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Abstract

The paper deals with a nonlinear equation in one-dimensional space, of which the nonlinearity
appears both in source term and the Neumann boundary condition. Firstly, we proved that the
solution of problem (1.1) quenches in finite time and the only quenching point is x = 0 if the
initial data is appropriate. Then we established the corresponding quenching rate of the solution.
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1 Introduction

In this paper, we are concerned with the blow-up phenomenon of the following problem:

ut = f(u)(| ux |p−2 ux)x + (1− u)−h, 0 < x < 1, t > 0,
ux(0, t) = u−q(0, t), ux(1, t) = 0, t > 0,
u(x, 0) = u0(x), 0 ≤ x ≤ 1,

(1.1)

where f(u) is a monotone decreasing function with f(u) > 0 for u > 0. p ≥ 2, h, q are positive
constants. In addition, 0 < u0(x) < 1 for x ∈ (0, t) and u0 satisfies the compatibility conditions.

At first, we give the definition about quenching: we claim that the solution of the problem (1.1)
quenches in finite time, which there exists a 0 < T <∞, such that

lim
t→T−

min
0≤x≤1

u(x, t) = 0 or lim
t→T−

max
0≤x≤1

u(x, t) = 1.

Kawarada first studied the quenching behavior of the semilinear heat equation ut = uxx+ 1/(1−u)
in 1975(see[1]). Since then, there are many conclusions on the quenching phenomenon(see[2]-[5],[6]-
[12]). Quenching phenomenon depends on the singular term of the problem. For example, Zhi and
Mu in [13] considered a problem with nonlinear boundary outflux at one side:

ut = uxx + (1− u)−p, 0 < x < 1, t > 0,
ux(0, t) = u−q(0, t), ux(1, t) = 0, t > 0
u(x, 0) = u0(x), 0 ≤ x ≤ 1.

(1.2)

They obtained that u quenches in finite time T , and the only quenching point is x = 0, and they
also show the quenching rate near the quenching time T . In [14], Selcuk.B and Ozalp.N discussed
the same equation from (1.2), but the Neumann boundary condition is ux(0, t) = 0, ux(1, t) =
−u−q(1, t), t > 0. They showed that the only quenching point is x = 1 and gave the quenching
rate.

In addition, K.Deng and M.Xu [15] considered the following problem:

(ψ(u))t = uxx, 0 < x < 1, t > 0,
ux(0, t) = 0, ux(1, t) = u−q(0, t), t > 0
u(x, 0) = u0(x) 0 ≤ x ≤ 1

(1.3)

They obtained that the finite time quenching for the solution and established results about quenching
set and rate.

In recent year, there are more and more people researched the quenching phenomenon for degenerate
parabolic problem see([16]-[21]).

In [16], Yang.Y etc study the following problem:

ut = (|ux|p−2|ux|)x, 0 < x < 1, t > 0,
ux(0, t) = 0, ux(1, t) = −g(u(1, t))), t > 0,
u(x, 0) = u0(x), 0 ≤ x ≤ 1,

(1.4)

They showed that the quenching occurs only at x = 1 and gave the bounds for the quenching rate.

Recently, Ying Yang [22] researched a non-Newtonian filtration equation with singular boundary
flux:
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ut = (|ux|p−2|ux|)x + (1− u)−h, 0 < x < 1, t > 0,
ux(0, t) = 0, ux(1, t) = −u−q(1, t), t > 0,
u(x, 0) = u0(x), 0 ≤ x ≤ 1,

(1.5)

They got the solution quenched in a finite time and the time derivative blow up at the quenching
point. They also give the quenching rate.

Motivated by the results of the above cited papers. By using methods in [15, 16, 22], the results of
the literature [22]are extended to the problem (1.1). It is easy to see that there are two singularity
terms. The specific structure is as follows. At first, in section 2 we show that the finite-time
quenching occurs for appropriate initial data and the only quenching point is x = 0. Then in
section 3 we calculate the quenching rate.

Throughout this paper, we assume that:

(H1) u
′
0(x) ≥ 0,

(H2) f(u(0, x))(| u
′
0(x) |p−2 u

′
0(x))x + (1− u(0, x))−h < 0.

2 Quenching on the Boundary

In this section, we will prove finite time quenching for the solution. In virtue of the degeneracy of
the equation, the classical solutions might not exist in general, so we should discuss weak solutions.
However for simplifying our arguments, we suppose that the solution is appropriately smooth, since
we may consider some approximate boundary and initial value conditions.

Lemma 2.1. Assume that (H1), (H2) hold and u is the solution of problem (1.1) in (0, T0), and
T0 > 0. Then ux(x, t) ≥ 0 and ut(x, t) < 0 in (0, 1)× (0, T0).

Proof. Denote ω = ut. Then ω(x, t) satisfies

ωt = (p− 1)f(u)(| ux |p−2 ωx)x + f
′
(u)(| ux |p−2 ux)xω + h(1− u)−h−1ω, 0 < x < 1, 0 < t < T0,

ωx(0, t) = −qu−q−1(0, t)ω(0, t), ωx(1, t) = 0, 0 < t < T0,

ω(x, 0) = ut(x, 0) = f(u(0, x))(| u
′
0(x) |p−2 u

′
0(x))x + (1− u)−h < 0, 0 ≤ x ≤ 1,

The maximum principle leads to ω < 0, and thus ut < 0 in (0, 1]× (0, T0) for T0 > 0.

Similarity, letting ν = ux, we have

νt = f(u)(| ν |p−2 ν)xx + f
′
(u)ν(| ν |p−2 ν)x + h(1− u)−h−1ν, 0 < x < 1, 0 < t < T0

ν(0, t) = u−q(0, t), ν(1, t) = 0, 0 < t < T0,

ν(x, 0) = u
′
0(x), 0 ≤ x ≤ 1,

(2.1)

The maximum principle leads to ux ≥ 0 in (0, 1] × (0, T0). Then it is easy to conclude that the
problem (2.1) is not degenerate in (0, 1]×(0, T0). So ux is a classical solution of (2.1). Therefore, the
solution of the problem (1.1) u ∈ C2,1((0, 1]×(0, T0)),and ux(x, t) ≥ 0, ut(x, t) < 0 in (0, 1]×(0, T0).
The proof of lemma 2.1 is complete. �

Theorem 2.1. Assume that (H1), (H2) hold, then every solution of (1.1) quenching in finite time,
and the only quenching point is x = 0.

Proof. By lemma 2.1, we have

min
0≤x≤1

u(x, t) = u(0, t), min
0≤x≤1

v(x, t) = v(0, t).
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Since ut < 0,there exists a positive constant γ such that ut ≤ −γ. Define L(t) =
∫ 1

0
u(x, t)dx, so it

is easy to see that

L
′
(t) =

∫ 1

0

utdx ≤ −γ.

Thus L(t) ≤ L(0)− γt, which means there exists T such that u(0, t)→ 0 for t→ T−. Next, we will
prove u must quench at x = 0. In what follows, we only need to prove the quenching can not occur
in (0, 1/4)× (η, T ) for η(0 < η < T ). Denote

H(x, t) = ux − ε(1/4− x), (x, t) ∈ (0, 1/4)× (η, T ),

where ε is a positive constant to be specified later. Since f(u) > 0, f
′
(u) < 0, ux(x, t) > 0 in

(0, 1)× (0, T ). So H(x, t) satisfies

Ht = uxt

= f(u)(| ux |p−2 ux)xx + f
′
(u)ux(| ux |p−2 ux)x + h(1− u)−h−1ux

= (p− 1)(p− 2)f(u)up−3
x u2

xx + (p− 1)f(u)up−2
x uxxx

+(p− 1)f
′
(u)up−1

x uxx + h(1− u)−h−1ux

= (p− 1)f(u)up−2
x Hxx + (p− 1)(p− 2)f(u)up−3

x (Hx − ε)2

+(p− 1)f
′
(u)up−3

x (Hx − ε) + h(1− u)−h−1ux

= (p− 1)f(u)up−2
x Hxx + (p− 1)f

′
(u)up−3

x Hx + (p− 1)(p− 2)f(u)up−3
x (Hx

−ε)2 − (p− 1)f
′
(u)up−3

x ε+ h(1− u)−h−1ux,

for (x, t) ∈ (0, 1/4)× (η, T ).

It means

Ht − (p− 1)f(u)up−2
x Hxx − (p− 1)f

′
(u)up−3

x Hx ≥ 0.

On the parabolic boundary,

H(0, t) > 0, H(1/4, t) > 0, t ∈ (η, T ),
H(x, η) > 0, x > 0,

provided ε is sufficiently small. By the maximum principle, we find that

H(x, t) ≤ 0, (x, t) ∈ (0, 1/4)× (η, T ),

So u(x, t) > 0, if x > 0. The proof of Theorem 2.1 is complete. �

Remark 2.1. From Theorem 1.1, we can see that the case of

lim
t→T−

max
0≤x≤1

u(x, t) = 1,

will not occur as a result of our choice of the initial datum.
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3 Bounds for Quenching Rate

In this section, we establish bounds on the quenching rate. We first present the upper bound.

Theorem 3.1. Assume that the hypothesis of Theorem (2.1) hold, then there exists a positive
constant C1 such that ∫ u(0,t)

0

sqp+1

f(s)
ds ≤ C1q(T − t).

for t sufficiently close to T.

Proof. we define a function E(x, t) = |ux(x, t)|p−2ux(x, t)−ϕp−1(x, t)u−q(p−1)(x, t) in (0, 1)×(0, T ).
Here ϕ(x) is given as follows:

ϕ(x) =

{
(x0−x)r
xr0

, x ∈ [0, x0],

0, x ∈ (x0, 1],

with some x0 < 1 and choosing r > 3 large enough so that ϕ(x) ≤ u
′
0(x)uq0(x) for 0 ≤ x ≤ x0. It is

easy to see E(0, t) = E(1, t) = 0 and E(x, 0) ≥ 0 .

In addition, E(x, t) also satisfies

Et = (p− 1)up−2
x f(u)Exx + (p− 1)up−1

x f
′
(u)Ex

+(p− 1)2f(u)up−2
x u−q(p−1)[(p− 2)ϕp−3(x)(ϕ

′
)2(x) + ϕp−2(x)ϕ

′′
(x)]

+q(p− 1)(1− u)−hϕp−1(x)u−q(p−1)−1 + q(p− 1)2[q(p− 1) + 1]upxf(u)ϕp−1(x)u−q(p−1)−2

+(p− 1)2up−1
x f

′
(u)ϕp−2(x)ϕ

′
(x)u−q(p−1) − q(p− 1)2upxϕ

p−1(x)u−q(p−1)−1

−2q(q − 1)3up−1(x)f(u)ϕp−2(x)ϕ
′
(x)u−q(p−1)−1

+(p− 1)up−1
x h(1− u)−h−1.

According to the definition of ϕ(x), it is easy to see that ϕ(x) ≥ 0, ϕ
′
(x) ≤ 0, ϕ

′′
(x) ≥ 0. Then we

have

Et − (p− 1)up−2
x f(u)Exx − (p− 1)up−1

x f
′
(u)Ex ≥ 0 (3.1).

Thus, by the maximum principle, we can see that E(x, t) ≥ 0, that is

ux(x, t) ≥ ϕ(x)u−q, (x, t) ∈ [0, 1]× [0, T ). (3.2)

It is easy to see that

Ex(0, t) = limx→0+
E(x,t)−E(0,t)

x
≥ 0, (3.3)
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which means

ut(0, t) ≥ (p− 1)f(u(0, t))ϕ
′
(0)u−q(p−1)(0, t)− q(p− 1)f(u(0, t))u−qp−1(0, t) + (1− u)−h

≥ (ϕ
′
(0)
q
− 1)[q(p− 1)f(u(0, t))u−qp−1(0, t)]

≥ −c̃q(p− 1)f(u(0, t))u−qp−1(0, t),
(3.4)

where c̃(≥ 1− ϕ
′
(0)
q

) is a positive constant.

Integrating (3.4) from t to T , we get∫ u(0,t)

0

sqp+1

f(s)
ds ≤ C1(T − t),

where C1 = c̃q(p− 1).

The proof of Theorem 3.1 is complete. �

Next we will give the lower bound on the quenching rate, the derivation of which is in the spirit of
[15]. We need the following additional hypotheses: there exist a constant δ (−∞ < δ ≤ 2− 1/(p−
1))such that

(H3) (−qf(u)u−q(p−1)(δ−1)−q−1)
′′
< 0.

Theorem 3.2. Assume that the hypotheses (H1), (H2), (H3) hold, then there exists a positive
constant C2 such that ∫ u(0,t)

0

sqp+1

f(s)
ds ≥ C2q(T − t).

Proof. Letk(u) = −qf(u)u−q(p−1)(δ−1)−q−1. Notice that the hypothesis (H3) implies that

(H̃3) k
′′

(u) ≤ 0.

Set ψ(x, t) = ut− εk(u)u
(p−1)(2−δ)
x in (0, T − τ)× (τ, T ), where ε is a positive constant. After some

calculation we have

ψt = (p− 1)f(u)up−2
x ψxx + (p− 1)(p− 2)f(u)up−3

x uxxψx + J(x, t)ψ +Q(x, t),

where

J(x, t) = [ f
′
(u)

f(u)
+ ε(2− δ)(2p− δp+ δ − 3) k(u)

f(u)
up−δp+δ−2
x ]ut,

−[ε(2− δ)(2p− δp+ δ − 3) p
p−1

k(u)
f(u)

up−δp+δ−2
x + f

′
(u)

f(u)
]

+ε[(5p− 2δp+ 2δ − 6)k
′
(u)− (2p− δp+ δ − 3) k(u)

f(u)
f
′
(u)]u

(p−1)(2−δ)
x

+ε2(2− δ)(2p− δp+ δ − 3) k
2(u)
f(u)

u3p−2δp+2δ−4
x

+h(1− u)−h−1,

(3.5)
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Q(x, t) = ε2(2− δ)(2p− δp+ δ − 3) k
3(u)
f(u)

u5p−3δp+3δ−6
x

+ε2k(u)[(5p− 2δp+ 2δ − 6)k
′
(u)− k(u)

f(u)
f
′
(u)(2p− δp+ δ − 3)]u

2(p−1)(2−δ)
x

+ 1
p−1

ε(2− δ)(2p− δp+ δ − 3) k(u)
f(u)

up−δp+δ−2
x (1− u)−2h

−ε2(2− δ)(2p− δp+ δ − 3) k
2(u)
f(u)

u3p−2δp+2δ−4
x (1− u)−h

+ε(p− 1)f(u)k
′′

(x)u
(p−1)(3−δ)+1
x − εk

′
(u)(1− u)−hu

(p−1)(2−δ)
x

−{[(5p− 2δp+ 2δ − 6)k
′
(u)− (2p− δp+ δ − 3) k(u)

f(u)
f
′
(u)](1− u)

+[(p− 1)(2− δ)− 1]hk(u)}εu(p−1)(2−δ)
x (1− u)−h−1.

(3.6)

Since (H̃3) hold, we have

k(u) < 0, k
′
(u) > 0, k

′′
(u) > 0, f(u) > 0, f

′
(u) < 0.

Since δ ≤ 2− 1/(p− 1), so
2p− δp+ δ − 3 ≥ 0,
5p− 2δp+ 2δ − 6 ≥ 0.

(3.7)

Next, we prove that Q(x, t) ≤ 0. We only need to prove the last term of (3.6) is negative. Since

[(5p− 2δp+ 2δ − 6)k
′
(u)− (2p− δp+ δ − 3) k(u)

f(u)
f
′
(u)](1− u) + [(p− 1)(2− δ)− 1]hk(u)

= −qf
′
(u)u−q(p−1)(δ−1)−q−1(3p− δp+ δ − 3)(1− u) + qf(u){[q(p− 1)(δ − 1) + q + 1]

(5p− 2δp+ 2δ − 6)u−q(p−1)(δ−1)−q−2(1− u)− h[(p− 1)(2− δ)− 1]u−q(p−1)(δ−1)−q−1}

≥ qf(u){[q(p− 1)(δ − 1) + q + 1](5p− 2δp+ 2δ − 6)u−q(p−1)(δ−1)−q−2(1− u)

−h[(p− 1)(2− δ)− 1]u−q(p−1)(δ−1)−q−1}

≥ 0,

if τ is sufficiently close to T .

So we can conclude that Q(x, t) ≤ 0, it means

ψt − (p− 1)f(u)up−2
x ψxx − (p− 1)(p− 2)f(u)up−3

x uxxψx − J(x, t)ψ ≤ 0,

for (x, t) ∈ (0, T − τ)× (τ, T ).

In addition, on the parabolic boundary, since x = 0 is the only quenching point if ε is enough small,
then

ψ(T − τ, t) < 0, t ∈ (τ, T ),
ψ(x, τ) < 0, x ∈ (0, T − τ).

At x = 0, we have

ψx(0, t) = −εq{[εq(2− δ) + q(p− 1)(δ − 1) + 1]u−qp−1 + (2− δ)(1− u(0, t))−h}u−q−1(0, t)

+q[ε(2− δ)− 1]u−q−1(0, t)ψ(0, t)

≤ q[ε(2− δ)− 1]u−q−1(0, t)ψ(0, t),

7



Jia and Yang; BJMCS, 18(5), 1-9, 2016; Article no.BJMCS.28721

provided ε is enough small and τ → T .

Hence, by the maximum principle, we have ψ(x, t) ≤ 0 in [0, T−τ ]×[τ, T ). In particular, ψ(0, t) ≤ 0,
which implies

ut(0, t) ≤ εk(u)u
(p−1)(2−δ)
x (0, t) = −εqf(u)u−qp−1(0, t). (3.8)

Integrating (3.8) with respect to time from t to T , it gives∫ u(0,t)

0

uqp+1

f(s)
ds ≥ C2(T − t),

where C2 = εq. The proof of Theorem 3.2 is complete. �

Corollary 3.1. Assume that (H1), (H2) and (H3) hold, then the solution of the problem (1.1)satisfies

C2q(T − t) ≤
∫ u(0,t)

0

sqp+1

f(s)
ds ≤ C1q(T − t),

for t sufficiently close to T , where C1, C2 are positive constant which are given in Theorem 2.2 and
Theorem 2.3.

4 Conclusion

In the paper, we proved that the solution of problem (1.1) quenches in finite time and gave the
corresponding quenching rate of the solution.
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