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Abstract
S.D. Berman and P. Charpin characterized the Reed-Muller codes over the binary field or over
an arbitrary prime field as the powers of the radical in a modular group algebra. We present a
new proof of this famous theorem. Furthermore, the same method is used for the study of the
Generalized Reed-Muller codes over a non prime field.
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1 Introduction
Berman [1] showed that the binary Reed-Muller codes may be identified with the powers of the
radical in the group algebra over the two elements field F2 of an elementary abelian 2-group. Charpin
[2] gave a generalization of Berman’s result for Reed-Muller codes over a prime field. Many authors
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explored Berman’s idea and gave another proofs of Berman’s theorem (see [3],[4],[5],[6]). Recently,
Tumaikin [7],[8] studied the connections between Basic Reed-Muller codes and the radical powers
of the modular group algebra Fq[H] where H is a multiplicative group isomorphic to the additive
group of the field Fq of order q = pr where p is a prime number and r is an integer. The index of
nilpotency of the radical of Fq[H] is r(p− 1) + 1.

This paper presents an elementary proof of Berman and Charpin’s characterization of the Reed-
Muller codes by using a polynomial approach as in [9].

The quotient ring Fp[X1, . . . , Xm] / ( Xp
1 − 1, . . . , Xp

m − 1 ) where m ≥ 1 is an integer is used to
represent the ambient space of the codes. It is isomorphic to the group algebra Fp[Fpm ] used by P.
Charpin. We utilize some properties of a linear basis of the ambient space.

We study also the case of the Generalized Reed-Muller (GRM) codes over a non prime field Fq

(with r > 1). We consider the quotient ring

A = Fq[X1, . . . , Xm] / ( Xq
1 − 1, . . . , Xq

m − 1 ).

A is a modular algebra and the index of nilpotency of the radical M of A is m(q − 1) + 1. Thus
there are m(q − 1) + 1 non-zero powers of M (with M0 = A). It is well-known that there are also
m(q − 1) + 1 non-zero Reed-Muller codes of length qm over Fq. The main result is Theorem 3.6
which gives the GRM codes over a non prime field Fq which are radical powers of A. We show that
except for M0,M and Mm(q−1), none of the radical powers of A is a GRM code over the non prime
field Fq.

2 Definitions and Basic Properties

2.1 Definitions
Let q = pr with p a prime number and r ≥ 1 an integer. We consider the finite field Fq of order q.
Let P (m, q) be the vector space of the reduced polynomials in m variables over Fq:

P (m, q) :=

{
P (Y1, . . . , Ym) =

q−1∑
i1=0

· · ·
q−1∑
im=0

ui1...imY i1
1 . . . Y im

m | ui1...im ∈ Fq

}
. (2.1)

The polynomial functions from (Fq)
m to Fq are given by the polynomials of P (m, q).

Let ν be an integer such that 0 ≤ ν ≤ m(q − 1). Consider the subspace of P (m, q) defined by

Pν(m, q) := {P (Y1, . . . , Ym) ∈ P (m, q) | deg(P (Y1, . . . , Ym)) ≤ ν}

where deg(P (Y1, . . . , Ym)) is the total degree of P (Y1, . . . , Ym).

Consider the ideal I = (Xq
1 − 1, . . . , Xq

m − 1) of the ring Fq[X1, . . . , Xm].

Set x1 = X1 + I, . . . , xm = Xm + I. Then

A =

{
q−1∑
i1=0

· · ·
q−1∑
im=0

ai1...imxi1
1 . . . xim

m | ai1...im ∈ Fq

}
. (2.2)

Let us fix an order on the set of monomials{
xi1
1 . . . xim

m | 0 ≤ i1, . . . , im ≤ q − 1
}
.
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Then we have the following important remark:

Remark 2.1. Each element
∑q−1

i1=0 · · ·
∑q−1

im=0 ai1...imxi1
1 . . . xim

m of A can be identified with the
vector (ai1...im)0≤i1,...,im≤q−1 of (Fq)

qm and vice-versa. Hence the modular algebra A is identified
with (Fq)

qm .

Let α be a primitive element of the finite field Fq. It is clear that Fq =
{
0, 1, α, α2, . . . , αq−2

}
.

Set
β0 = 0 and βi = αi−1 for 1 ≤ i ≤ q − 1. (2.3)

When considering P (m, q) and A as vector spaces over Fq, we have the following isomorphism:

ϕ : P (m, q) −→ A

P (Y1, . . . , Ym) 7−→
q−1∑
i1=0

· · ·
q−1∑
im=0

P (βi1 , . . . , βim)xi1
1 . . . xim

m

(2.4)

We give the definition of the Generalized Reed-Muller codes as formulated in [10] and [11].

Definition 2.1. The Generalized Reed-Muller code of length qm and of order ν (0 ≤ ν ≤ m(q−1))
over Fq is defined by

Cν(m, q) := {(P (βi1 , . . . , βim))0≤i1,...,im≤q−1 | P (Y1, . . . , Ym) ∈ Pν(m, q)} . (2.5)

It is a subspace of (Fq)
qm and we have the following ascending sequence:

{0} ⊂ C0(m, q) ⊂ C1(m, q) ⊂ · · · ⊂ Cm(q−1)−1(m, q) ⊂ Cm(q−1)(m, q) = (Fq)
qm (2.6)

2.2 Some properties of the ambient space
The ambient space A is a local ring with maximal ideal M which is the radical of A, i.e. M =
Rad(A).

Let d be an integer such that 0 ≤ d ≤ m(q − 1). Consider the powers Md of M . A linear basis of
Md over Fq is

Bd :=
{
(x1 − 1)i1 . . . (xm − 1)im | 0 ≤ i1, . . . , im ≤ q − 1, i1 + . . .+ im ≥ d

}
(2.7)

We have the following ascending sequence of ideals:

{0} = Mm(q−1)+1 ⊂ Mm(q−1) ⊂ · · · ⊂ M2 ⊂ M ⊂ A (2.8)

We need the following notation:

Notation 2.1. Set [0, q − 1] = {0, 1, 2, . . . , q − 1},
i := (i1, . . . , im) ∈ ([0, q − 1])m,
|i| := i1 + . . .+ im,
j ≤ i if jl ≤ il for all l = 1, 2, . . . ,m where j := (j1, . . . , jm) ∈ ([0, q − 1])m,
x := (x1, . . . , xm),
xi := xi1

1 . . . xim
m .

Consider the polynomial

Bi(x) := (x1 − 1)i1 . . . (xm − 1)im . (2.9)
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Proposition 2.1. Considering the sequences (2.6)and (2.8), we have

dimFq (M
d) = dimFq (Cm(q−1)−d(m, q))

for 0 ≤ d ≤ m(q − 1) where dimFq (M
d) is the dimension of the vector space Md over Fq.

Proof. Consider the set E := {i ∈ ([0, q − 1])m | |i| ≥ d}.

Since Bd = {Bi(x) | |i| ≥ d} is a basis of Md, then dimFq (M
d) = Card(E) where Card(E) denotes

the number of elements in the set E.

Consider the set F := {i ∈ ([0, q − 1])m | |i| ≤ m(q − 1)− d}.

We have dimFq (Cm(q−1)−d(m, q)) = dimFq (Pm(q−1)−d(m, q)) = Card(F ).

The mapping
θ : ([0, q − 1])m −→ ([0, q − 1])m

(i1, . . . , im) 7−→ (q − 1− i1, . . . , q − 1− im)

is a bijection and the inverse mapping is θ−1 = θ.

Let i ∈ E. Then |i| ≥ d, and |θ(i)| = m(q− 1)− |i| ≤ m(q− 1)− d. Hence θ(i) ∈ F . And it follows
that θ(E) ⊆ F .

Conversely, let i ∈ F . Then |i| ≤ m(q − 1)− d, and |θ(i)| = m(q − 1)− |i| ≥ d. So θ(i) ∈ E. Note
that θ(θ(i)) = i. Thus F ⊆ θ(E).

Therefore, F = θ(E) and Card(E) = Card(F ).

It is clear that

(xl − 1)il =

il∑
j=0

(−1)il−j

(
il
j

)
xj
l (2.10)

for all l = 1, 2, . . . ,m.

Let βk ∈ Fq as in (2.3). Consider the indicator function

Fβk(Yl) = 1− (Yl − βk)
q−1 (2.11)

with 1 ≤ l ≤ m.

Then Fβk(Yl) ∈ P (m, q) and

Fβk (βj) =

{
1 if j = k,

0 otherwise.

Consider the interpolation function

Hil(Yl) :=

il∑
k=0

(−1)il−k

(
il
k

)
Fβk(Yl). (2.12)

We have Hil(Yl) ∈ P (m, q),

Hil(βj) =

{
(−1)il−j

(
il
j

)
if 0 ≤ j ≤ il,

0 if il < j ≤ q − 1

and

(xl − 1)il =

il∑
j=0

Hil(βj)x
j
l . (2.13)
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Set

Hi(Y ) :=

m∏
l=1

Hil(Yl). (2.14)

Thus

deg(Hi(Y )) =

m∑
l=1

deg(Hil(Yl)). (2.15)

Proposition 2.2. We have Hi(Y ) = ϕ−1(Bi(x)), where ϕ is the isomorphism defined in (2.4), i.e.

Bi(x) =
∑
j≤i

Hi(βj1 , . . . , βjm)xj

Proof.

Bi(x) =

m∏
l=1

(xl − 1)il

=
m∏
l=1

(

il∑
jl=0

Hil(βjl)x
jl
l )

=
∑
j≤i

(

m∏
l=1

Hil(βjl))x
j

=
∑
j≤i

Hi(βj1 , . . . , βjm)xj .

3 Main Results

3.1 Generalized Reed-Muller codes over a prime field
Here, we give a new proof for the Berman and Charpin’s result. We consider the case r = 1, i.e.
q = p a prime number and Fq = Fp a prime field.

Let Fp = {0, 1, 2, . . . , p− 1} and set βk = k for all k = 0, 1, . . . , p− 1.

Let us study (x− 1)i for 0 ≤ i ≤ p− 1 over Fp.

We have

(x− 1)i =
i∑

j=0

(−1)i−j

(
i

j

)
xj .

For k ∈ Fp, according to (2.1), we have

Fk(Y ) = 1− (Y − k)p−1 = −
p−1∏

j=0(j ̸=k)

(Y − j) ∈ P (1, p)

and

Fk(j) =

{
1 if j = k,

0 otherwise.
Let us consider the interpolation function

Hi(Y ) :=

i∑
k=0

(−1)i−k

(
i

k

)
Fk(Y ) (3.1)
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which is in P (1, p).

Thus, Hi(j) = (−1)i−j
(
i
j

)
for 0 ≤ j ≤ i

and

(x− 1)i =

i∑
j=0

Hi(j)x
j .

Proposition 3.1. An explicit expression of Hi(Y ) is

Hi(Y ) = αi

p−1−i∏
j=1

(Y + j),

where αi = −i! mod p.

Proof. As

(x− 1)i =

i∑
k=0

(−1)i−k

(
i

k

)
xk,

we have

Hi(k) =

{
(−1)i−k

(
i
k

)
if 0 ≤ k ≤ i.

0 if i+ 1 ≤ k ≤ p− 1.
(3.2)

Therefore, Hi(Y ) may be written as

Hi(Y ) = Pi(Y )

p−1−i∏
j=1

(Y + j), (3.3)

where Pi(Y ) is a polynomial of degree less or equal to i.

For Y = k in (3.3) with 0 ≤ k ≤ i and using (3.2), we get

(−1)i−k

(
i

k

)
= Pi(k)(k + 1) . . . (k + p− 1− i),

(−1)i−k i!

k!(i− k)!
= Pi(k)

(k + p− 1− i)!

k!
.

As
(i− k)! = (−1)i−k(p− 1) . . . (p− i+ k) mod p,

we get
i! = Pi(k)(p− 1)!

and because (p− 1)! = −1 mod p by the Wilson lemma, Pi(k) = αi for 0 ≤ k ≤ i. Therefore Pi(Y )
is a constant polynomial equal to αi that achieves the proof.

Corollary 3.1.
deg(Hi(Y )) = p− 1− i.

Remark 3.1. Polynomials Hi(Y ), 0 ≤ i ≤ p− 1, satisfy the backward recurrence relation

Hp−1(Y ) = 1,

Hi(Y ) =
1

i+ 1
(Y − i− 1)Hi+1(Y ) , 0 ≤ i ≤ p− 2.
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It is clear that in this section, the Proposition 2.2 become (see [12])

Bi(x) =
∑
j≤i

Hi(j)x
j (3.4)

The following Theorem is well-known (see [1],[2]).

Theorem (Berman-Charpin) 3.2. Let Cν(m, p) be the Reed-Muller code of length pm and of
order ν (0 ≤ ν ≤ m(p − 1)) over the prime field Fp and M the radical of Fp[X1, ..., Xm] / ( Xp

1 −
1, ..., Xp

m − 1 ). Then
Cν(m, p) = Mm(p−1)−ν .

Proof. Set d := m(p − 1) − ν. The set Bd = {Bi(x) | |i| ≥ d} is a linear basis of Md over Fp.
Consider Bi(x) =

∑
j≤i Hi(j)x

j ∈ Md. By (2.15) and Corollary 3.1, we have deg(Hi(Y )) =∑m
l=1 p − 1 − il = m(p − 1) − |i| ≤ m(p − 1) − d = ν. It follows from Remark 2.1 and (2.5) that

Bi(x) ∈ Cν(m, p). Thus Md ⊆ Cν(m, p). Moreover, if we take r = 1 in Proposition 2.1, we have
dimFp(M

d) = dimFp(Cν(m, p)).

3.2 Binomial function over a finite field
In this subsection, we examine some properties of (x − 1)i, 0 ≤ i ≤ q − 1, over an arbitrary finite
field Fq where q = pr with p a prime number and r ≥ 1 an integer.

We have already seen from (2.13), (2.12) and (2.11) of Section 2 that

(x− 1)i =

i∑
j=0

Hi(βj)x
j , 0 ≤ i ≤ q − 1

where

Hi(Y ) :=

i∑
k=0

(−1)i−k

(
i

k

)
Fβk(Y ) , 0 ≤ i ≤ q − 1 (3.5)

and
Fβk(Y ) = 1− (Y − βk)

q−1.

Lemma 3.3. (
pr − 1

d

)
= (−1)d mod p

where p is a prime number, r ≥ 1 an integer and 0 ≤ d ≤ pr − 1.

Proof. It can be proved easily by induction on d.

The following proposition is fundamental.

Proposition 3.2. The interpolation function (3.5) satisfies the relation

Hi(Y ) =

q−1∑
d=1

α−d
[
(−1)i − (αd − 1)i

]
Y q−1−d

where α is a primitive element of Fq and 1 ≤ i ≤ q − 1.
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Proof. We have

Hi(Y ) =

i∑
k=0

(−1)i−k

(
i

k

)
Fβk (Y )

=

i∑
k=0

(−1)i−k

(
i

k

)[
1− (Y − βk)

q−1]
= (−1)i(1− Y q−1) +

i∑
k=1

(−1)i−k

(
i

k

)[
1− (Y − βk)

q−1]
= (−1)i(1− Y q−1) +

i∑
k=1

(−1)i−k

(
i

k

)
−

i∑
k=1

(−1)i−k

(
i

k

)
(Y − βk)

q−1.

Since

(Y − βk)
q−1 =

q−1∑
d=0

(−1)d(βk)
d

(
q − 1

d

)
Y q−1−d

and by Lemma 3.3, we have

(Y − βk)
q−1 =

q−1∑
d=0

(βk)
dY q−1−d.

Thus, by (2.3),

Hi(Y ) = (−1)i(1− Y q−1) +

i∑
k=1

(−1)i−k

(
i

k

)

−
i∑

k=1

(−1)i−k

(
i

k

)[
q−1∑
d=0

(αk−1)dY q−1−d

]

= (−1)i(1− Y q−1) +
i∑

k=1

(−1)i−k

(
i

k

)

−
q−1∑
d=0

(
i∑

k=1

(−1)i−k

(
i

k

)
(αk−1)d)Y q−1−d.

Since
i∑

k=1

(−1)i−k

(
i

k

)
= (−1)i+1

then

Hi(Y ) = (−1)i − (−1)iY q−1 − (−1)i − (

i∑
k=1

(−1)i−k

(
i

k

)
)Y q−1

−
q−1∑
d=1

(

i∑
k=1

(−1)i−k

(
i

k

)
(αk−1)d)Y q−1−d

= −
q−1∑
d=1

(

i∑
k=1

(−1)i−k

(
i

k

)
(αk−1)d)Y q−1−d

= −
q−1∑
d=1

α−d(

i∑
k=1

(−1)i−k

(
i

k

)
(αk)d)Y q−1−d

8
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= −
q−1∑
d=1

α−d

[
i∑

k=0

(−1)i−k

(
i

k

)
(αk)d − (−1)i

]
Y q−1−d

= −
q−1∑
d=1

α−d
[
(αd − 1)i − (−1)i

]
Y q−1−d

=

q−1∑
d=1

α−d
[
(−1)i − (αd − 1)i

]
Y q−1−d.

Corollary 3.4. 1. H1(Y ) = −
∑q−2

d=0 Y
d.

2. H2(Y ) = −
∑q−2

k=0(2− α−k)Y k.

3. Hq−1(Y ) = 1.

Remark 3.2. H0(Y ) = Fβ0(Y ) = F0(Y ) = 1− Y q−1.

The next corollary is important to what follows.

Corollary 3.5. If Fq is a non prime field, then we have

deg(Hq−2(Y )) = q − 2.

Proof. In Proposition 3.2, for i = q − 2, the coefficient of Y q−2 is
α−1

[
(−1)q−2 − (α− 1)q−2

]
. If (α− 1)q−2 = (−1)q−2, then (α− 1)q−1 = (−1)q−2(α − 1). Since α

is a primitive element of Fq, then α ̸= 1 and (α − 1)q−1 = 1. Thus 1 = (−1)q−2α + (−1)q−1, and
(−1)q−2α = 0. hence, α = 0. This is a contradiction.

3.3 Main theorem
Bearing in mind the Remark 2.1, we have our main theorem:

Theorem 3.6. Let Cν(m, q) be the Generalized Reed-Muller code of length qm (m ≥ 1 an integer)
and of order ν(0 ≤ ν ≤ m(q − 1)) over a non prime field Fq and M = Rad(A) where A =
Fq[X1, . . . , Xm] / ( Xq

1 − 1, . . . , Xq
m − 1 ). Then

(i)- Mm(q−1) = C0(m, q), M = Cm(q−1)−1(m, q) and M0 = Cm(q−1)(m, q)
(ii)- M i ̸= Cm(q−1)−i(m, q) for all i such that 2 ≤ i ≤ m(q − 1)− 1.

Proof. Since Fq is a non prime field then q ≥ 4.

(i)-(a)- Mm(q−1) is linearly generated over Fq by B(q−1,...,q−1)(x) = 1̌ the “all one word”. By (2.15)
and Corollary 3.4, we have deg(H(q−1,...,q−1)(Y )) = 0. It follows from Proposition 2.2, Remark 2.1
and (2.5) that B(q−1,...,q−1)(x) ∈ C0(m, q). Thus Mm(q−1) ⊆ C0(m, q). And by Proposition 2.1, we
have

dimFq (M
m(q−1)) = dimFq (C0(m, q)).

(b)- Consider Bi(x) := (x1−1)i1 . . . (xm−1)im ∈ M . There is an integer l such that 1 ≤ l ≤ m and
il ≥ 1. By Proposition 3.2, deg(Hil(Y )) ≤ q − 2. And we have deg(Hi(Y )) ≤ q − 1 for all i ̸= il.
So deg(Hi(Y )) ≤ q − 2 + (m − 1)(q − 1) = m(q − 1) − 1. Thus Bi(x) ∈ Cm(q−1)−1. This implies
that M ⊆ Cm(q−1)−1(m, q), and by Proposition 2.1, the equality holds.

(c)- It is obvious because Cm(q−1)(m, q) ⊆ A = M0 and the Proposition 2.1 give the result.

9



Andriatahiny; BJMCS, 18(5), 1-14, 2016; Article no.BJMCS.26735

(ii)- Consider the following sequence:

{0} ⊂ Mm(q−1) ⊂ Mm(q−1)−1 ⊂ · · · ⊂ Mm(q−1)−(q−2)+1 ⊂ Mm(q−1)−(q−2)

⊂ · · · ⊂ Mm(q−1)−2(q−2)+1 ⊂ · · · ⊂ Mm(q−1)−(m−1)(q−2) ⊂ · · ·
⊂ Mm(q−1)−m(q−2)+1 ⊂ Mm ⊂ Mm−1 ⊂ Mm−2 ⊂ · · · ⊂ M2 ⊂ M ⊂ A.

For simplicity, let us proceed step by step:

Step one:

- Mm(q−1)−1 is linearly generated over Fq by the Bi(x) such that |i| ≥ m(q − 1)− 1.
Consider B(q−2,q−1,...,q−1)(x) which is in Mm(q−1)−1. By Corollary 3.4, Corollary 3.5 and (2.15),
we have deg(H(q−2,q−1,...,q−1)(Y )) = q − 2 > 1 (for q ≥ 4).
Thus B(q−2,q−1,...,q−1)(x) /∈ C1(m, q). It follows that Mm(q−1)−1 ̸= C1(m, q).
- Since q ≥ 4, then Mm(q−1)−1 ⊆ Mm(q−1)−(q−2)+1.
Therefore, B(q−2,q−1,...,q−1)(x) ∈ Mm(q−1)−(q−2)+1 (*).
And since deg(H(q−2,q−1,...,q−1)(Y )) = q − 2 > q − 3, then B(q−2,q−1,...,q−1)(x) /∈ Cq−3(m, q).
Hence Mm(q−1)−(q−2)+1 ̸= Cq−3(m, q).
- It is clear by (2.6) that B(q−2,q−1,...,q−1)(x) /∈ Ci(m, q) for 2 ≤ i ≤ q − 4, then by (2.8) we have
Mm(q−1)−i ̸= Ci(m, q) for 2 ≤ i ≤ q − 4.

In particular, the statement is proved for the case m = 1.

Step two:

- Mm(q−1)−(q−2) is linearly generated over Fq by the Bi(x) such that |i| ≥ m(q − 1)− (q − 2).
Consider B(q−2,q−2,q−1,...,q−1)(x) which is in Mm(q−1)−(q−2) by (*).
We have deg(H(q−2,q−2,q−1,...,q−1)(Y )) = 2(q − 2) > q − 2 (for q ≥ 4).
Thus B(q−2,q−2,q−1,...,q−1)(x) /∈ Cq−2(m, q). So Mm(q−1)−(q−2) ̸= Cq−2(m, q).
- Since q ≥ 4, then Mm(q−1)−(q−2) ⊆ Mm(q−1)−2(q−2)+1.
Therefore B(q−2,q−2,q−1,...,q−1)(x) ∈ Mm(q−1)−2(q−2)+1.
And since deg(H(q−2,q−2,q−1,...,q−1)(Y )) = 2(q − 2) > 2(q − 2)− 1, we have
B(q−2,q−2,q−1,...,q−1)(x) /∈ C2(q−2)−1(m, q).
Hence Mm(q−1)−2(q−2)+1 ̸= C2(q−2)−1(m, q).
- For q > 4, since B(q−2,q−2,q−1,...,q−1)(x) /∈ Ci(m, q) where q − 1 ≤ i ≤ 2(q − 2) − 2, then
Mm(q−1)−i ̸= Ci(m, q) for q − 1 ≤ i ≤ 2(q − 2)− 2.

Continuing in this way, we apply the same method for each step. Thus, for the m-th step, we have

Step m:

- Mm(q−1)−(m−1)(q−2) is linearly generated over Fq by the Bi(x) such that |i| ≥ m(q − 1) − (m −
1)(q − 2).
Consider B(q−2,...,q−2)(x) which is in Mm(q−1)−(m−1)(q−2) (for m ≥ 2). By Corollary 3.5 and (2.15),
we have deg(H(q−2,...,q−2)(Y )) = m(q − 2) > (m− 1)(q − 2) (for q ≥ 4).
Thus B(q−2,...,q−2)(x) /∈ C(m−1)(q−2)(m, q). Therefore
Mm(q−1)−(m−1)(q−2) ̸= C(m−1)(q−2)(m, q).
- Since q ≥ 4, then Mm(q−1)−(m−1)(q−2) ⊆ Mm(q−1)−m(q−2)+1.
Hence B(q−2,...,q−2)(x) ∈ Mm(q−1)−m(q−2)+1.
And since deg(H(q−2,...,q−2)(Y )) = m(q − 2) > m(q − 2)− 1,
then B(q−2,...,q−2)(x) /∈ Cm(q−2)−1(m, q).
Therefore Mm(q−1)−m(q−2)+1 ̸= Cm(q−2)−1(m, q).

10



Andriatahiny; BJMCS, 18(5), 1-14, 2016; Article no.BJMCS.26735

- For q > 4, since B(q−2,...,q−2)(x) /∈ Ci(m, q) where (m− 1)(q− 2) + 1 ≤ i ≤ m(q− 2)− 2, we have
Mm(q−1)−i ̸= Ci(m, q) for (m− 1)(q − 2) + 1 ≤ i ≤ m(q − 2)− 2.

To end the proof, we consider the following final step:

- Mm(q−1)−m(q−2) = Mm is linearly generated over Fq by the Bi(x) such that |i| ≥ m.
Consider B(0,2,1,...,1)(x) which is in Mm. By Corollary 3.4, Remark 3.2 and (2.15) we have
deg(H(0,2,1,...,1)(Y )) = m(q − 2) + 1 > m(q − 2).
Thus B(0,2,1,...,1)(x) /∈ Cm(q−2)(m, q). Hence Mm ̸= Cm(q−2)(m, q).
- Mm−1 is linearly generated over Fq by the Bi(x) such that |i| ≥ m− 1.
Consider B(0,0,2,1,...,1)(x) which is in Mm−1.
We have deg(H(0,0,2,1,...,1)(Y )) = m(q − 2) + 2 > m(q − 2) + 1.
Thus B(0,0,2,1,...,1)(x) /∈ Cm(q−2)+1(m, q). So Mm−1 ̸= Cm(q−2)+1(m, q).
Similarly, we have finally:
- M2 is linearly generated over Fq by the Bi(x) such that |i| ≥ 2.

Consider B(0,...,0,2)(x) which is in M2.
We have deg(H(0,...,0,2)(Y )) = m(q − 1)− 1 > m(q − 1)− 2.
Thus B(0,...,0,2)(x) /∈ Cm(q−1)−2(m, q). Hence M2 ̸= Cm(q−1)−2(m, q).

3.4 An example with two variables over F4

In this section, we consider the case m = 2, q = 4 and n = 42 = 16.

Let α ∈ F4 be a root of the irreducible polynomial 1 + Z + Z2 over F2. It is clear that F4 ={
0, 1, α, α2

}
.

Set
β0 = 0, β1 = 1, β2 = α and β3 = α2.

Consider the modular algebra

A = F4[X1, X2] / ( X4
1 − 1,X4

2 − 1 ) =
{∑3

j=0

∑3
l=0 ajlx

j
1x

l
2 | ajl ∈ F4

}
with x1 = X1 + I, x2 = X2 + I and I =

(
X4

1 − 1, X4
2 − 1

)
.

Set [0, 3] := {0, 1, 2, 3},

i := (i1, i2) ∈ ([0, 3])2,

and x := (x1, x2).

Let us fix an order on the set of monomials{
xj
1x

l
2 | 0 ≤ j, l ≤ 3

}
. (3.6)

Consider the polynomial

B(i1,i2)(x) := (x1 − 1)i1(x2 − 1)i2 =

i1∑
j=0

i2∑
l=0

H(i1,i2)(βj , βl)x
j
1x

l
2

with H(i1,i2)(Y1, Y2) = Hi1(Y1)Hi2(Y2).

From Proposition 3.2, we have H1(Y ) = 1 + Y + Y 2, H2(Y ) = 1 + α2Y + αY 2 and H3(Y ) = 1.

And by (2.12) and (2.11), we have H0(Y ) = F0(Y ) = 1 + Y 3.

11
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We have the sequence of ideals

{0} ⊂ M6 ⊂ M5 ⊂ M4 ⊂ M3 ⊂ M2 ⊂ M ⊂ A where M = Rad(A).

The ideal Md (0 ≤ d ≤ 6) is linearly generated over F4 by

Bd :=
{
B(i1,i2)(x) | 0 ≤ i1, i2 ≤ 3, i1 + i2 ≥ d

}
Let ν be an integer such that 0 ≤ ν ≤ 6. Consider the GRM codes Cν(2, 4) of length 16 and of
order ν over F4:

Cν(2, 4) := {(P (βj , βl))0≤j,l≤3 | P (Y1, Y2) ∈ Pν(2, 4)} .

where

Pν(2, 4) :=

{
P (Y1, Y2) =

3∑
j=0

3∑
l=0

ujlY
j
1 Y

l
2 | ujl ∈ F4,deg(P (Y1, Y2)) ≤ ν

}
and {(βj , βl) | 0 ≤ j, l ≤ 3} is ordered as in (3.6).

We have the ascending sequence:

{0} ⊂ C0(2, 4) ⊂ C1(2, 4) ⊂ C2(2, 4) ⊂ C3(2, 4) ⊂ C4(2, 4) ⊂ C5(2, 4) ⊂ C6(2, 4) = (F4)
16.

In virtue of the isomorphism (2.4) and the Remark 2.1, we have the following results:

-M6 and C0(2, 4) are linearly generated by B(3,3)(x) = 1̌ (the “all one word”), and we have M6 =
C0(2, 4).
-Since B(2,3)(x) =

∑2
j=0

∑3
l=0 H(2,3)(βj , βl)x

j
1x

l
2 ∈ M5 and deg(H(2,3)(Y1, Y2)) = 2 > 1, then

B(2,3)(x) /∈ C1(2, 4). Thus, M5 ̸= C1(2, 4).
-Since B(2,2)(x) =

∑2
j=0

∑2
l=0 H(2,2)(βj , βl)x

j
1x

l
2 ∈ M4 and deg(H(2,2)(Y1, Y2)) = 4 > 2, then

B(2,2)(x) /∈ C2(2, 4). Therefore, M4 ̸= C2(2, 4).
Since B(2,2)(x) =

∑2
j=0

∑2
l=0 H(2,2)(βj , βl)x

j
1x

l
2 ∈ M3 and deg(H(2,2)(Y1, Y2)) = 4 > 3, then

B(2,2)(x) /∈ C3(2, 4), and we have M3 ̸= C3(2, 4).
-Since B(0,2)(x) =

∑0
j=0

∑2
l=0 H(0,2)(βj , βl)x

j
1x

l
2 ∈ M2 and deg(H(0,2)(Y1, Y2)) = 5 > 4, then

B(0,2)(x) /∈ C4(2, 4). This implies M2 ̸= C4(2, 4).

It is clear by the proof of the Theorem 3.6. that M = C5(2, 4).

3.5 An example with one variable over F4

In this section, we consider the case m = 1, q = 4 and n = 4.

Let α ∈ F4 be a root of the irreducible polynomial 1+Z +Z2 over F2. We have F4 =
{
0, 1, α, α2

}
.

Set
β0 = 0, β1 = 1, β2 = α and β3 = α2,

Consider the modular algebra

A = F4[X] / ( X4 − 1 ) =
{∑3

j=0 ajx
j | aj ∈ F4

}
with x = X + I and I =

(
X4 − 1

)
.

Let us consider the following order on the set of monomials{
xj | 0 ≤ j ≤ 3

}
:

12
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1 < x < x2 < x3.

For 0 ≤ i ≤ 3, consider the polynomial

Bi(x) := (x− 1)i =

i∑
j=0

Hi(βj)x
j

From Proposition 3.2, we have H1(Y ) = 1 + Y + Y 2, H2(Y ) = 1 + α2Y + αY 2 and H3(Y ) = 1.

And from (2.12) and (2.11), we have H0(Y ) = F0(Y ) = 1 + Y 3.

We have the sequence of ideals

{0} ⊂ M3 ⊂ M2 ⊂ M ⊂ A where M = Rad(A).

The ideal Md (0 ≤ d ≤ 3) is linearly generated over F4 by

Bd := {Bi(x) | d ≤ i ≤ 3}

Let ν be an integer such that 0 ≤ ν ≤ 3. Consider the GRM codes Cν(1, 4) of length 4 and of order
ν over F4:

Cν(1, 4) := {(P (β0), P (β1), P (β2), P (β3)) | P (Y ) ∈ Pν(1, 4)} .

where

Pν(1, 4) :=

{
P (Y ) =

3∑
j=0

ujY
j | uj ∈ F4,deg(P (Y )) ≤ ν

}
.

We have the ascending sequence:

{0} ⊂ C0(1, 4) ⊂ C1(1, 4) ⊂ C2(1, 4) ⊂ C3(1, 4) = (F4)
4.

By the isomorphism (2.4) and the Remark 2.1, we have the following results:

-M3 and C0(1, 4) are linearly generated by B3(x) = 1̌ (the “all one word”), and we have M3 =
C0(1, 4).
-Since B2(x) =

∑2
j=0 H2(βj)x

j ∈ M2 and deg(H2(Y )) = 2 > 1, then
B2(x) /∈ C1(1, 4). Thus, M2 ̸= C1(1, 4).

It follows that M2 is not a Reed-Solomon code of length 4 over F4.

It is clear by the proof of the Theorem 3.6. that M = C2(1, 4).

4 Conclusions
a In the section 2, we have given the definition of the GRM codes of length qm over a finite field

Fq and some general properties of the residue class ring A.

b In the subsection 3.1, we have given a new proof of the theorem of Berman and Charpin about
the Reed-Muller codes over a prime field.

c In the subsection 3.2 , we have studied the coefficients of the binomial function over a finite field.

d In the subsection 3.3, we have studied the relations between the Generalized Reed-Muller codes
over a non prime field and the radical powers of A.

e In the subsection 3.4 and 3.5, we give some examples.
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A possible future work is to describe the Generalized Reed-Muller codes over a non prime field in
the ambient space A.
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