn;

boola← 0;
1: for each key point (un,vn) in Kn of person do
2: for each bounding box DBn(i) of person do
3: if (un,vn) in DBn(i) then
4: boola←1;
5: end if
6: end for
7: for each bounding box BOn(i) of other objects do
8: if (un,vn) in BOn(i) then
9: boola← 0;

10: end if
11: end for
12: if boola = 0 then
13: Sn← (un,vn);
14: end if
15: end for

4. Experiments and results

4.1. Overview

We assess our system utilizing RGB-D and stereo camera
datasets. To begin with, we take advantage of the TUM data-
set’s [29] generalization, employing three distinct groups of
works for a comprehensive comparison. The first group con-
tains systems based on ORB-SLAM3, which shows the effect-
iveness of our method on an identical baseline. The second
group consists of two works similar to our approach; one
employs the epipolar constraint as our method, while the other
ingeniously amalgamates vSLAM with the YOLOv3. The
third group represents cutting-edge research that has recently
yielded promising results through geometric and semantic
methodologies.

Subsequently, we employ the Bonn dataset [30] to examine
our system’s performance in increasingly intricate scenarios,
comparing it with the three most advanced systems currently

available. Moreover, we utilize the KITTI dataset [31] to
measure our stereo camera mode system’s efficacy in outdoor
environments. To further enhance our comparative analysis,
we incorporate the latest visual odometry (VO) and visual iner-
tial odometry (VIO) systems, comparing them with our work.

Finally, the runtime analysis demonstrates the excellent
real-time performance of our system. Simultaneously, we
deploy our monocular camera mode system in a real-world
environment to showcase its remarkable robustness.

4.2. Implementation

We utilize a laptop equipped with AMDRyzen 7 5800H CPU,
NVIDIA GeForce RTX 3070 GPU, and 16G RAM to conduct
experiments on Ubuntu 20.04. At the same time, we use the
YOLOX-s model for experiments, reaching a good balance
between accuracy and real-time performance. Then, we test
our system in a real-world environment with the monocular
camera of our laptop, Lenovo R9000P.

4.3. TUM dataset

The TUM RGB-D dataset contains many image sequences
caught through an RGB-D camera in a dynamic environment,
as well as accurate ground truth trajectories and camera para-
meters. Dynamic SLAM is mainly for improving the SLAM
system in high dynamic scenes, sowe selected four sets of high
dynamic sequences about walking: two people walk around
or change the chair’s location. At the same time, to test the
system’s performance under a low dynamic environment to
a certain extent, We select two sets of low dynamic sitting
sequences, that is, two people sit at the table to chat or do
some small actions. The w/half, w/rpy, w/static, w/xyz, s/half,
and s/xyz denote six groups of image sequences to express
them easily, where w and s indicate walking sequences and
siting sequences and half, rpy, static, and xyz represent differ-
ent motion modes of the camera respectively.

4.4. Bonn dataset

The Bonn RGB-D Dynamic Dataset, provided by the Univer-
sity of Bonn in 2019, is a collection of 24 dynamic sequences
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designed for evaluating RGB-D SLAM systems. The data-
set acquires RGB-D images using the ASUS Xtion Pro LIVE
camera and obtains the ground truth with the Optitrack Prime
13 motion capture system. To ensure a comprehensive evalu-
ation of our system, we conduct experiments on 15 sequences,
excluding those where no static points in the entire view and
those with repetitive content.

Among these selected sequences, the ‘crowd’ sequence
illustrates a scene where five individuals walk randomly
in a room. The ‘moving_nonobstructing_box2’ sequence
showcases a person moving a box from the floor to a
table. The ‘placing_obstructing _box’ sequence portrays two
people carrying a large box, approximately half a per-
son’s height and width, and placing it on the ground. The
‘placing_nonobstructing_box’ sequence displays a person
transporting a small box and setting it on the floor. The
‘person_tracking’ sequence captures a scenario where the
camera tracks a walking person. The ‘balloon’ sequence
presents a scene where a person continuously hits a balloon,
preventing it from falling. The ‘balloon_tracking’ sequence
exhibits a person lifting a balloon and letting it fall to the
ground. These complex scenarios further evaluate our SLAM
system’s performance in various conditions.

4.5. KITTI dataset

The KITTI dataset provides accurate ground truth trajector-
ies, camera parameters, and object annotations for various
tasks related to autonomous driving. Within this dataset, 22
stereo image sequences are specifically designed to evalu-
ate the performance of vSLAM algorithms. These subsets
are recorded by a vehicle in motion, covering a total dis-
tance of 39.2 km,with each sequence depicting distinct driving
situations.

Our paper focuses on sequences 00–10, which offer
ground truth information. These selected sequences encom-
pass various road environments, including urban, suburban,
and highway settings, varying traffic densities, andmany light-
ing conditions. By analyzing these sequences, we can com-
prehensively evaluate the performance of our vSLAM system
across a wide array of real-world driving scenarios.

4.6. Evaluation metrics

In the experiment, Our paper utilizes the absolute trajectory
error (ATE) and the relative pose error (RPE) to measure
the experimental results. Let E1, . . . ,En ∈ SE(3) represent
the sequence of the approximately calculated poses, and
G1, . . . ,Gn ∈ SE(3) represent the ground truth. The ATE At at
time step t can be calculated by:

At = E−1
t SGt (5)

where S represents the rigid-body transformation aline the
approximately calculated trajectory with the ground truth with
the same scale. The ATE can reflect the overall consistency
of the approximately calculated trajectory, and the RPE is

designed to estimate that local accuracy at a fixed time∆. The
method of calculating RPE Rt at time step t is as follows:

Rt = (E−1
t Et+∆)

−1(G−1
t Gt+∆). (6)

4.7. Comparison with state-of-the-arts

4.7.1. TUM dataset. We have a comparison between our sys-
tem and three groups of advanced dynamic SLAM systems. In
each group, we give each system’s RMSE and S.D of ATE to
measure its global robustness and stability and use the RMSE
and S.D of translational RPE to measure the local perform-
ance. We use t.RPE to represent translational RPE.

The first group includes two dynamic SLAM systems
based on ORB-SLAM3. The ORB-SLAM3 is shown by O3.
Meanwhile, the RDS represents RDS-SLAM [26], and the
DeepLab represents the method proposed by Hu et al [24].
As presented in table 1, in ATE, the method proposed by us
has nearly achieved the best performance in all sequences
except the w/rpy sequence. Although DeepLab’s performance
in w/rpy is better than ours, it is t.RPE is not good enough
in every sequence. Meanwhile, our method has significant
advantages in APE, compared with ORB-SLAM3. As shown
in figure 5, the estimated trajectories by our system are more
accurate than ORB-SLAM3.

The second group mainly includes the SLAM systems
referred to in this paper, as well as a not up-to-date but very
authoritative method. In this group, the DS represents DS-
SLAM [20], the Crowd represents Crowd-SLAM [8], and the
Dynamic represents Dyna-SLAM [17]. Our semantic and geo-
metric modules are based on the first two systems, and the
performance of the last system is compared in many articles.
As presented in table 2, our SLAM achieves better results
than other systems, reflecting the robustness of our improved
method. But our system’s ATE of w/rpy sequence is also
slightly less than DS-SLAM and Crowd-SLAM.

The third group includes the newly proposed SLAM system
with good performance. Iccrf represents an advanced system
[15] based on geometric methods, while other methods are
based on semantics. Towards represents the method proposed
by Ji et al [19], and Blitz represents Blitz-SLAM [22]. As
presented in table 3, our SLAM shows the more accurate result
in both low dynamic and high dynamic environments. Mean-
while, our system’s ATE only in s/xyz and w/rpy is relatively
low.

4.7.2. Bonn dataset. As illustrated in table 4, we conduct
a thorough comparison of our method’s mean ATE with
the cutting-edge, dynamic vSLAM approaches, namely
SG-SLAM [32] and Iccrf-SLAM. To ensure a more com-
prehensive evaluation, we also incorporate an advanced dense
reconstruction method, MF [33], into our analysis.

In comparison with the baseline system, ORB-SLAM3,
our proposed method exhibits a remarkable performance
enhancement of over 90% in the crowd and person_tracking
sequences, where human presence is a dominant feature of
the scene. Additionally, the ATE is substantially diminished

7
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Table 1. Compared with the SLAM systems based on ORB-SLAM3, in RMSE and S.D of the ATE and t.RPE. The best results are
highlighted in bold, and we utilize the values in their original papers when available (m).

ATE t.RPE

O3 RDS DeepLab Ours O3 RDS DeepLab Ours
Sequence RMSE (S.D) RMSE (S.D) RMSE (S.D) RMSE (S.D) RMSE (S.D) RMSE (S.D) RMSE (S.D) RMSE (S.D)

w/half 0.193 (0.127) 0.025 (0.017) 0.027 (0.012) 0.019 (0.010) 0.022 (0.016) 0.027 (0.014) 0.023 (0.010) 0.018 (0.009)
w/rpy 0.137 (0.062) 0.146 (0.105) 0.031 (0.018) 0.053 (0.031) 0.013 (0.009) 0.024 (0.012) 0.040 (0.023) 0.035 (0.024)
w/static 0.019 (0.011) 0.081 (0.022) 0.006 (0.002) 0.005 (0.002) 0.003 (0.002) 0.022 (0.014) 0.008 (0.003) 0.006 (0.003)
w/xyz 0.235 (0.077) 0.021 (0.012) 0.013 (0.006) 0.013 (0.008) 0.039 (0.030) 0.026 (0.016) 0.017 (0.009) 0.017 (0.011)
s/half 0.020 (0.011) — — 0.013 (0.005) 0.010 (0.005) — — 0.012 (0.006)
s/xyz 0.012 (0.006) — — 0.011 (0.005) 0.016 (0.008) — — 0.012 (0.005)

Figure 5. The contrast of trajectories obtained from ORB-SLAM3 and our system against the real trajectory in TUM dataset.

Table 2. Compared with the SLAM systems referred to in our paper and system considered authoritative, in RMSE and S.D of the ATE and
t.RPE. The best results are highlighted in bold, and we utilize the values in their original papers when available (m).

ATE t.RPE

Dyna DS Crowd Ours Dyna DS Crowd Ours
Sequence RMSE (S.D) RMSE (S.D) RMSE (S.D) RMSE (S.D) RMSE (S.D) RMSE (S.D) RMSE (S.D) RMSE (S.D)

w/half 0.029 (0.015) 0.030 (0.026) 0.026 (—) 0.019 (0.010) 0.028 (0.014) 0.030 (0.026) 0.037 (—) 0.018 (0.009)
w/rpy 0.035 (0.019) 0.044 (0.377) 0.044 (—) 0.053 (0.031) 0.044 (0.026) 0.150 (0.094) 0.065 (—) 0.035 (0.024)
w/static 0.006 (0.003) 0.008 (0.007) 0.007 (—) 0.005 (0.002) 0.008 (0.004) 0.010 (0.009) 0.010 (—) 0.006 (0.003)
w/xyz 0.016 (0.008) 0.024 (0.019) 0.020 (—) 0.013 (0.008) 0.021 (0.011) 0.033 (0.024) 0.025 (—) 0.017 (0.011)
s/half 0.018 (0.008) — 0.020 (—) 0.013 (0.005) 0.023 (0.012) — 0.022 (—) 0.012 (0.006)
s/xyz 0.012 (0.006) — 0.018 (—) 0.011 (0.005) 0.014 (0.007) — 0.020 (—) 0.012 (0.005)

in the balloon2 sequence and the placing_nonobstructing_box
sequence, both of which are characterized by the presence of
diverse object types.

Furthermore, when juxtaposed with other state-of-the-art
dynamic vSLAM systems, our method demonstrates super-
ior results in the majority of sequences (11/15). Notably,
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Table 3. Compared with the latest SLAM systems, in RMSE and S.D of the ATE and t.RPE. The best results are highlighted in bold, and
we utilize the values in their original papers when available (m).

ATE t.RPE

Towards Iccrf Blitz Ours Towards Iccrf Blitz Ours
Sequence RMSE (S.D) RMSE (S.D) RMSE (S.D) RMSE (S.D) RMSE (S.D) RMSE (S.D) RMSE (S.D) RMSE (S.D)

w/half 0.029 (—) 0.028 (0.015) 0.025 (0.012) 0.019 (0.010) 0.042 (—) 0.035 (0.024) 0.025 (0.012) 0.018 (0.009)
w/rpy 0.037 (—) 0.046 (0.034) 0.035 (0.022) 0.053 (0.031) 0.047 (—) 0.050 (0.046) 0.047 (0.028) 0.035 (0.024)
w/static 0.011 (—) 0.011 (0.008) 0.010 (0.005) 0.005 (0.002) 0.011 (—) 0.014 (0.011) 0.012 (0.006) 0.006 (0.003)
w/xyz 0.019 (—) 0.016 (0.011) 0.015 (0.007) 0.013 (0.008) 0.023 (—) 0.021 (0.015) 0.019 (0.009) 0.017 (0.011)
s/half 0.017 (—) — 0.016 (0.007) 0.013 (0.005) 0.025 (—) — 0.016 (0.007) 0.012 (0.006)
s/xyz 0.011 (—) 0.009 (0.005) 0.014 (0.006) 0.011 (0.005) 0.016 (—) 0.012 (0.007) 0.014 (0.007) 0.012 (0.005)

Table 4. Compared with the advanced vSLAM systems, in terms of the ATE’s RMSE on the Bonn dataset, the best results are highlighted
in bold, while the second-best results are underlined. We utilize the values reported in their original papers when available (m).

Sequence ORB-SLAM3 SG-SLAM MF Iccrf Ours

balloon 0.060 — 0.164 0.027 0.027
balloon2 0.141 — 0.114 0.024 0.019
balloon_tracking 0.031 — 0.194 0.025 0.029
balloon_tracking2 0.029 — 0.238 0.045 0.022
crowd 0.368 0.019 0.473 0.019 0.016
crowd2 0.507 0.042 0.653 0.031 0.025
crowd3 0.318 0.023 0.341 0.023 0.019
moving_nonobstructing_box2 0.031 0.028 0.193 0.038 0.023
person_tracking 0.591 0.038 0.301 0.035 0.040
person_tracking2 0.725 0.034 0.220 0.040 0.032
placing_nonobstructing_box 0.714 — 0.325 0.014 0.033
placing_nonobstructing_box2 0.026 — 0.153 0.016 0.020
placing_nonobstructing_box3 0.071 — 0.156 0.036 0.021
placing_obstructing_box 0.234 — 0.424 0.320 0.109
removing_nonobstructing_box 0.011 — 0.058 0.013 0.009

Table 5. Compared with the advanced vSLAM systems, in terms of the ATE’s mean on the KITTI dataset, the best results are highlighted in
bold, while the second-best results are underlined. We utilize the values reported in their original papers when available (m).

Sequence ORB-SLAM3 DynaSLAM DOT-SLAM +IMU Ours

00 0.87 1.4 1.18 0.91 0.87
01 10.60 9.4 1.33 2.08 9.26
02 3.06 6.7 1.04 0.74 3.57
03 0.33 0.6 1.00 1.72 0.32
04 0.18 0.2 1.00 1.81 0.16
05 0.37 0.8 1.14 — 0.32
06 0.42 0.8 1.07 0.26 0.38
07 0.38 0.5 1.00 2.26 0.42
08 2.52 3.5 1.24 — 2.65
09 1.03 1.6 3.89 2.09 0.97
10 1.51 1.2 1.02 2.39 1.29

our approach showcases a significant advantage in the three
crowd sequences, marked by a high density of dynamic
objects. Impressively, our system also performs well in the
placing_obstructing_box sequence, wherein dynamic objects
constitute approximately 80% of the scene. This compelling
evidence reinforces the notion that our method thrives in com-
plex scenarios featuring a rich assortment and a larger quantity
of dynamic objects.

4.7.3. KITTI dataset. Table 5 presents the root mean square
error (RMSE) of ATE for each system across the ten
sequences. We compare our method with state-of-the-art out-
door environment approaches, such as DynaSLAM and DOT-
SLAM [34], and show the effectiveness of our work by
including a method with IMU integration. In the table, ORB-
SLAM3 represents the baseline system that we have modified.
DynaSLAM and DOT-SLAM denote two advanced outdoor
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Table 6. Comparison of computation time (ms).

Method Semantic part Geometry part Tracking

ORB-SLAM3 — — 11.15
Ours 10.34 14.55 37.96

vSLAM systems, while ‘+IMU’ signifies a cutting-edge VIO
system employed in autonomous driving. ‘Ours’ refers to the
system proposed in this paper.

Compared to the ORB-SLAM3 system, our proposed
method has been demonstrated to reduce the absolute traject-
ory error. The empirical evaluation reveals that the trajectory
error is reduced by approximately 10%–15% in themajority of
the sequences. Notably, our method yields unsatisfactory res-
ults in three sequences recorded in rural settings (02, 07, and
08). These sequences exhibit high traffic density and close dis-
tance between stationary and moving vehicles. Consequently,
our system tends to erroneously remove points from station-
ary vehicles, resulting in degraded performance. However, our
system performs well in sequences 01 and 04, captured on
spacious highways, and other sequences recorded in urban
and rural areas with fewer parked vehicles. This indicates that
our system can effectively handle multiple moving vehicles on
highways.

Compared with the IMU-enhanced method, our approach
shows a significant gap in sequences 01 and 02, which fea-
ture complex lighting conditions. In the remaining sequences,
apart from sequence 6, our method achieved more than a 50%
reduction in ATE. This demonstrates the superiority of our
purely visual approach. Furthermore, when compared to DOT-
SLAM and Dyna-SLAM, our method yields better results in
most sequences, except for sequences 01 and 10.

4.8. Runtime analysis

In practical applications, the ability of a system to operate in
real-time is of paramount importance. Given the TUM data-
set’s reputation as a highly regarded and widely employed
benchmark within the field, we have chosen it as the basis
for our runtime analysis. This decision facilitates a rigorous
and dependable assessment of our approach within a well-
established framework. To gauge the real-time performance of
our SLAM system, we calculate the average processing time
for each image across different sub-modules. Concurrently,
we compare the tracking time of the baseline ORB-SLAM3
and our proposed method, further emphasizing the signific-
ance of real-time functionality in our research.

As shown in table 6, there are three different modules with
processing time in milliseconds. The tracking time of this
system is only 26ms higher than that of the original ORB-
SLAM3. In addition, the processing time of the Semantic
Module accelerated by TensorRT reaches 10.34ms per frame,
which is 4.21ms faster than the geometry module. In a word,
our system meets the real-time3 requirement.

3 Real-time in our paper refers to the time of processing images by the robot
is the same as humanity’s brain’s, i.e. 100 ms per frame [35].

Figure 6. Experiment with a monocular camera in a real-life scene.
Our method successfully detects dynamic points belonging to
known objects (people) and limited unknown moving objects
(plastic bags).

4.9. Robustness test in real environment

We evaluate our method in real-world environments by utiliz-
ing the monocular camera of a laptop, which not only show-
cases the efficacy of our approach in handling real dynamic
scenarios but also demonstrates the universality of ourmethod.
During the experimentation, we manually shook and rotated
the camera while moving it. Simultaneously, one individual
performed various actions in front of the camera, while another
person unknowingly entered the camera’s field of view and
engaged in random movements. Figure 6 illustrates the spe-
cific results of the moving point culling algorithm. The first
row displays the detected objects within the image, the second
row presents the discernment of moving and static boxes, and
the third row exhibits the dynamic points in blue and the static
points in green.

The first column highlights the dynamic points detected
on the human body, while the second column showcases the
effectiveness of the NHBC algorithm. In the third column, a
woman inadvertently enters the camera frame while retriev-
ing something from the refrigerator, with the dynamic points
on her body accurately marked in blue. The fourth column
accurately identifies the dynamic key points on the undetec-
ted plastic bags, marking only the points on the moving upper
human body as dynamic, while the static lower body is cor-
rectly classified as static.

In the absence of ground truth trajectories in real-world
scenarios, we evaluate the influence of small displacements
and jitters within indoor settings. The presence of dynamic
objects can induce considerable deviations in the estimated
trajectory length. As depicted in figure 7, there is an approx-
imate five-fold disparity between the scales of the trajector-
ies estimated by ORB-SLAM3 (with the x-axis in units of
0.1m) and our method (with the x-axis in units of 0.02 m).
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Figure 7. The contrast of trajectories obtained from ORB-SLAM3
and our system in real environment.

This observation suggests that minor movements have been
erroneously amplified into more substantial displacements.
Furthermore, a trajectory that should have resembled a small
elliptical closed loop is estimated by ORB-SLAM3 as a cir-
cular path with extraneous trajectories outside the closed
loop. This evidence further underscores the notable devi-
ation manifested by ORB-SLAM3 and the robustness of our
approach under monocular conditions, emphasizing the effic-
acy of our method in tackling the challenges presented by
dynamic environments.

5. Conclusion

We propose a real-time vSLAM system capable of hand-
ling both known and limited unknown dynamic objects in
dynamic environments. Our approach emphasizes retaining
a greater number of static boxes to increase the number of
stable key points while mitigating the influence of dynamic
objects. Through experimental evaluation, our method demon-
strates superior accuracy compared to other advanced tech-
niques and exhibits commendable real-time performance. The
robustness of our approach is substantiated by various indoor
scenarios in the TUMandBonn datasets, while experiments on
the KITTI dataset establish its effective operation in outdoor
environments under the stereo camera. Moreover, real-world
monocular camera tests reveal that our system maintains good
performance even under monocular settings. Additionally, our
method can detect a higher number of semantic objects than
other approaches, indicating its potential to better construct
long-term semantic maps in dynamic environments for accom-
plishing advanced robotic tasks [36–38]. Overall, our system
represents the only known by us universal vSLAM system
capable of performing well across all types of cameras and
environments.

During the experimental process, we attempted to divide
humans into four parts and objects into two parts based on
scale or solely eliminate key points belonging to humans; how-
ever, these modifications resulted in reduced system perform-
ance. Simultaneously, although the NHBC is not robust for
local human body parts from different angles, it imposes vir-
tually zero burdens on the system. In the future, boxes can be
evaluated using additional information, such as reprojection

errors, to facilitate more comprehensive judgment and further
enhance system performance.

Data availability statements
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