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Abstract
In this paper, we shall study solvability and regularity properties of solutions to the system of
equations:

n∑
i=1

∂

∂xi
a

(j)
i (x,∇u1,∇u2) + g(j)(x, u1, u2) = f (j)(x) in Ω, j = 1, 2,

where Ω is a bounded open set of Rn, n > 2.
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1 Introduction
In this paper we prove the existence and regularity properties of solutions of Dirichlet problem for
the following system of equations:

(1.1)

n∑
i=1

∂

∂xi
a

(j)
i (x,∇u1,∇u2) + g(j)(x, u1, u2) = f (j)(x) in Ω, j = 1, 2,

where Ω is a bounded open set of Rn, n > 2. Moreover, n satisfies the following inequality:
1 < pj < n, j = 1, 2, where pj is connected with the rate of growth of coefficients a(j)

i of the
equations with respect to the first-order derivatives of unknown functions u1, u2.

The assumed conditions on coefficients a(j)
i and g(j) (j = 1, 2) and known results of the theory of

monotone operators allow us to prove existence of a generalized solution of our Dirichlet problem
(see section 4). Then, we establish a theorem on boundedness of generalized solution of the problem
(see section 6). Section 7 contained results on Hölder continuity of generalized solution of the same
Dirichlet problem. The proof is based on the iterating Moser method, suitably modified and applied
in the case of the equations (see, for instance [1], [2]). Finally, in conclusive section we consider an
example fulfilling all our assumptions.

We note that, in non degenerate case, boundedness and regularity of generalized solution for one
second order nonlinear elliptic equation were studied by many authors, see for instance [3] - [5] and
for an elliptic system [6], [7]. Finally, concerning solvability and properties of solutions of nonlinear
equations, in degenerate case, we refer, for instance, to [8, 9, 10] and [11] - [13].

2 Preliminaries
We shall suppose that Rn (n > 2) is n-dimensional euclidian space with elements x = (x1, x2, ..., xn).
Let Ω be a bounded open set of Rn. Let pj be a real number such that 1 < pj < n, j = 1, 2.

Hypothesis 2.1 Let νj : Ω→ R+ be a measurable function (j = 1, 2) such that

νj ∈ L1
loc(Ω) ,

(
1

νj

) 1
pj−1

∈ L1
loc(Ω).

We denote byW 1,pj (νj ,Ω) (j = 1, 2) the set of all functions u ∈ Lpj (Ω) having, for every i = 1, ..., n,

the weak derivative
∂u

∂xi
with the property νj

∣∣∣∣ ∂u∂xi
∣∣∣∣pj ∈ L1(Ω). W 1,pj (νj ,Ω) is a Banach space with

respect to the norm

‖u‖1,pj ,νj =

(∫
Ω

|u|pj +

n∑
i=1

νj

∣∣∣∣ ∂u∂xi
∣∣∣∣pj dx

) 1
pj

.

W̊ 1,pj (νj ,Ω) is the closure of C∞0 (Ω) in W 1,pj (νj ,Ω).

We assume that there exists a number tj > max

(
n

pj
,

1

pj − 1

)
(j = 1, 2), such that

1

νj
∈ Ltj (Ω).

For every j = 1, 2, we set p̃j =
npj

n− pj + n/tj
. Then, we have that W̊ 1,pj (νj ,Ω) ⊂ Lp̃j (Ω) and there
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exists ĉj > 0 depending only on n, pj , tj such that for every u ∈ W̊ 1,pj (νj ,Ω)

(2.1)

(∫
Ω

|u|p̃jdx
)1/p̃j

≤ ĉj

{∫
suppu

(
1

νj

)tj
dx

}1/pjtj
{∫

Ω

n∑
i=1

νj

∣∣∣∣ ∂u∂xi
∣∣∣∣pj dx

}1/pj

.

In this connection see for instance [14], [9] and [10].

3 Statement of the Problem
Let, for every i = 1, ..., n, j = 1, 2, a(j)

i : Ω × Rn × Rn → R, be Carathéodory functions. There
exist cα > 0, α = 1, 2, ..., 9, pj ∈ (0, pj), j = 1, 2, such that, for almost every x ∈ Ω and every η(1),
η(2) ∈ Rn the next inequalities hold:

(3.1)

n∑
i=1

a
(1)
i (x, η(1), η(2))η

(1)
i ≥ c1ν1(x)

n∑
i=1

|η(1)
i |

p1 − c2[ν2(x)]p2/p2

n∑
i=1

|η(2)
i |

p2 ,

(3.2)

n∑
i=1

a
(2)
i (x, η(1), η(2))η

(2)
i ≥ c4ν2(x)

n∑
i=1

|η(2)
i |

p2 − c5[ν1(x)]p1/p1

n∑
i=1

|η(1)
i |

p1 ,

n∑
i=1

[ν1(x)]−1/(p1−1)|a(1)
i (x, η(1), η(2))|p1/(p1−1) ≤

(3.3)

≤ c7

{
ν1(x)

n∑
i=1

|η(1)
i |

p1 + [ν2(x)]p2/p2

n∑
i=1

|η(2)
i |

p2 + 1

}
,

n∑
i=1

[ν2(x)]−1/(p2−1)|a(2)
i (x, η(1), η(2))|p2/(p2−1) ≤

(3.4)

≤ c8

{
ν2(x)

n∑
i=1

|η(2)
i |

p2 + [ν1(x)]p1/p1

n∑
i=1

|η(1)
i |

p1 + 1

}
.

Moreover, we shall assume that for almost every x ∈ Ω and every η(1), η(2), η(1), η(2) ∈ Rn,
n∑
i=1

[a
(1)
i (x, η(1), η(2))− a(1)

i (x, η(1), η(2))](η
(1)
i − η

(1)
i )+

(3.5)
+

n∑
i=1

[a
(2)
i (x, η(1), η(2))− a(2)

i (x, η(1), η(2))](η
(2)
i − η

(2)
i ) ≥ 0.

Let σ1 ∈ (0, p1), σ2 ∈ (0, p2). Let for every j = 1, 2, g(j) : Ω × R × R → R be a Carathéodory
function. We shall suppose that for almost every x ∈ Ω and every u1, u2 ∈ R,

(3.6) g(1)(x, 0, 0) = 0, g(2)(x, 0, 0) = 0,

3
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(3.7) |g(1)(x, u1, u2)|p1/(p1−1) + |g(2)(x, u1, u2)|p2/(p2−1) ≤ c3(|u1|p1 + |u2|p2 + 1),

(3.8) g(1)(x, u1, u2)u1 ≥ −c9|u2|σ2 ,

(3.9) g(2)(x, u1, u2)u2 ≥ −c6|u1|σ1 .

Finally, we shall assume that for almost every x ∈ Ω and every u1, u2, u′1, u′2 ∈ R,

[g(1)(x, u1, u2)− g(1)(x, u′1, u
′
2)](u1 − u′1)+

(3.10)
+[g(2)(x, u1, u2)− g(2)(x, u′1, u

′
2)](u2 − u′2) ≥ 0.

Fix fj ∈ Lpj/(pj−1)(Ω), j = 1, 2.

Definition 3.1 We shall say that a pair (u1, u2) is a generalized solution of the Dirichlet problem
for system (1.1), if (u1, u2) ∈ W̊ 1,p1(ν1,Ω)× W̊ 1,p2(ν2,Ω) and

∑
j=1,2

∫
Ω

{
n∑
i=1

a
(j)
i (x,∇u1,∇u2)

∂vj
∂xi

+ g(j)(x, u1, u2)vj

}
dx =

∑
j=1,2

∫
Ω

fjvjdx

for every (v1, v2) ∈ W̊ 1,p1(ν1,Ω)× W̊ 1,p2(ν2,Ω).

4 Existence of Solutions
We shall prove the following

Theorem 4.1 Under the above-stated assumptions on the function a(j)
i , g(j) and fj and Hypothesis

2.1 there exists a generalized solution of the Dirichlet problem for system (1.1).

Proof: Define the operator A : W̊ 1,p1(ν1,Ω)× W̊ 1,p2(ν2,Ω)→ (W̊ 1,p1(ν1,Ω)× W̊ 1,p2(ν2,Ω))? by

〈A(u1, u2), (v1, v2)〉 =
∑
j=1,2

∫
Ω

{
n∑
i=1

a
(j)
i (x,∇u1,∇u2)

∂vj
∂xi

+ g(j)(x, u1, u2)vj

}
dx.

Due to (3.3), (3.4) and (3.7) we have that the operator A is well defined, bounded and, moreover, is
demicontinuous. By (3.5) and (3.10) we have that A is monotone. From (3.6) and (3.10) it follows
that for almost every x ∈ Ω and every u1, u2 ∈ R,

g(1)(x, u1, u2)u1 + g(2)(x, u1, u2)u2 ≥ 0.

Next, taking into account that for arbitrary fixed (u1, u2) ∈ W̊ 1,p1(ν1,Ω)× W̊ 1,p2(ν2,Ω), we have

〈A(u1, u2), (u1, u2)〉 ≥ c1
2
‖u1‖p1

1,p1,ν1
+
c4
2
‖u2‖p2

1,p2,ν2
− c10measΩ,

where positive constant c10 depends only on known parameters, then, we can conclude that the
operator A is coercive.

Now, define the operator F : W̊ 1,p1(ν1,Ω)× W̊ 1,p2(ν2,Ω)→ R by

〈F , (v1, v2)〉 =

∫
Ω

(f1v1 + f2v2)dx.

We have that F ∈ (W̊ 1,p1(ν1,Ω)× W̊ 1,p2(ν2,Ω))?.

Then, from well-known results of the theory of monotone operators (see for instance [15]), there
exists (u1, u2) ∈ W̊ 1,p1(ν1,Ω)× W̊ 1,p2(ν2,Ω) such that A(u1, u2) = F . Therefore, the pair (u1, u2)
is a generalized solution of the Dirichlet problem for system (1.1).
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5 Auxiliary Results
Let h ∈ C∞(R) be a non-decreasing function, such that h = 0 on ]−∞, 0] and h = 1 on [1,+∞[.

We set
c̃1 = max

R
|h′|.

Let for every s ∈ N, hs : R→ R be the function such that

hs(η) = η + (s+ 1− η)h(η − s)− (s+ 1 + η)h(−η − s), η ∈ R.

We have {hs} ⊆ C∞(R), and for every s ∈ N the following property hold:

hs(η) = η if |η| ≤ s

hs(η) = −s− 1 if η ≤ −s− 1

hs(η) = s+ 1 if η ≥ s+ 1.

Moreover, for every s ∈ N and η ∈ R, we have

|hs(η)| ≤ 2|η|,

(5.1) 0 ≤ h′s(η) ≤ c̃1, |η|h′s(η) ≤ 2c̃1|hs(η)|.

By di, i = 1, 2, ...., we shall denote positive constants which depend only on n, pj , pj , c1, c2, ...., c9,
c̃1, ĉj and on measΩ (j = 1, 2).

6 Boundedness of Solutions
To achieve boundedness of generalized solution of (1.1) we need the following

Hypothesis 6.1 Let the following conditions be satisfied:

|fj |pj/(pj−1) ∈ Lτj (Ω) with τj >
ntj

pjtj − n
(j = 1, 2),

p1 < p1

(
p2

n
− 1

t2

)
, p2 < p2

(
p1

n
− 1

t1

)
,

σ2 <

(
p1

n
− 1

t1

)
np2t2

n(1 + t2)− p2t2
.

We shall prove the following

Theorem 6.2 Let Hypotheses 2.1 and 6.1 hold. Let a pair (u1, u2) be a generalized solution of the
Dirichlet problem for system (1.1). Then u1, u2 ∈ L∞(Ω).

Proof:

Define

ϕ1 = 1 + |f1|p1/(p1−1) + |u2|σ2 + ν
p2/p2
2

n∑
i=1

∣∣∣∣∂u2

∂xi

∣∣∣∣p2

,

t = min

(
τ1,

p2

p2

,
p̃2

σ2

)
.

5
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We have that ϕ1 ∈ Lt(Ω) and t > nt1/(p1t1 − n).

Let s ∈ N and r > 0. Set
v1 = u1[1 + h2

s(u1)]r,

ω1 = [1 + h2
s(u1)]r + 2r[1 + h2

s(u1)]r−1hs(u1)h′s(u1)u1.

By (5.1) the function v1 ∈ W̊ 1,p1(ν1,Ω) and, for every i = 1, 2, ...n,

∂v1

∂xi
= ω1

∂u1

∂xi
a.e. in Ω.

Choosing (v1, 0) as test function, we have∫
Ω

{
n∑
i=1

a
(1)
i (x,∇u1,∇u2)

∂u1

∂xi
ω1 + g(1)(x, u1, u2)v1

}
dx =

∫
Ω

f1v1dx.

Note that [1 + h2
s(u1)]r ≤ ω1 ≤ (1 + 4c̃1r)[1 + h2

s(u1)]r in Ω, then due to (3.1)

c1

∫
Ω

ν1

n∑
i=1

∣∣∣∣∂u1

∂xi

∣∣∣∣p1

[1 + h2
s(u1)]rdx+

∫
Ω

g(1)(x, u1, u2)v1dx ≤

(6.1)

≤ c2(1 + 4c̃1r)

∫
Ω

ν
p2/p2
2

n∑
i=1

∣∣∣∣∂u2

∂xi

∣∣∣∣p2

[1 + h2
s(u1)]rdx+

∫
Ω

f1v1dx.

From (3.8) it follows that

(6.2) −c9
∫

Ω

|u2|σ2 [1 + h2
s(u1)]rdx ≤

∫
Ω

g(1)(x, u1, u2)v1dx

and from the definition of the function v1 and Young inequality we obtain that

(6.3)

∫
Ω

f1v1dx ≤
∫

Ω

[|f1|p1/(p1−1) + |u1|p1 ][1 + h2
s(u1)]rdx.

From (6.1)-(6.3) it follows that∫
Ω

ν1

n∑
i=1

∣∣∣∣∂u1

∂xi

∣∣∣∣p1

[1 + h2
s(u1)]rdx ≤ d1(1 + r)

∫
Ω

[ϕ1 − 1 + |u1|p1 ][1 + h2
s(u1)]rdx.

Last inequality implies that∫
Ω

ν1

n∑
i=1

∣∣∣∣∂u1

∂xi

∣∣∣∣p1

[1 + h2
s(u1)]rdx ≤

(6.4)

≤ d1(1 + r)

∫
Ω

[ϕ1 + |u1|a1 ][1 + h2
s(u1)]rdx

for every r > 0 and a1 > p1.

∀ s ∈ N, r > 0, let

Ts(r) = 1 +

∫
Ω

[ϕ1 + |u1|a1 ][1 + h2
s(u1)]rdx.

6
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It results

Ts(r) ≤ 1 +

∫
Ω

|ũ1|a1 dx+ ||ϕ1||Lt(Ω)

(∫
Ω

(w̃1 + 1)p̃1dx

)(t−1)/t

,

where
ũ1 = u1[1 + h2

s(u1)]r/a1 ,

w̃1 = [1 + h2
s(u1)]rt/[p̃1(t−1)] − 1.

Now, if we take a1 such that p1 < a1 < p̃1, from last inequality we have

Ts(r) ≤ 1 +

(∫
Ω

|ũ1|p̃1 dx

)a1/p̃1

(measΩ)(p̃1−a1)/p̃1+

+‖ϕ1‖Lt(Ω)2
p̃1(t−1)/t

(∫
Ω

w̃p̃1
1 dx

)(t−1)/t

+ ‖ϕ1‖Lt(Ω)2
p̃1(t−1)/t(measΩ)(t−1)/t.

From (2.1) last inequality gives

Ts(r) ≤ d2 + d3

(∫
Ω

ν1

n∑
i=1

∣∣∣∣∂ũ1

∂xi

∣∣∣∣p1

dx

)a1/p1

+

(6.5)

+d4

(∫
Ω

ν1

n∑
i=1

∣∣∣∣∂w̃1

∂xi

∣∣∣∣p1

dx

)p̃1(t−1)/p1t

.

For every i = 1, 2, ..., n, easy computations imply:

(6.6)

∣∣∣∣∂ũ1

∂xi

∣∣∣∣ ≤ d5(r + 1)[1 + h2
s(u1)]r/a1

∣∣∣∣∂u1

∂xi

∣∣∣∣,
(6.7)

∣∣∣∣∂w̃1

∂xi

∣∣∣∣ ≤ d6r[1 + h2
s(u1)]rt/[p̃1(t−1)]

∣∣∣∣∂u1

∂xi

∣∣∣∣.
From (6.5)-(6.7)

Ts(r) ≤ d2 + d7(r + 1)a1

(∫
Ω

ν1

n∑
i=1

∣∣∣∣∂u1

∂xi

∣∣∣∣p1

[1 + h2
s(u1)](rp1)/a1dx

)a1/p1

+

(6.8)

+d8r
[p̃1(t−1)]/t

(∫
Ω

ν1

n∑
i=1

∣∣∣∣∂u1

∂xi

∣∣∣∣p1

[1 + h2
s(u1)](rp1t)/[p̃1(t−1)]dx

)p̃1(t−1)/p1t

.

We set
Θ = min

(
a1

p1
,
p̃1(t− 1)

p1t

)
(Θ > 1).

From Hölder inequality and (6.8), ∀ s ∈ N, r > 0, we obtain:

Ts(r) ≤ d2 + d9(r + 1)2a1

(∫
Ω

ν1

n∑
i=1

∣∣∣∣∂u1

∂xi

∣∣∣∣p1

[1 + h2
s(u1)]r/Θdx

)Θ

,

where the positive constant d9 depends on known parameters and the ‖u1‖1,p1,ν1 .

Choosing r = r/Θ in (6.4), from last inequality we have

(6.9) Ts(r) ≤ d10(r + 1)3a1 [Ts(r/Θ)]Θ, ∀r > 0.

7
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Let us introduce a sequence {ρj} such that

ρj = bΘj+1 ∀ j ∈ N0,

where b =
1

2Θ
min

(
p̃1 − a1,

p̃1(t− 1)

t

)
.

We have
ρj
Θ

= ρj−1 and so, due to such and (6.9)

Ts(ρj) ≤ d10(1 + ρj)
3a1 [Ts(ρj−1)]Θ.

Recursion relation and the inequality

Ts(ρ0) ≤ d11 + d12

∫
Ω

|u1|p̃1dx

allow to conclude that ∀ j = 1, 2, . . . ,

Ts(ρj) ≤ dΘj

13

where d13 depends on known parameters, ||ϕ1||Lt(Ω) and the ‖u1‖1,p1,ν1 .

Now, noting that hs(u)→ u as s→∞, from definition of Ts(r) and Fatou’s lemma, it follows∫
Ω

|u1|a1+ρjdx ≤ (d
1
bΘ
13 + 1)a1+ρj j = 1, 2, . . . ,

and so u1 ∈ L∞(Ω).

Analogous property we establish for the function u2(x), using considerations which are similar to
the above given.

Theorem is so proved.

7 Regularity of Solutions
We shall prove the Hölder property of generalized solutions of (1.1) estimating Hölder’s constant
for an interior region of domain Ω.

We need the following

Hypothesis 7.1 For every j = 1, 2, there exists a number tj >
ntj

pjtj−n
such that [νj(x)]tj ∈ A1+µj

(Muckenhoupt’s class) with 0 < µj < n/(pjtj − n).

For every y ∈ Rn and ρ > 0 we denote

B(y, ρ) = {x ∈ Rn : |x− y| < ρ}.

Remark 7.2 Due to Hypothesis 7.1, there exists a positive constant c such that for every j = 1, 2,
every y ∈ Ω and ρ > 0 with B(y, ρ) ⊂ Ω the following inequality hold:{

ρ−n
∫
B(y,ρ)

(
1

νj

)tj}1/tj
{
ρ−n

∫
B(y,ρ)

ν
tj
j dx

}1/tj

≤ c.

Remark 7.3 It may be useful to note that if νj(x) ∈ A1+µj , then [νj(x)]τ ∈ A1+µj for some τ > 1.
So, if τ > ntj/(pjtj − n) it will be sufficient to assume νj(x) ∈ A1+µj .

8
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Now, we can formulate the main result of this section:

Theorem 7.4 Let the assumptions of Theorem 6.2 and Hypothesis 7.1 be satisfied. Let a pair
(u1, u2) be a generalized solution of the Dirichlet problem for system (1.1). Then there exist positive
constants C′, C′′ and σ′, σ′′ (< 1) such that for every open set Ω′, Ω′ ⊂ Ω and every x, y ∈ Ω′,

|u1(x)− u1(y)| ≤ C′[d(Ω′,Ω)]−σ
′
|x− y|σ

′
,

|u2(x)− u2(y)| ≤ C′′[d(Ω′,Ω)]−σ
′′
|x− y|σ

′′
.

proof.

By virtue of Theorem 6.2 we have u1, u2 ∈ L∞(Ω). Denote

Mi = ||ui||L∞(Ω), i = 1, 2,

a1 =
1

p1

(
p1 −

n

t?
− n

t1

)
, where t? = min

{
τ1, t1,

p2

p2

}
.

Let’s fix y ∈ Ω, ρ > 0 and B(y, 2ρ) ⊂ Ω. Let’s put:

ω1 = ess inf
B(y,2ρ)

u1, ω2 = ess sup
B(y,2ρ)

u1, ω = ω2 − ω1

We shall show that:

(7.1) osc{u1, B(y, ρ)} ≤ χ1ω + ρa1 ,

with χ1 ∈]0, 1[.

Obviously we will assume that

ω ≥ ρa1 (otherwise it is clear that (7.1) is true).

Let G1 : Ω→ R be the functions such that

G1 =
2eω

u1 − ω1 + ρa1
, in B(y, 2ρ), G1 = e, in Ω \B(y, 2ρ).

It results G1 ≥ e in Ω.

Let ϕ ∈ C∞0 (Ω): 0 ≤ ϕ ≤ 1 in Ω, ϕ = 0 in Ω \B(y, 2ρ) and

|∇ϕ| ≤ c

ρ
in Ω.

Let us fix r ≥ 0 and s > p1. We set

v1 = (lgG1)rGp1−1
1 ϕs,

z1 = − 1

2eω
[r(lgG1)r−1 + (p1 − 1)(lgG1)r]Gp1

1 ϕs.

We note that v1 ∈ W̊ 1,p1(ν1,Ω) and, ∀i = 1, 2, ..., n, the next inequality is true:

(7.2)

∣∣∣∣∂v1

∂xi
− z1

∂u1

∂xi

∣∣∣∣ ≤ csρ−1(lgG1)rGp1−1
1 ϕs−1 a.e. in B(y, 2ρ).

Since (u1, u2) is a generalized solution of (1.1), choosing (v1, 0) as test function we obtain∫
Ω

{
n∑
i=1

a
(1)
i (x,∇u1,∇u2)

∂v1

∂xi
+ g(1)(x, u1, u2)v1

}
dx =

∫
Ω

f1v1dx.

9
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Hence ∫
Ω

n∑
i=1

{
a

(1)
i (x,∇u1,∇u2)

∂u1

∂xi

}
(−z1)dx ≤

∫
Ω

[|f1|+ |g(1)(x, u1, u2)|]v1dx+

+

∫
Ω

n∑
i=1

|a(1)
i (x,∇u1,∇u2)|

∣∣∣∣∂v1

∂xi
− z1

∂u1

∂xi

∣∣∣∣ dx.
Taking into account that

(2eω)−1(p1 − 1)(lgG1)rGp1
1 ϕs ≤ −z1 ≤ (2eω)−1p1(1 + r)(lgG1)rGp1

1 ϕs,

from (3.1), last inequality implies

(p1 − 1)c1
2eω

∫
Ω

ν1

n∑
i=1

∣∣∣∣∂u1

∂xi

∣∣∣∣p1

(lgG1)rGp1
1 ϕsdx ≤ c2p1(1 + r)

2eω
·

(7.3)

·
∫

Ω

ν
p2/p2
2

n∑
i=1

∣∣∣∣∂u2

∂xi

∣∣∣∣p2

(lgG1)rGp1
1 ϕsdx+

∫
Ω

[|f1|+ |g(1)(x, u1, u2)|]v1dx+ I,

where

I =

∫
Ω

n∑
i=1

|a(1)
i (x,∇u1,∇u2)|

∣∣∣∣∂v1

∂xi
− z1

∂u1

∂xi

∣∣∣∣ dx.
Now we shall obtain estimates for the addends in the right-hand side of inequality (7.3).

Using definition of G1, we get∫
Ω

ν
p2/p2
2

n∑
i=1

∣∣∣∣∂u2

∂xi

∣∣∣∣p2

(lgG1)rGp1
1 ϕsdx ≤

(7.4)

≤ (2eω)p1

∫
Ω

ν
p2/p2
2

n∑
i=1

∣∣∣∣∂u2

∂xi

∣∣∣∣p2

(lgG1)rϕsρ−a1p1dx.

Moreover, due to (3.7)∫
Ω

[|f1|+ |g(1)(x, u1, u2)|]v1dx ≤

(7.5)

≤ (c3 + 1)(2eω)p1−1(Mp1
1 +Mp2

2 + 1)(diamΩ + 1)

∫
Ω

(1 + |f1|)(lgG1)rϕsρ−a1p1dx.

Inequalities (7.3)-(7.5) imply

(p1 − 1)c1
2eω

∫
B(y,2ρ)

ν1

n∑
i=1

∣∣∣∣∂u1

∂xi

∣∣∣∣p1

(lgG1)rGp1
1 ϕsdx ≤ β1(2eω)p1−1(1 + r)·

(7.6)

·
∫
B(y,2ρ)

ρ−a1p1

{
1 + |f1|+ ν2(x)p2/p2

n∑
i=1

∣∣∣∣∂u2

∂xi

∣∣∣∣p2

}
(lgG1)rϕsdx+ I,

where β1 > 0 depends only on p1, p2, c2, c3,M1,M2 and diam Ω.

10
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Let us estimate I. Due to (7.2) we have

(7.7) |a(1)
i (x,∇u1,∇u2)|

∣∣∣∣∂v1

∂xi
− z1

∂u1

∂xi

∣∣∣∣ ≤ |a(1)
i (x,∇u1,∇u2)|cs

ρ
(lgG1)rGp1−1

1 ϕs−1

a.e. in Ω.

Let ε > 0. Then, with the use of Young inequality for every x ∈ Ω : ϕ(x) 6= 0 we obtain

|a(1)
i (x,∇u1,∇u2)|csρ−1(lgG1)rGp1−1

1 ϕs−1 =

=

{
ε(p1−1)/p1ν

−1/p1
1 |a(1)

i (x,∇u1,∇u2)| Gp1−1
1

(2eω)p1−1
ε−(p1−1)/p1ν

1/p1
1 cs

1

ρ
ϕ−1

}
·

·(2eω)p1−1(lgG1)rϕs ≤

(7.8)

≤
{
εν
−1/(p1−1)
1 |a(1)

i (x,∇u1,∇u2)|p1/(p1−1) Gp1
1

(2eω)p1
+ ε1−p1ν1(cs)p1ρ−p1ϕ−p1

}
·

·(2eω)p1−1(lgG1)rϕs.

From (7.7) and (7.8) we have

I ≤ ε

2eω

∫
Ω

ν
−1/(p1−1)
1

n∑
i=1

|a(1)
i (x,∇u1,∇u2)|p1/(p1−1)Gp1

1 (lgG1)rϕsdx+

(7.9)

+ε1−p1(2eω)p1−1n(cs)p1

∫
Ω

ρ−p1ν1(x)(lgG1)rϕs−p1dx.

On the other hand, (3.3) implies

n∑
i=1

ν
−1/(p1−1)
1 |a(1)

i (x,∇u1,∇u2)|p1/(p1−1) ≤

(7.10)

≤ c7

{
n∑
i=1

ν1

∣∣∣∣∂u1

∂xi

∣∣∣∣p1

+ [ν2]p2/p2

n∑
i=1

∣∣∣∣∂u2

∂xi

∣∣∣∣p2

+ 1

}
a.e. in Ω.

Then, using (7.9) and (7.10) we obtain

I ≤ εc7
2eω

∫
B(y,2ρ)

ν1

n∑
i=1

∣∣∣∣∂u1

∂xi

∣∣∣∣p1

Gp1
1 (lgG1)rϕsdx+

(7.11)

+(2eω)p1−1β2s
p1(ε+ ε1−p1)

∫
B(y,2ρ)

Ψ1(lgG1)rϕs−p1dx,

11
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where

Ψ1 = ρ−p1ν1 + ρ−a1p1

{
1 + |f1|+ ν

p2/p2
2

n∑
i=1

∣∣∣∣∂u2

∂xi

∣∣∣∣p2

}
,

and the positive constant β2 depends only on n, p1, c7 and diam Ω.

Due to Hypotheses 6.1, 7.1 it is convenient to observe that Ψ1 ∈ Lt?(Ω) and t? > nt1
p1t1−n

.

From (7.6) and (7.11), we establish that

(p1 − 1)c1
2eω

∫
B(y,2ρ)

ν1

n∑
i=1

∣∣∣∣∂u1

∂xi

∣∣∣∣p1

(lgG1)rGp1
1 ϕsdx ≤

≤ β1(2eω)p1−1(1 + r)

∫
B(y,2ρ)

Ψ1(lgG1)rϕs−p1dx+

+
εc7
2eω

∫
B(y,2ρ)

ν1

n∑
i=1

∣∣∣∣∂u1

∂xi

∣∣∣∣p1

(lgG1)rGp1
1 ϕsdx+

+(2eω)p1−1β2s
p1(ε+ ε1−p1)

∫
B(y,2ρ)

Ψ1(lgG1)rϕs−p1dx.

Setting ε =
(p1 − 1)c1

2c7
, from the last inequality we get

∫
B(y,2ρ)

ν1

n∑
i=1

∣∣∣∣∂u1

∂xi

∣∣∣∣p1

(lgG1)rGp1
1 ϕsdx ≤

(7.12)

≤ (2eω)p1β3s
p1(r + 1)

∫
B(y,2ρ)

Ψ1(lgG1)rϕs−p1dx,

where the positive constant β3 depends only on n, p1, p2, c1, c2, c7, diamΩ, and M1,M2.

Now, if we assume that ϕ = 1 in B(y,
3

2
ρ), from (7.12), with r = 0 and s = p1 + 1, we have

(7.13)

∫
B(y, 3

2
ρ)

ν1

n∑
i=1

∣∣∣∣∂u1

∂xi

∣∣∣∣p1

Gp1
1 dx ≤ (2eω)p1β3(p1 + 1)p1

∫
B(y,2ρ)

Ψ1dx.

If we take in (7.12) instead of ϕ the function ϕ1 ∈ C∞0 (Ω) such that: 0 ≤ ϕ1 ≤ 1 in Ω, ϕ1 = 1 in
B(y, ρ), ϕ1 = 0 in Ω \B(y, 3

2
ρ) and |∇ϕ1| ≤ c

ρ
in Ω, we obtain for every r > 0 and s > p1,∫

B(y,2ρ)

ν1

n∑
i=1

∣∣∣∣∂u1

∂xi

∣∣∣∣p1

(lgG1)rGp1
1 ϕs1dx ≤

(7.14)

≤ (2eω)p1β3s
p1(r + 1)

∫
B(y,2ρ)

Ψ1(lgG1)rϕs−p1
1 dx.

We set
θ =

p̃1(t? − 1)

p1t?
, m =

p1t?
t? − 1

,

and for every r, s > 0 we define

I(r, s) =

∫
B(y,2ρ)

(lgG1)rϕs1dx.

12
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We define z = (lgG1)r/p̃1ϕ
s/p̃1
1 .

We observe that z ∈ W̊ 1,p1(ν1,Ω) and, for every i = 1, 2, ..., n,∫
Ω

ν1

∣∣∣∣ ∂z∂xi
∣∣∣∣p1

dx ≤
( r

2eω

)p1
∫
B(y,2ρ)

ν1

n∑
i=1

∣∣∣∣∂u1

∂xi

∣∣∣∣p1

(lgG1)rp1/p̃1Gp1
1 ϕ

sp1/p̃1
1 dx+

(7.15)

+(cs)p1

∫
B(y,2ρ)

ρ−p1ν1(lgG1)rp1/p̃1ϕ
[(s/p̃1)−1]p1
1 dx.

Using (7.14), (7.15) and taking into account that Ψ1 ∈ Lt?(Ω), we obtain that for every i = 1, 2, ..., n,∫
Ω

ν1

∣∣∣∣ ∂z∂xi
∣∣∣∣p1

dx ≤ β4s
p1(r + 1)p1+1

(∫
B(y,2ρ)

Ψt?
1 dx

)1/t? [
I
( r
θ
,
s

θ
−m

)](t?−1)/t?
,

where the positive constant β4 depends only on n, p1, t1, c1, c2, c7, c, diamΩ, and M1,M2.

Last inequality, definition of I(r, s) and (2.1) give

I(r, s) ≤ β5s
p̃1(1 + r)(p̃1/p1)(p1+1)·

(7.16)

·


[∫

B(y,2ρ)

(
1

ν1

)t1
dx

]1/t1
[∫

B(y,2ρ)

Ψt?
1 dx

]1/t?

p̃1/p1 [

I
( r
θ
,
s

θ
−m

)]θ
,

where the positive constant β5 depends only on n, p1, t1, c1, c2, c7, ĉ1, c, diamΩ, and M1,M2.

We denote by γ(u2, f1) the norm of function

1 + |f1|+ ν
p2/p2
2

n∑
i=1

∣∣∣∣∂u2

∂xi

∣∣∣∣p2

in Lt?(Ω). Then, we have

(7.17)

(∫
B(y,2ρ)

Ψt?
1 dx

)1/t?

≤ ρ−p1

(∫
B(y,2ρ)

νt?1 dx

)1/t?

+ ρ−a1p1γ(u2, f1).

Using (7.17) and Remark 7.2, we obtain[∫
B(y,2ρ)

(
1

ν1

)t1
dx

]1/t1
[∫

B(y,2ρ)

Ψt?
1 dx

]1/t?

≤

≤ c2(n/t1+n/t?)(χn + 1)ρ(−p1+n/t?+n/t1) + ρ−a1p1γ(u2, f1)||1/ν1||Lt1 (Ω),

where χn is the measure of the unit ball in Rn.

Due to the definition of a1, last inequality implies

(7.18)

[∫
B(y,2ρ)

(
1

ν1

)t1
dx

]1/t1
[∫

B(y,2ρ)

Ψt?
1 dx

]1/t?

≤ β6ρ
(−p1+n/t?+n/t1),

13
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where the positive constant β6 depends only on n, p1, t1, t?, γ(u2, f1), ||1/ν1||Lt1 (Ω) and χn.

Note that due to definition of p̃1 and θ we have

(7.19)

(
p1 −

n

t?
− n

t1

)
p̃1

p1
= n(θ − 1).

From (7.16), (7.18) and (7.19) we get

(7.20) I(r, s) ≤ β7(r + s)m1ρ−n(θ−1)
[
I
( r
θ
,
s

θ
−m

)]θ
,

where
β7 = β5β

p̃1/p1
6 , m1 = 2p̃1

(p1 + 1)

p1
.

Now we set for j = 0, 1, 2, ...

rj =
t1p1

t1 + 1
θj , sj =

mθ

θ − 1
(θj+1 − 1).

Then by (7.20), it’s trivial to establish the following iterative relation:

I(rj , sj) ≤ β7β8θ
jm1ρ−n(θ−1) [I(rj−1, sj−1)]θ , for everyj ∈ N0,

where the positive constant β8 depends only on n, p1, t1 and t?.

Using this recurrent relation, we obtain that for every j ∈ N

(7.21) I(rj , sj) ≤
[
β9ρ
−nI(r0, s0)

]θj
,

where the positive constant β9 depends only on n, p1, c1, c2, c7, c, ĉ1, c, t1, t?, diamΩ,

M1,M2, γ(u2, f1), ||1/ν1||Lt1 (Ω) and χn .

We note that due to Hypothesis 2.1, r0 > 1.

Now let us estimate I(r0, s0). To this aim, we assume that

(7.22) meas

{
x ∈ B

(
y,

3

2
ρ

)
: u1(x) ≥ ω1 + ω2

2

}
≥ 1

2
measB

(
y,

3

2
ρ

)
.

According to lemma 4 of [1], we deduce∫
B(y, 3

2
ρ)

(lgG1)r0dx ≤ β10ρ
n +

β10ρ

2eω

∫
B(y, 3

2
ρ)

n∑
i=1

∣∣∣∣∂u1

∂xi

∣∣∣∣ (lgG1)r0−1G1dx,

where β10 depends only on n, p1 and t1.

By means of Young inequality and last inequality we get

(7.23)

∫
B(y, 3

2
ρ)

(lgG1)r0dx ≤ r0β10ρ
n +

(
β10ρ

2eω

)r0 ∫
B(y, 3

2
ρ)

{
n∑
i=1

∣∣∣∣∂u1

∂xi

∣∣∣∣
}r0

Gr01 dx.

Using Hölder inequality and (7.13), we obtain

14
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∫
B(y, 3

2
ρ)

{
n∑
i=1

∣∣∣∣∂u1

∂xi

∣∣∣∣
}r0

Gr01 dx ≤

(7.24)

≤ β11(2eω)r0

{∫
B(y,2ρ)

(
1

ν1

)t1
dx

}1/(t1+1){∫
B(y,2ρ)

Ψ1dx

}t1/(t1+1)

,

where the positive constant β11 depends only on n, p1, p2, c1, c2, c7, t1,diamΩ, and M1 , M2.

From (7.18) we get

(7.25)

{∫
B(y,2ρ)

(
1

ν1

)t1
dx

}1/(t1+1){∫
B(y,2ρ)

Ψ1dx

}t1/(t1+1)

≤ β12ρ
n−r0 ,

where the positive constant β12 depends only on n, p1, t1, t?, γ(u2, f1), ||1/ν1||Lt1 (Ω) and χn.

Finally, due to the definitions of the integrals I(r, s) and properties of the function ϕ1 we have

I(r0, s0) ≤
∫
B(y, 3

2
ρ)

(lgG1)r0dx.

From (7.23)-(7.25) and last inequality it follows that

I(r0, s0) ≤ β13ρ
n,

where the positive constant β13 depends only on n, p1, t1, t?,M1,M2, c1, c2, c7, c, γ(u2, f1),

||1/ν1||Lt1 (Ω) and χn.

Last inequality and (7.21) imply

I(rj , sj) ≤ [β9β13]θ
j

, for every j ∈ N.

Then, we can conclude that
ess sup

B(y,ρ)

G1(x) ≤ (1 + β9β13)

and, so,
osc{u1, B(y, ρ)} ≤ (1− e−β9β13)ω + ρa1 .

Recall that we proved (7.1) under assumption (7.22). If (7.22) is not true, we take instead of G1

the function G2 = 2eω
ω2−u1+ρa1 in B(y, 2ρ) and, G2 = e, in Ω \ B(y, 2ρ), and arguing as above, we

establish (7.1) again.

Now from (7.1), taking into account Lemma 4.8 of [3], Chapter 2, we deduce that there exist positive
constants C′ and σ′(< 1) depending on known values such that

osc{u1, B(y, ρ)} ≤ C′[d(y, ∂Ω)]−σ
′
ρσ
′
, for every ρ ∈]0, d(y, ∂Ω)].

Thus, for every open set Ω′, Ω′ ⊂ Ω, and every x′, x′′ ∈ Ω′,

|u(x′)− u(x′′)| ≤ C′[d(Ω′,Ω)]−σ
′
|x′ − x′′|σ

′
.

Analogous property we establish for the function u2 using considerations which are similar to the
above given.

In this way we achieved the Hölder continuity of generalized solution (u1, u2) for the Dirichlet
problem of system (1.1) in the interior of Ω.
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8 An Example
First of the all, we consider an example of the functions a(j)

i , g(j), i = 1, 2, ..., n, j = 1, 2, satisfying
conditions of Section 3. Let pj ∈ R (j = 1, 2), n ∈ N, n ≥ 3, such that 2 < pj < n.

Let k > 0, and let for every i = 1, 2, ..., n, A(1)
i , A(2)

i , A(3)
i , A(4)

i be functions on Ω such that

(8.1) 0 ≤ A(1)
i ≤ kν

2/p1
1 ,

(8.2) |A(2)
i | ≤ kν

1/p1
1 ν

1/p2
2 ,

(8.3) |A(3)
i | ≤ kν

1/p1
1 ν

1/p2
2 ,

(8.4) 0 ≤ A(4))
i ≤ kν2/p2

2 ,

(8.5) (A
(2)
i +A

(3)
i )2 ≤ 4A

(1)
i A

(4)
i

in Ω.

Let for every i = 1, 2, ..., n, and every x ∈ Ω, η(1), η(2) ∈ Rn,

a
(1)
i (x, η(1), η(2)) = ν1(x)|η(1)

i |
p1−2η

(1)
i +A

(1)
i (x)η

(1)
i +A

(2)
i (x)η

(2)
i ,

a
(2)
i (x, η(1), η(2)) = ν2(x)|η(2)

i |
p2−2η

(2)
i +A

(3)
i (x)η

(1)
i +A

(4)
i (x)η

(2)
i , .

Define

(8.6) p1 =
p2

p2 − 1
, p2 =

p1

p1 − 1
.

Since pj > 2, j = 1, 2, we have pj ∈ (0, pj), j = 1, 2.

From (8.1)-(8.4) it follows that the functions a(j)
i satisfy inequalities (3.1)-(3.4) with some positive

constants cα, α = 1, 2, 4, 5, 7, 8, depending only on n, p1, p2, k.

Moreover, from (8.5) it follows that the functions a(j)
i satisfy inequality (3.5).

Now let b1, b2, b3, b4 be numbers such that b1, b4 > 0 and (b2 +b3)2 ≤ 4b1b4, and let for every x ∈ Ω
and every u1, u2 ∈ R,

g(1)(x, u1, u2) = |u1|p1−2u1 + b1u1 + b2u2,

g(2)(x, u1, u2) = |u2|p2−2u2 + b3u1 + b4u2.

It easy to check that the functions g(j) satisfy equality (3.6) and inequality (3.7) with a positive
constant c3 depending only on p1, p2 and b1, b2, b3, b4.Moreover, the function g(1) satisfies inequality
(3.8) with σ2 = 2 and c9 = b22/b1, and the function g(2) satisfies inequality (3.9) with σ1 = 2 and
c6 = b23/b4. These functions satisfy inequality (3.10) as well.

Now, we give an example where Hypotheses 2.1, 6.1 and 7.1 are satisfied.

Suppose for simplicity that 0 ∈ ∂Ω and, additionally, we assume that

pj >
n

2
, (j = 1, 2).
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Let 0 < γj <
n

2

pj − n/2
3n/2− pj

, (j = 1, 2), and let for every j = 1, 2 the function νj : Ω→ R be defined

by
νj(x) = |x|γj .

For every j = 1, 2, let tj be such that
n

pj − n/2
< tj < 1 +

n

2γj
.

It results n
pj
< tj <

n
γj
, then the function νj(x) (j = 1, 2), satisfies the Hypothesis 2.1. Moreover,

it easy to verify that
|x|2γj ∈ A1+ 1

tj−1

then, Hypothesis 7.1 holds with tj = 2, (j = 1, 2).

Finally, if the number pj (j = 1, 2) is such that pj > 6 then conditions of Hypothesis 6.1 are satisfied
with σ2 = 2 and pj , j = 1, 2, defined by (8.6).

9 Conclusion
In this paper, we have studied solvability and regularity properties of solutions to the system of
equations:

n∑
i=1

∂

∂xi
a

(j)
i (x,∇u1,∇u2) + g(j)(x, u1, u2) = f (j)(x) in Ω, j = 1, 2,

where Ω is a bounded open set of Rn, n > 2. In particular, we have obtained that any solutions
is locally Hölder continuous in Ω. We observe that this could be the first step to getting Hölder
regularity up to the boundary of Ω.
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