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Abstract

This paper uses stochastic subsampling of the dataset to provide a frequentist approximation
to what is known in the Bayesian framework as the posterior inclusion probability (PIP). The
distinct merit of this contribution lies in the fact that it makes it easier for typically non-Bayesian-
minded practitioners, of which there are many, to relate to the way the Bayesian paradigm allows
the computation of the nicely interpretable variable importance. Despite its computationally
intensive nature, due to the need to fitting a very large number of models, the proposed approach
is readily applicable to both classification and regression tasks, and can be done in comparatively
competitive computational times thanks to the availability of parallel computing facilities through
cloud and cluster computing. Finally, the scheme proposed is very general and can therefore be
easily adapted to all kinds of statistical prediction tasks. Application of the proposed method to
some very famous benchmark datasets shows that it mimics the Bayesian counterpart quite well
in the important context of variable selection.
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1 Introduction

Modern statistical machine learning is replete with thousands of studies where the main statistical
task revolves around estimations and predictions based on the traditional generalized linear model
(GLM) given by

g (E[Y |X,β, α]) = α1n +Xβ, (1)

where g(·) is the so-called link function, β = (β1, . . . , βp)
⊤, Y = (y1, . . . , yn)

⊤, the design matrix
X is an n × p matrix, and 1n = (1, 1, . . . , 1)⊤ is a n × 1 dimensional vector of 1’s. We shall refer
to (1) as the full model. We assume that many of the βj ’s are essentially zero, so that the intrinsic
rank of the design matrix X is a number q ∈ N with q ≪ p. Many data mining problems do exhibit
such a characteristic of rank deficiency, mainly because variables are typically pick up as they are
available, and therefore will turn out to be either noise variable (no relationship with the response)
or redundant variables. Let In denote the n × n identity matrix. A basic result in GLM analysis
shows that when X is rank deficient, and g(·) is the identity function, and the density of Y is
gaussian, ie, [Y |X,β, α] ∼ Nn(α1n +Xβ, σ2In), then the ordinary least squares estimator

β̂(OLS) = (X⊤X)−1X⊤Y (2)

of β will tend to exhibit a high (inflated) variance, thereby corrupting all predictions and inferences
with the computed model. It is therefore crucial to determine (if possible) the intrinsic model that
generated the data, i.e. the model made up of only the most significant and non redundant variables.
For many decades, both frequentist and Bayesian statisticians have contributed substantially to
this topic of variable selection. In elementary statistical regression analysis courses, the method of
choice for variable selection has been overwhelmingly frequentist with stepwise regression heuristic
occupying a prominent place, and best subsets selection occasionally used whenever possible. While a
heuristic like stepwise regression does provide a workable approach to variable selection, it is not a
principled method, and does have the extra limitation of not providing any measure of variable
importance. In recent years, both Bayesians and non-Bayesians have developed new methods
for handling some of the most formidable variable selection tasks, many of which arose from the
statistical learning and data mining community.

2 Bayesian Approach to Variable Selection

The vast majority of Bayesian contributions to variable selection of late have concentrated on the
use of conjugate prior, with the typical choice of prior on β being a Gaussian prior of the form

[β|σ2,W ] ∼ MVN
(
0, σ2W−1) , (3)

where W is the prior precision matrix. In other words, we have

p(β|σ2,W ) =
1√

((2π)σ2)p|W |
exp

{
− 1

2σ2
β⊤Wβ

}
. (4)

Of course, the use of a zero mean prior expresses the assumption of many insignificant coefficients.
However, even more important is the use of a vector of indicator variables that ultimately provides
a mechanism (device) for performing variable selection. One of the key building blocks of the
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Bayesian variable selection machinery is the use of a vector of indicator variables. With the p
original predictor variables, there are 2p − 1 non empty models corresponding each to a subset of
the provided variables. We shall use a vector γ = (γ1, γ2, . . . , γp)

⊤ to denote the index of a given
model, with each γj being an indicator of the variable’s presence in the model under consideration,
namely

γj =

{
1 If variable Xj appears in the model
0 Otherwise

(5)

Clearly, γ = (1, . . . , 1)⊤ corresponds to the full model Mf , while γ = (0, . . . , 0)⊤ corresponds to the
empty model also referred to as the null model, and given by

Mn : g(E[Y |α]) = α1n. (6)

Equipped with this index, pγ =
∑p

j=1 γj is the number of predictor variables in model Mγ , and
βγ is the subset of β made up of only the βj ’s picked up by γ. Finally, Xγ is the submatrix of
X whose columns are only those pγ columns of X picked up by γ, so that Xγ is really an n× pγ
matrix, and the corresponding model Mγ is given by

Mγ : g(E[Y |Xγ ,βγ , α]) = α1n +Xγβγ . (7)

For the normal linear model, we have [Y |α,βγ , σ
2,Mγ ] ∼ Nn(α1n + Xγβγ , σ

2In), which means
that

p(Y |θγ ,Mγ) =
1√

((2π)σ2)n
exp

{
−1

2
(y − α1n −Xγβγ)

⊤(y − α1n −Xγβγ)

}
where θγ = {α,βγ , σ

2}. When it comes to Bayesian variable selection, arguably the most crucial
ingredient is the posterior density of a given model, given by

p(Mγ |y) =
p(y|Mγ)p(Mγ)∑

γ∈Γ p(y|Mγ)p(Mγ)

where Γ = {0, 1}p and p(y|Mγ) is the marginal density of the data, also referred to as the marginal
likelihood of model Mγ , and defined by

p(y|Mγ) =

∫
Θ

p(y|θγ ,Mγ)p(θγ |Mγ)dθγ .

In some special cases, it is possible to derive closed-form (analytical) expressions for p(y|Mγ), but
in general, it must be approximated using a variety of schemes. The posterior probability p(Mγ |y)
of model Mγ , plays a central role in Bayesian learning.

p(z|y) =
∑
γ∈Γ

p(z|Mγ ,y)p(Mγ |y)

and also
E(z|y) =

∑
γ∈Γ

E(z|Mγ ,y)p(Mγ |y)

Among Bayesian statisticians, there are those who suggest that when it comes to model selection,
one must choose the model with the highest posterior density model, i.e.,

γHPM = argmax
γ∈Γ

{p(Mγ |y)}

[1] have suggested selecting instead the so-called median probability model (MPM) given γMPM,
such that

[γj ]MPM =

{
1 if πj ≡ Pr[γj = 1|y] ≥ 1

2

0 otherwise
(8)
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where the posterior inclusion probability is given by

PIPj = πj = Pr[γj = 1|y] =
∑
γ∈Γ

1(γj = 1)p(Mγ |y), (9)

In practice, the estimated posterior inclusion probability is given by

P̂IPj = π̂j =
∑

γ:γj=1

p(Mγ |y), (10)

which means that the importance of a variable is measured in terms of its relative frequency of
appearance in models. In Equation (10), it is crucial to be able to compute the posterior density of
a given model. Empirically, this means that it is able to generate, at least a representative subset
(sample) of all the models, and then to compute estimates of the posterior density from them, [2].

3 Frequentist Approximation of the Bayesian PIP

It turns out that the theoretical derivation of the Bayesian Posterior Inclusion Probability defined
in (8) is technically very complicated. In fact, the estimation indicated in (10) often requires
sophisticated Markov Chain Monte Carlo (MCMC) simulations. Fortunately, from its definition,
it turns out that the Bayesian PIP can be approximated quite well by frequentist stochastic
subsampling, an alternative that is both viable, desirable and feasible thanks to the availability
of computing resources. Besides, we demonstrate and argue later that the advantage of this
approximation lies in the fact that any practitioner who understands GLM can readily implement
the idea of this paper and gain great benefits. Our frequentist’s alternative to the Bayesian PIP
proceeds by building M different models based on random subsamples of the data. For each one of
the M models, the corresponding indicator vector is estimated by simply identifying the significant
variables based on their P-values or T-values, or (expensively) on heuristic like stepwise regression
when the computing resources allow it. After the M models are built, one should consider a matrix
of the form

Γ̂ =



γ̂11 γ̂12 . . . γ̂1j . . . γ̂1p
γ̂21 γ̂22 . . . γ̂2j . . . γ̂2p
...

...
. . .

. . . . . .
...

γ̂m1 γ̂m2 . . . γ̂mj . . . γ̂mp

...
...

. . .
. . . . . .

...
γ̂M1 γ̂M2 . . . γ̂Mj . . . γ̂Mp


, (11)

where γ̂mj is set to 1 if variable Xj appeared in model m or was significant in model m, and zero
otherwise. In other words, γ̂mj ∈ {0, 1}. Once the matrix Γ̂ ∈ {0, 1}M×p is built, the posterior
inclusion probability PIPj = πj of variable Xj can be approximated using

π̂j =
1

M

M∑
m=1

γ̂mj .

Finally, if γ̂FREQ = (γ̂FREQ
1 , . . . , γ̂FREQ

p ) denotes the indicator vector, our final approximating
model, where

γ̂FREQ
j = 1 if π̂j > 0.5.
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4 Computational Demonstrations

4.1 Computational demonstration on pattern recognition

According to Microsoft, spam is a term used to classify unwanted email. Spam may contain viruses
or other malicious programs that can harm a computer. Furthermore, spam may be used as scams
to acquire vital personal information such as credit card accounts, bank accounts, social security
numbers, etc. Spam filters have been developed as preventative measures to protect the end user
from ever opening these emails. Text categorization is one of the several techniques used to create
spam filters. A number of terms are identified as indicators of spam/non-spam from a training set
of emails. In the simplest spam filters, the frequencies of these terms in an email are determined
and used to flag emails as spam/non-spam, [3]. The purpose of this subsection is threefold:

1. Build generalized linear models with a variety of link functions in the binary (Bernoulli)
family, and use the built model to accurately and precisely classify emails as spam or
nonspam.

2. Present a frequentist alternative to Bayesian Posterior Inclusion Probability (PIP) for variable
selection.

3. Compare logistic regression classification accuracy with accuracies of newer machine learning
algorithms.

The data used for this pattern recognition analysis came from the ubiquitous Spambase dataset at
the UCI Machine Learning Repository. This dataset was donated by [4] from Hewlett-Packard Labs.
The collection of emails was provided from [4]’s email account at Hewlett-Packard. The dataset
consisted of 4, 601 observations with 57 explanatory variables and 1 response variable. 54 of the 57
explanatory variables measure the percentage of an email in which specific words or characters
appear. The remaining 3 explanatory variables measure the average length of uninterrupted
sequences of capital letters, length of longest uninterrupted sequence of capital letters, and the
total number of capital letters in an email. The response variable was binary coded 1 for spam and
0 for non-spam. Out of the 4, 601 observations, 2, 788 emails were non-spam (60.60%) and 1, 813
emails were categorized as spam (39.40%). The Spambase dataset webpage on the UCI Machine
Learning Repository cited an average ∼ 7% misclassification error. The goal of this project is to
generate an alternative classification model using regression techniques.

The figure below shows the linear pairwise correlations between all of the explanatory variables.
Based on the correlation plot, there is potential for multicollinearity to affect regression results. Due
to the multicollinearity, variable selection will be required during the model building phase. Even
with variable selection, there are still some questions that remain unanswered. What is the optimal
model size to achieve model complexity-testing accuracy tradeoff? How much confidence should be
placed on the variables identified by variable selection as significant variables? Furthermore, how
does one characterize the importance of a variable’s contribution to the model? We will provide
some insight into these questions through a frequentist approach to variable selection.

The frequentist’s alternative approach to PIP will now be applied to the Spambase dataset. The
entire dataset consisted of 4, 601 observations. For step 1, 70% of the observations (3, 221 observations)
were randomly sampled from the entire dataset to form the training set. The remaining 30% of the
observations (1, 380 observations) formed the test set. This process was repeated 100 times to form
100 replicates of 70/30 training/test split. Since the main goal will be binary classification of spam
/ non-spam, the logistic regression model was selected for step 2. A model was built for each of
the 100 training replicates using logistic regression with Logit link function on all 57 explanatory
variables. The 100 models were then applied on their corresponding test sets to calculate the out-
of-sample accuracies. The left-most figure below is a comparative boxplot between the training and
test set accuracies of the Logit link function on all 57 explanatory variables. The same process was
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repeated using the Probit (center plot below) and Cauchit (right plot below) link functions. Based
on the plots and number summaries below, the Cauchit link function provided the best family of
models with respect to training and test set accuracies.

Fig. 1. Correlation plot
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Fig. 2. Comparative boxplots of training/testing accuracies - logit (left); probit
(center); cauchit (right)

With our link function in hand, we will now approach the daunting task of variable selection in
step 3. Stepwise regression via Akaike Information Criterion (AIC) was applied to each of the 100
replicates. This process was repeated using stepwise regression via Bayesian Information Criterion
(BIC), forward selection via BIC, and the full model. The following figure provides boxplots for
the number of variables deemed significant in a replicate. For example, in AIC stepwise regression
method, 1 of the 100 replicates deemed 30 of the 57 variables significant while another replicate
deemed 18 of the 57 variables significant. The figure provides insight that the optimal model size
should be in the low 20′s. However, there is a now a dilemma. The plot also shows the variability
in identifying significant variables due to the variability of training set data. By choosing the
results from a single replicate, it is possible that a noise variable was deemed significant or a
significant variable was missed due simply to the sample training data. This potential error is
further demonstrated by the next two examples.
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Table 1. Accuracies of training sets for different link functions

Model Min 1st Qu Median Mean 3rd Qu Max

Logit 83.64% 92.92% 93.14% 92.83% 92.83% 93.32%
Probit 81.50% 88.66% 92.50% 90.50% 92.90% 93.73%
Cauchit 69.95% 94.65% 94.88% 94.28% 95.16% 95.87%

Table 2. Accuracies of test sets for different link functions

Link function Min 1st Qu Median Mean 3rd Qu Max

Logit 80.87% 92.39% 92.97% 92.69% 93.48% 94.42%
Probit 81.38% 88.73% 92.17% 90.43% 92.90% 94.28%
Cauchit 69.86% 93.99% 94.42% 93.84% 94.78% 95.65%

AIC Stepwise BIC Forward BIC Stepwise Full Model

Significant Variables Per Model

16
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Fig. 3. Number of variables deemed significant in replications

The first example below shows 2 of the 100 replicates after performing AIC stepwise regression.
In the replicate on the left, 18 variables were deemed significant, while 30 variables were deemed
significant in the replicate on the right.

The second example below shows 2 of the 100 replicates after performing BIC stepwise regression.
In the replicate on the left, 17 variables were deemed significant, while 26 variables were deemed
significant in the replicate on the right.

In the next section, we will examine how to find a more robust method that helps truly identify
significant variables.

The percentage in which each explanatory variable was deemed significant (p-value ≤ 0.05) out
of the 100 training replicates was calculated and plotted in the figure below (step 4). There
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are several advantages to this approach. Firstly, we have identified, with high confidence, the
18 significant variables to comprise our core model. These variables are wf.remove, wf.hp, wf.re,
wf.our, wf.free, wf.edu, cf.exclamation, cf.dollar, wf.business, wf.george, wf.project, cap.run.length.total,
wf.your, wf.000, wf.internet, wf.receive, wf.over, and wf.money (note: wf is acronym for word frequency,
cf is acronym for character frequency, and cap.run.length.total is the total number of capital letters
in an email); for the remainder of this analysis, they will be referred to as the 18 core variables.
There is high confidence that these 18 variables are significant variables due to their robustness.
They were consistently identified as significant in ≥ 50% of the replicates in all 4 of the variable
selection methods despite the variability in the training sets’ observations.

Fig. 4. 2 replicates after AIC stepwise regression

Fig. 5. 2 replicates after BIC stepwise regression

Secondly, this approach also affords flexibility to the end user in modeling. There were 7 variables
(marked by red dotted vertical lines) which were deemed significant in ≥ 50% of the replicates by
at least 1 of the 4 variable selection methods but not by all 4. These variables are wf.technology,
cap.run.length.avg, wf.meeting, wf.order, wf.you, wf.credit, and cap.run.length.max. Depending on
the end user’s threshold for model complexity-accuracy tradeoff, the user can experiment building
models with any combination of these 7 variables in addition to the 18 core variables. Furthermore,
each variable’s importance can now be characterized by the percent of replicates in which they are
deemed significant. For example, it may not be cost-effective for a business to measure all 18 core
variables or may require too much computing power; as a result, the user may be constrained to
using only 10 variables. How would the end user decide which 10 variables to use? Based on the
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plot, the user should select the first 10 variables (wf.remove, wf.hp, wf.re, wf.our, wf.free, wf.edu,
cf.exclamation, cf.dollar, wf.business, and wf.george) because they were statistically significant in
> 90% of the replicates in all 4 variable selection techniques. One can view this approach as an
alternative to Mallow’s Cp.

Fig. 6. Percentage in which each explanatory variable deemed significant

The remaining 32 variables (the variables to the right of the rightmost red dotted line) can be
discarded because they never exceeded 50% in the replicate sets for any of the 4 selection methods.
These 32 variables are more susceptible to the randomness of the observations in the training
replicates. When one compares multiple replicates, these variables will not be consistently of deemed
significance. The potential error in using only one variable selection method becomes evident.
Suppose a modeler selected the model with the highest test set accuracy after performing only
BIC stepwise regression (represented by green line in the plot above). There is ∼ 20% chance the
chosen model would not include wf.project (the percentage of an email in which the word ”project”
appears). However, when looking at variable selection from an ensemble point of view, there is
high confidence that wf.project is a significant variable despite not being deemed significant in a
replicate. Alternatively, there is a 30% chance that the chosen model would include cf.semicolon
(the percentage of an email in which the character ”;” appears). However, when looking at variable
selection from an ensemble point of view, there is low confidence that cf.semicolon is a significant
variable because it never reached ≥ 50% in any of the variable selection methods.

Five families of models were built in increasing complexity (step 5). For the first family, a model
was built for each training replicate using the 18 core variables. The accuracies were calculated for
both training and test sets. This process was repeated 4 more times, in which different variables
were added onto the 18 core variables (the variables used are listed below).

Let Mc denote the core model containing the 18 variables that always appear in every replication.
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Table 3. Variable selection for various model complexities

Model Complexity Variables Used

18 Variables Mc

19 Variables M19 = Mc ∪ {wf.tecnology}
20 Variables M20 = M19 ∪ {cap.run.length.avg}
21 Variables M21 = M20 ∪ {wf.meeting}
23 Variables M23 = M21 ∪ {wf.you,wf.credit}

Table 4. Test set accuracies For various model complexities

Model Complexity Min 1st Qu Median Mean 3rd Qu Max

18 91.09% 93.04% 93.51% 93.50% 93.93% 94.93%
19 91.09% 93.04% 93.48% 93.46% 93.91% 94.86%
20 91.67% 93.32% 93.94% 93.78% 94.22% 95.29%
21 91.09% 93.62% 94.13% 94.05% 94.49% 95.65%
23 90.94% 93.84% 94.13% 94.12% 94.42% 93.51%

For nonlinear models like the ones that arise in the generalized linear model framework, it is often
the case that the Fisher scoring algorithm used to estimate the parameters of the model does
not converge. When that happens, the solution delivered is at best suboptimal, and may lead to
misleading conclusions. For instance, the gist of the method proposed in this paper lies on scanning
the variables and choosing the model made up of variables whose p-values are less than 0.05. With
a suboptimal solution, it is unwise and misleading to consider that p-values are meaningful. For
that reason, we systematically tract all the estimations throughout the totality of our random
replications, and we provide an estimate of the percentage of times the estimates of the model are
meaningful. It makes sense to us that only the cases where convergence is achieved should be used
for inference, because -in a sense- that measures an aspect of the quality of the model space search.
Below is a partial table of the percentages:

Table 5. Percentage of convergence/non-convergence for various model complexities

Model Complexity % Converge % Non-Converge

18 73 27
19 80 20
20 68 32
21 37 63
23 28 72

The table above shows the test set accuracies for all 5 models built. The last two columns in the table
above list the percentage of 100 models which converged and the percentage of 100 models which did
not converge. All 5 of the models have very respectable accuracies; furthermore, there is relatively
little variation in test set accuracies throughout the 100 replicates. The end user now has several
models to choose from. If the end user sought the most parsimonious model and is willing to accept
a slight loss in accuracy, he/she can select the 18 variable model. If, on the other hand, the end
user sought the highest prediction rate, he/she would select the 23 variable model. If the modeler
sought the most computationally stable model, he/she would select the 19 variable model; this
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model had 80% of its replicates converge. For comparison with current machine learning methods,
we selected the 20 variable model. The 20 variable model achieved the best tradeoff between model
accuracy and convergence rate; this model complexity is in agreement with the predicted optimal
model size. The following two figures plot the ROC curves for all 5 models. In the first figure, all
5 ROC curves achieve ”right angle” shape. The second figure provides a close-up of the upper-left
corner of the first figure. The 20 variable model (green line) tracks well with the 23 variable model
(purple dotted line); both of these have more area under the curve compared to the remaining 3
models.

ROC Curve for 5 Models − Cauchit Link Function
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Fig. 7. ROC curves for 5 models

The 20 explanatory variables used to generate the model were wf.remove, wf.hp, wf.re, wf.our, wf.free,
wf.edu, cf.exclamation, cf.dollar, wf.business, wf.george, wf.project, cap.run.length.total, wf.your, wf.000,
wf.internet, wf.receive, wf.over, wf.money, wf.technology, and cap.run.length.avg. 6 out of the 20
explanatory variables are indicators of non-spam (as their frequency in an email increases, the
more likely an email is not spam); these variables are wf.hp, wf.re, wf.george, wf.edu, wf.project, and
wf.technology. 14 out of the 20 explanatory variables are indicators of spam (as their frequency in an
email increases, the email is more likely to be spam); these variables are wf.000, wf.money, cf.dollar,
wf.free, wf.remove, wf.business, wf.your, cf.exclamation, cap.run.length.avg, cap.run.length.total, wf.inter-
net, wf.over, wf.our, and wf.receive.

When one looks at both classes of indicators, certain patterns arise which can provide further
explanation. The variables wf.hp, wf.re, wf.george, wf.project, and wf.technology in the non-spam
indicators, suggest a personal or professional relationship with the recipient. Since the dataset was
donated by [4] at Hewlett Packard labs, it makes sense that emails containing ”hp” and ”George”
indicate that the sender either knew the recipient and/or the email was work-related. The characters
”re” are often used in emails as replies. Therefore, email replies are flagged as non-spam because
the recipient is receiving a reply to an earlier email sent out by the recipient. Additionally, the
words meeting and project are usually work-related terms and hence why they are also indicators
of non-spam. The variables wf.000, wf.money, cf.dollar, wf.free, and wf.business are associated with
money. This makes sense since most spam emails are attempts to get money from the recipient.
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ROC Curve for 5 Models − Cauchit Link Function
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Fig. 8. Close up of ROC curves for 5 models

In [5], different machine learning techniques were applied to the Spambase dataset with the goal
of optimizing correct classification rate. The following table lists the testing set accuracy for the
different machine learning techniques used in the paper. Our 20 variable model, with a median test
accuracy of 93.94%, was outperformed by Ensemble Decision Tree and Adaboost methods.

Table 6. Test set accuracies for various machine learning techniques

Classifier Accuracy

Ensemble Decision Tree (Nb of trees = 25) 96.40%
Adaboost 95.00%
Stacking 93.80%
SVM 93.40%
Bagging 92.80%
Decision Tree 92.58%
Neural Network 90.80%
Naive Bayes 89.57%
Nearest Neighbor (k=5) 89.40%

Independently, [6] applied Generalized Additive Neural Networks (GANNs) to the Spambase dataset
to classify email as spam/non-spam. The spambase dataset was broken in 67% training and
33% test. The AutoGANN method used by [6] attained a 95.8% accuracy. While this methods
accuracy beat the 20 variable model (95.8% > 93.94%), it required higher model complexity with
41 explanatory variables used.

[7] used a neural network method called Multi-Layer Perceptron (MLP). In this paper, the Spambase
dataset was broken down into training set with 4, 025 observations (∼ 87.48%) and test set with
576 observations (∼ 12.59%). The author applied this technique on 3 different scenarios. In the
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first scenario, [7] used MLP on the training set using all 57 exploratory variables. Due to the high
dimensionality, the author noted that the MLP method had trouble converging and consequently,
generated poor classification rates. A similar effect was observed in our approach. For our 5 models,
the percentage of models that converged drastically decreased when model complexity increased
above 20 variables. The following table lists the accuracies for different models built by the author
using all 57 variables.

Table 7. Accuracies for MLP using 57 variables

MLP Architecture Learning Rate Momentum Average Classification Rate

20− 10− 10− 10− 5 0.1 0.80 62.40%
20− 10− 10− 10− 5 0.1 0.95 63.20%

20− 10− 10− 5 0.1 0.85 60.61%
15− 15− 15− 5 0.1 0.85 60.59%

The author used the same MLP method after reducing dimensionality to 21 variables. The test
accuracies listed below are very comparable to the test set accuracies for our 20 variable model.

Table 8. Accuracy for MLP using 21 variables

MLP Architecture Learning Rate Momentum Average Classification Rate
20− 10− 10− 10− 5 0.1 0.80 93.50%
20− 10− 10− 10− 5 0.1 0.95 90.30%
20− 10− 10− 10− 7 0.1 0.80 93.80%

Lastly, in the third attempt, MLP was applied after reducing dimensionality to 9 variables. The
test accuracies are listed below.

Table 9. Accuracy for MLP using 9 variables

MLP Architecture Learning Rate Momentum Average Classification Rate

20− 10− 10− 8 0.1 0.80 92.40%
20− 10− 10− 5 0.1 0.80 91.70%
20− 10− 10− 5 0.1 0.95 91.80%

In a fourth comparison, [8] utilized 9 different machine learning algorithms for their paper Adaptive
Approach for Spam Detection. In their approach, the data was transformed into 1′s and 0′s. If a
certain word appeared, that exploratory variable was a 1; if the certain word did not appear in an
email, the exploratory variable was a 0. This was done for 55 of the 57 exploratory variables. The
following table lists the performance of different algorithms after ten-fold cross validation. Our 20
variable model, with a median test accuracy of 93.94%, was out-performed by Random Committee
and essentially tied with Random Forest technique.

There are several advantages to performing frequentist approach. First, this method provides a
more robust variable selection by examining how often a variable is deemed significant by multiple
traditional variable selection methods given random samples of observation data. Second, it also
provides an approximation to the optimal model size. Third, it allows the modeler to characterize
the importance of a variable to the model through the frequency in which a variable is deemed
significant. Lastly, it affords the modeler flexibility in choosing certain variables to retain or discard
depending on the modeler’s threshold for model-complexity accuracy tradeoff. The main downside

13
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Table 10. Accuracy for various machine learning algorithms

Algorithm Accuracy

Bayes Network 88.56%
Logic Boost 89.70%
Random Tree 91.54%
JRip 92.32%
J48 92.34%
Multilayer Perceptron 93.28%
Kstar 93.56%
Random Forest 93.89%
Random Committee 94.28%

to this method is computational intensity. On a Windows 7 64-Bit Laptop with Intel i7 2.7GHz
processor and 16GB RAM, this process required ∼ 12 hours to just apply BIC stepwise regression to
100 replicates and another 12 hours to apply AIC stepwise regression to the 100 replicates. Running
the full model and forward selection via BIC on the 100 replicates was markedly faster and completed
within minutes. By incorporating more variable selection methods to the ensemble, the modeler will
have a serious tradeoff in computing time. However, this dilemma may be alleviated through the use
of parallel processing in which multiple tasks are dispersed over multiple workstations rather than
running the tasks sequentially on one computer. With further advances in parallel processing and
increases in computing power, the ensemble variable selection method’s advantages will significantly
dominate over its main weakness.

4.2 Computational demonstration on regression analysis

In the Spambase dataset, the frequentist approach was applied to classification. In the next example,
the frequentist approach was applied to Multiple Linear Regression (MLR) on the Bodyfat dataset.
The dataset, which was originally donated by [9], attempts to estimate body fat percentage by
underwater weighing and various body circumference measurements for 252 men; this dataset may
be found in the R package mfp. The dataset contained 2 response variables: brozek and siri. The
brozek response variable calculated body fat percentage through the equation:

brozek =
457

density
− 414.2

The siri response variable calculated body fat percentage through the equation:

siri =
495

density
− 450

There were 14 explanatory variables. The first 3 variables are density (density determined from
underwater weighing), age, and weight. The remaining 11 explanatory variables are body circumference
measurements for neck, chest, abdomen, hip, thigh, knee, ankle, biceps, forearm, and wrist. The linear
pairwise correlation plot below indicates a significant amount of multicollinearity and redundant
variables.

This bodyfat data set can also be found at http://lib.stat.cmu.edu/datasets/bodyfat
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Fig. 9. Linear Correlation Plot for Bodyfat Dataset

The purpose of this section will be to compare the results from the frequentist approach for variable
selection against results from Bayesian PIP. There were 5 cases identified in the dataset as erroneous
observations/outliers, and as a result, were excluded during analyses. Cases 48, 76, and 96 were
identified as having errors in body fat values. In case 42, the man weighed 200 lbs with a height
of 3 ft. For case 182, the body fat percentage was rounded to 0 after having a negative body
fat percentage. Additionally, the density variable was excluded from MLR because formulas to
calculate brozek and siri response variables require density variable; consequently, the inclusion
of density variable in MLR would dominate and bias the selection of other significant variables.
The dataset was broken into 500 replicates of 70% training / 30% test sets (step 1 of frequentist
approach). The linear model (MLR) was selected for the class of models (step 2). AIC stepwise
regression, BIC stepwise regression BIC forward selection, and full model were applied to the 500
training sets (step 3). This section will concentrate solely on the brozek response variable. After
scanning through the 500 replicates, the percentage in which each variable was deemed significant
is listed below for each of the variable selection methods (step 4).

Table 11. Estimated percentage of inclusion of each variable

Variable Full Model Stepwise BIC Forward BIC Stepwise AIC

abdomen 1 1 1 1
wrist 0.8 0.698 0.8 0.842
weight 0.13 0.576 0.13 0.53
forearm 0.386 0.36 0.386 0.516
neck 0.21 0.222 0.21 0.304
hip 0.082 0.22 0.082 0.226
height 0.01 0.166 0.01 0.156
age 0.124 0.08 0.0124 0.2
biceps 0.036 0.08 0.036 0.1
thigh 0.07 0.038 0.07 0.208
chest 0.012 0.028 0.012 0.052
ankle 0.014 0.016 0.014 0.034
knee 0 0.002 0 0.006

The following section will compare the results from our frequentist approach against the results
from Bayesian PIP. In order for a more objective comparison, only the stepwise BIC portion will
be compared against the Bayesian PIP. The Bayesian PIP results were acquired using the Bayesian
Model Selection (BMS) package in R and shown below.

15
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Percentage of Inclusion − Brozek Response Variable
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Fig. 10. Percentage of inclusion of explanatory variables for brozek response variable -
frequentist approach

Fig. 11. R Output - Bayesian PIP of explanatory variables for brozek response
variable

The frequentist approach (looking at stepwise BIC only) and the Bayesian PIP both identified
abdomen as the most significant explanatory variable; in both methods, the abdomen variable was
deemed significant in 100% of the 500 training sets. Additionally, in both methods, weight and wrist
variables exceeded the median probability model (deemed significant in ≥ 50% of 500 replicates)
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and will be retained as significant variables. The main difference between the frequentist approach
and PIP is evident in the weight variable. The weight variable was deemed significant in ∼ 94% of
the 500 models by Bayesian PIP but only ∼ 58% by the frequentist method. The following plot
shows the distribution of model size across the 500 replicates for the frequentist approach. The
optimal model size should include 3 to 4 variables. The average model size across 500 replicates
was 3.49.

2 3 4 5 6 7
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Fig. 12. Optimal model size - frequentist approach

The following plot shows the distribution of model size across 500 replicates for the Bayesian PIP
approach. The PIP approach also indicated an optimal model size between 3 to 4 variables with
an average model size of 3.48 across 500 replicates. The results between the two methods are very
similar.

The frequentist approach (looking at stepwise BIC only) and the Bayesian PIP both identified
abdomen, weight and wrist as significant variables. Building 500 linear models using only the 3
variables, we obtain the following results shown below. As expected, the out of sample prediction
results for the frequentist and Bayesian PIP because we are applying the same variables to the
training sets.

We will now build new sets of models to compare the frequentist and Bayesian PIP approaches.
From a meta-analysis standpoint, abdomen and wrist variables were deemed significant in ≥ 50%
of the replicates for all 4 variable selection techniques in the frequentist approach. As a result,
500 linear models were built using only the abdomen and wrist explanatory variables. From the
PIP standpoint, abdomen, weight, and wrist variables exceeded the median probability model. As
a result, 500 linear models were built using abdomen, weight, and wrist explanatory variables. We
could have justifiably included weight as an additional third variable in our frequentist approach
because it was deemed significant by at least one variable selection technique; however, in doing
so, we would get the same end results as the PIP linear models since both methods would now
use the same variables. By comparing a two variable model (abdomen and wrist) against a three
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variable model (abdomen, weight, and wrist), we hope to achieve a more distinction between the two
model types. In the next section, we will compare the out of sample predictive performance of the
frequentist and the PIP approaches. The following table and plot will compare the relative PRESS
values between the two methods.
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Table 12. Comparison of PRESS between Frequentist Approximation and Bayesian
PIP

Model Min 1st Qu Median Mean 3rd Qu Max

Frequentist 0.6025 0.6638 0.6801 0.6812 0.6983 0.7585
BMS PIP 0.6243 0.6921 0.7065 0.7061 0.7208 0.7708

The 500 linear models built for each of the approaches were applied on their corresponding test sets
(step 5). The following table and plot will compare the Mean Squared Error (MSE) across the 500
test sets for both methods.

Table 13. Comparison of the MSE between Frequentist Approximation and Bayesian
PIP

Model Min 1st Qu Median Mean 3rd Qu Max

Frequentist 11.31 15.84 17.52 17.68 19.27 25.31
BMS PIP 11.25 14.71 16.14 16.18 17.51 23.34

While weight achieved a PIP of 0.94, its addition into the three variable model did not provide a
practical improvement. The results between the PIP and frequentist approaches are very comparable
and provides validity of using the frequentist approach as an alternative to the Bayesian PIP.

The results when using siri as the response variable are almost identical to the results attained above
using brozek as the response variable. As a result, the comparison between the frequentist and PIP
approaches for siri response variable will not be provided.

19
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Applying the frequentist approach on linear models was significantly faster than on generalized
linear models. Running stepwise regression via BIC and AIC, forward selection via BIC, and the
full model on the 500 replicates for both brozek and siri response variables only took minutes.

5 Conclusion and Discussion

We have used a straightforward, quite general and easily interpretable subsampling scheme to
provide a frequentist approximation of the celebrated Bayesian posterior inclusion probability.
Despite the relatively higher computational burden arising in the use of the proposed method on
high dimensional classification tasks, it is fair to say that the present method mimics the Bayesian
framework quite well. All the scores, judging from the numerical values and the corresponding
plots appear identical or at least very similar in shape and form. One would be particularly be
excited to use this approach because it is easier to understand since it builds up on the widely used
framework of variable selection by the stepwise regression heuristic. Even more importantly, it does
not run into the some of the challenges of the Bayesian framework like the difficulty in computing
the marginal density of the data. As we said earlier, the great challenge for this method is the
heavy computational burden. However, with the availability of distributed and high performance
parallel computing resources, this method becomes even more attractive for high dimensional data
mining problems since one can perform the independent random split on different CPUs. Indeed,
our future work will focus on substantially reducing the computing time by a careful use of the
parallel computing resources.
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