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Abstract 

Twenty prototypes of Venturi-type fertilizer injectors for low-pressure agricultural irrigation systems were 
designed based on functional hydraulic pressure head and variation of their structural designs. These prototypes 
were modelled in three dimensions (3D) and evaluated using simulation through Computational Fluid Dynamics 
software (CFD). The main structural design characteristics come from a real necessity to complement an low 
pressure multigate irrigation system project named in Spanish “El Manzano” (The Apple tree) and bring it the 
fertigation possibility. The aim of this research was to select the best prototype, in order to identify the 
convergent and divergent angles, throat diameter and hydraulic pressure head to efficiently produce a 
Venturi-type injector for use in gated-irrigation pipe irrigation systems for use in a future in “El Manzano” 
project. As a result of the simulations, the physical characteristics of the injector were defined. The inlet and 
outlet diameters should be 152.4 mm, the throat diameter 76.2 mm and the suction diameter of 50.8 mm. The 
convergent and divergent angles showing most improved performances were 7.5 and 10°, respectively. This 
methodology can be used to construct Venturi-type fertilizer injectors for low-pressure gated-pipe agricultural 
irrigation systems, which, on one side, can reduce significantly the fertilizer application costs and, on the other 
side, the fertilizer management efficiency can be also improve considerably to save water resources. There is 
relatively very little experience in using this type of fertilizer injectors in low-pressure irrigation systems. 

Keywords: agricultural fertigation systems, Computational Fluid Dynamics (CFD), computational simulation, 
fertigation, low-pressure irrigation, Venturi injectors 

1. Introduction 

Injection of fertilizer into the water-flow used for irrigation (fertigation) is a useful process for dissolving and 
applying plant nutrients (Domínguez, 1996; Martínez, 2005). The Venturi-type injector is a common mechanism 
for applying fertilizer (Kumara, Singha, & Singlaa, 2012). Mataix (2005) defined the Venturi-type injector as “a 
device with a convergent section, followed by a throat and a divergent section gradually returning to the initial 
diameter”.  

A Venturi-type injector generates suction due to a negative pressure differential that occurs between its inlet and 
outlet by reducing its throat diameter in the middle, which accelerates the fluid by reducing the pressure. This 
suction is used to pull a solution of water and fertilizer into the Venturi-type mechanism for injection into the 
irrigation system. Inlet pressure is translated into kinetic energy as the fluid passes through the injector throat. 
Increased inlet pressure and discharge velocity increase the kinetic energy in the throat. When it reaches a certain 
level, the energy from the pressure in the throat is reduced, creating a negative pressure for stabilization. The rate 
of fluid entrance (dissolved fertilizer and water) at the inlet to the Venturi mechanism increases significantly with 
decreasing inlet pressure (Kumar, Rajput, & Patel, 2012; Manzano, Palau, Benito, Guilherme, & Vasconcelos, 
2016). The kinetic energy and the pressure drop in the throat also increase very rapidly with increasing fluid 
velocity (Fan & Kong, 2013). Moreover, the injection rate in the injector has a significant effect on the 
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uniformity of fertilizer distribution (Regina, Richard, & Roger, 2003) and in the stability of the fertirrigation 
system while it is in operation, and in this sense the Venturi-type injectors show greater uniformity compared 
with differential pressure tank method which uses proportioner pump performed (J. Li, Meng, & B. Li, 2007) or 
at least both Venturi injectors and pump performance shows a similar performance (da Costa Santos & Zocoler, 
2018). 

Some authors have noted that the design for a Venturi-type injector is defined by convergent angles (θc) of 10.5 
and 21° (Reader-Harris, Brunton, Gibson, Hodges, & Nicholson, 2001), and divergent angles (θd) of 5 and 7°. 
Companies such as Mazzei Vicamp are marketing fertilizer injectors with this design (VICAMP, 2002), but at 
small sizes. Yet, Zárate (1995b) indicated that high yields in terms of energy use (lower head losses), can be 
made with the suction of a second fluid having a θc = 7.5° in comparison to θc at 5 and 7°. 

Lima-Neto and de Melo Porto (2004) mentioned that commercial Venturi-type injectors do not exceed the 
efficiency obtained by a pressurized system with conventional injection pumps. However, their construction for 
solving specific problems exceeds, by two or three times, the efficiency of a commercial Venturi tube. Thus, a 
better cost-benefit ratio is obtained, approaching the efficiency developed for a pump. Lima-Neto (2006) 
evaluated Venturi-type injectors and determined that more efficient use is achieved when the suctioned fluid is 
denser. 

Venturi-type injectors are technically feasible and their construction cost is relatively low as used by Vargas, 
René, and Huaita (2008b). These authors reported relationships that demonstrate the principles of the Venturi 
effect, and highlighted some key features that should be taken into account in their design, such as the 
convergent and divergent angles, and throat diameter. These authors tested different angles for the construction 
of these devices, but their research was conducted on drip irrigation systems where pipe diameters are relatively 
small and require a system of pressurized pipes. 

Given a minimum differential pressure existing in the device, sufficient suction for use is generated, and these 
values can be computed prior to their construction given the availability of computational fluid dynamics 
software (CFD) for simulation, where the simulation and actual results will be similar (Baylar, Aydin, Unsal, & 
Ozkan, 2009; Manzano Juarez et al., 2014). CFD is an easy method to evaluate quickly a hydraulic systems 
(Bayón, Vallés Morán, Macián Pérez, & López Jiménez, 2017). 

Critical pressure differences (i.e., the limit where injection is no longer efficient), and the maximum operating 
pressure correlate linearly with inlet pressure (Santos, Zocoler, Justi, Silva, & Correia, 2012). The flow rate into 
a Venturi injector increases with increasing inlet pressure, or the pressure difference between inlet and outlet. If 
this differential pressure is small, then, the diameter of the suction port for the fertilizer-water solution should be 
decreased to increase the relationship with the injection rate. As well, the throat diameter and the convergent and 
divergent angles should be increased to improve injector performance (Yan, Chu, Wang, & Ma, 2010). 

The pressure loss caused by using Venturi injectors for fertilizer decreases the quality of fertilization and 
irrigation uniformity (Yan, Chen, Chu, Xu, & Wang, 2012), for which the structural parameters should be 
optimized for better performance and to avoid losses. 

Thus, the throat diameter influences the internal flow through the injector throat, the divergent angle influences 
the performance and efficiency of injection in the Venturi mechanism, and the ratio of convergent to divergent 
angles have greater influence on performance injection than the throat diameter. Yan and Chu (2011) noted that 
the best ranges for the ratio of convergent to divergent angles are 1:2 and 1:3, for maximum efficiency. 

Hydraulic parameters include convergent angles and throat diameter, and divergent angles can be determined 
using CFD software (Perumal & Krishnan, 2013; Sun & Niu, 2012). The relation with throat constriction is the 
main factor influencing performance of a Venturi injector (Sun & Niu, 2012). The relation is positively 
correlated with the outlet velocity, and negatively correlated with critical pressure, minimum tube pressure, the 
coefficient of local pressure loss, and fertilizer absorption. 

One of the current advantages offered by computer systems is the use of CFD software to conduct simulations of 
real phenomena or processes (Íñiguez Covarrubias, Flores Velázquez, Ojeda Bustamante, Díaz Delgado, & 
Mercado Escalante, 2015). Shannon (1998) described a simulation as “the process of designing a model of a real 
system and conducting experiments with this model for the purpose of understanding the behaviour of the system 
and /or evaluating various strategies for the operation of the system”. According to Guash, Piera, and Casanovas 
(2009), it is now possible to generate outputs for the creation of statistical models to evaluate processes with 
simulated results.  
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Therefore, to reduce the effect of the pressure difference between inlet and outlet required by Venturi-type 
injectors, and to improve injection efficiency, the best option for calculating and determining the ideal structural 
parameters is simulation using computer software (Yan, Chen, Chu, Xu, & Wang, 2013a). Analyses of the results 
from simulation processes allows for selection of injection rate into the flow device. Injection rate is achieved 
with a constant pressure at the inlet of the injector, so the installation of a pressure regulator valve upstream of 
the Venturi device is recommended to avoid interior turbulence. Han, Huang, Liu, Wu, and Fan (2013) showed 
that the amount of fertilizer suction and discharge was directly affected by the inlet and outlet pressures. They 
also concluded that a device designed according to the requirements of the system results in a better performance 
than any one trademarked product. 

The aim of this research was to select the best prototype, in order to identify the convergent and divergent angles, 
throat diameter and hydraulic pressure head to efficiently produce a Venturi-type injector for use in 
Agroecosystems with a low pressure gated-irrigation pipe irrigation systems, specifically for use in a future in 
“El Manzano” project. For this type of irrigation system there are little Venturi-type injectors on the market to 
facilitate and improve application efficiency of fertilizers. 

2. Method 

This research was conducted at Colegio de Postgraduados, Campus Veracruz, in Veracruz, Mexico, and consisted 
of six stages: Status of multi-gated irrigation systems in the study area; Design and modelling of 20 prototypes; 
Conducting simulations with the designed prototypes; Analysis of the resulting simulation data; Statistical 
conclusions; Construction of the prototype with the best performance. 

Stage 1: Status of low-pressure gated irrigation systems in the studied area. Field visits were carried out to assess 
the operational status of the low-pressure gated irrigation system used to irrigate sugarcane. Data on irrigation 
systems were: pipe diameters (152.4 mm), hydraulic mean gradient (1.11%), Hydraulic head (0.7 kg/cm2) and 
hydraulic flowrate (35 l/s), which were acquired from a previously published study of “El Manzano” project. 
This project was focused on the design of an irrigation system using low-pressure gated pipe line in The 
Irrigation District 035, La Antigua, Veracruz, Mexico (Landeros, 2003). It also was oriented to make a more 
efficient use of irrigation water among sugarcane plots by means of tubing the water to avoid evaporation, 
infiltrations and runoff losses through a network of low pressure pipes. There are telescopies pipes till 60.96 cm 
until 17.78 cm (the inner pipe diameter being six inches). Finally, the water is being distributed, at plot level, by 
15.24 cm pipes with multi gates pipeline. “El Manzano” project uses an irrigation depth of 12 cm; an application 
efficiency of irrigation that varies from 75 to 80 % approximately. It was recommended to sugarcane producers 
to stablish furrows with a length of 120 m in order to prevent irrigation losses water. All these data were taken to 
design the Venturi type injectors prototypes. The basic data to design “El Manzano” project included soils, crops, 
climate, slopes and hydraulic characteristics of the studied area.  

Stage 2: Design and modelling of 20 prototypes. The design of the prototypes of the Venturi-type fertilizer 
injectors is founded on the scientific method, and is based on fluid mechanics, such as the Continuity Equation, 
Bernoulli's Theorem, and the Venturi Tube Model Equation. An application of these principles was presented by 
Vargas, René, and Huaita (2008a) and designed according to Feitosa Filho, Pinto, and de Arruda (2018). 

Twenty prototype models of Venturi-type fertilizer injectors were designed in 3D using the software 
SolidWorks® 2014. The characteristics for the prototypes differed and were defined by modifying their 
convergent and divergent angles, their inlet and outlet diameters, and throat diameter according to according to 
the structure suggested by Sun and Niu (2012) (Figure 1). The throat diameter was determined considering the 
minimum flow rate required for the irrigation system in the study area (35 l/s). Given that the loss of energy due 
to friction depends on the flow rate, the viscosity of the liquid, and material from which the Venturi-type injector 
is constructed, the largest diameter possible to decrease the loss is considered. In the present study, the diameter 
selected for the injector inlet and outlet was 152.4 mm, the throat diameter was 76.2 mm, and the diameter of the 
fertilizer suction port was 50.8 mm. 

To design the prototypes, it was used convergent angles of 7.5, 10.5 and 21°, as recommended for small injectors 
used for drip irrigation (Vargas et al., 2008a; Zárate, 1995a), and we added a fourth convergent angle of 16° (the 
latter angle was selected for testing because there were no references of tests between 10.5 and 21°). Five different 
divergent angles also were tested ranging from 6 to 10°. The design features used in the software SolidWorks® 
2014 to produce the twenty 3D prototypes of Venturi-type fertilizer injectors are presented in Table 1.  
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There are two common geometric variables in all Venturi-type injectors: the diameter of the pipe (D) and the 
diameter of the throttle or throat (d). The d/D ratio is known as the diameter ratio and is symbolized by the Greek 
letter β (beta) (IMTA, 2011). Table 2 shows the extreme values for D and β for a Venturi-type injector for 
low-pressure irrigation. 

 

Table 2. Diameter value (D) and diameter ratio (β) for a Venturi type injector (IMTA, 2011) 

Variable Value 

Dmin (mm) 200 
Dmax (mm) 1200 
βmin 0.40 
βmax 0.70 

 

To start the design, the flow rate of the device was determined using the following equation (IMTA, 2011): 

Q	=	 Cdට1	- β4

π

4
d2ඥ2gh0                                    (1) 

where,  

Q: Flow (m3/s); Cd: Discharge coefficient (dimensionless); β: ratio of diameters d/D (dimensionless); d: injector 
throat diameter (m) and D inlet diameter (m); π: 3.1416; d: throat diameter (m); g: Acceleration of gravity (9.81 
m/s2) and ho: Differential pressure (kg/cm2).  

The equation is applicable to non-compressible flows such as water and with the following conditions:  

(1) The flow must be homogeneous; (2) The value of the differential pressure must be known precisely. (3) The 
conduit must work under pressure (full tube).  

The rest of the formulas are mentioned below: 

q = Aඥ2gh0                                       (2) 

where,  

q = Fertilizer absorption (m3/s); A = Area (m); g: Acceleration of gravity (9.81 m/s2); h0 = Differential pressure 
(kg/cm2). 

N	= 
e2 -	e3

e1 -	e2
                                        (3) 

where, 

N = Total pressure rate; e = Injector ports. 

M	=	 q

Q
                                         (4) 

where,  

M= Injection capacity (lps); q = Fertilizer absorption (m3/s); Q: Flow (m3/s). 

η	=	M·N × 100                                     (5) 

where, 

η = Efficiency (%); M = Injection capacity (lps); N = Total pressure rate. 

The results of the calculated variables that were used for the development of the 20 prototypes in the simulations 
are shown in Table 5.  

Stage 3: Conducting simulations with the designed prototypes. Using SolidWorks FlowSimulator® 2014, CFD 
software simulations were performed and the functional operation of the 20 designed prototypes was evaluated. 
Initially, the firsts simulations were carried out using pure water at 20 °C, and flow velocity was measured at the 
injector outlet, to select the best designs to be tested, subsequently, whit fertilizer characteristics into simulation. 
Flow velocity has a direct correlation with the hydraulic spending and pressure of the injector. A normality test 
on the data was performed, followed by an analysis of variance. All the simulations run for the described 
prototype considered the following boundary conditions: an environment pressure of 100 000 Pa; inlet injector 
flow rate equal to 0.035 m3/s; income water-fertilizer mixture flow rate of 0.0187 m3/min and an outcome 
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temperature, which can be manipulated for these injector prototypes, and adapted for field irrigation using 
low-pressure gated irrigation systems. 

Therefore, three mixtures of chemical fertilizers having different solutions were prepared. These mixtures 
fertilizer-water solutions were used and defined according to Palma-López et al. (2002a) and by producers in the 
study site (Table 4).  

 

Table 4. Water-fertilizer solutions according to Palma-Lopez et al. (2002) and by producers in the study site to be 
used in the injector prototypes simulations. 

Solution Urea (Kg) Triple-17 (Kg) Water (L) 
S1 0.063 0.196 1
S2 0.090 0.245 1
S3 0.108 0.318 1

 

The fertilizer solutions were analysed in a laboratory for density, viscosity and temperature, which influence 
injector operation (Yuan, Choi, Waller, & Colaizzi, 2000). The results of this analysis were used to provide the 
data to simulate mixtures of chemical fertilizer dissolved in water. The inclusion of these variables in simulations 
enabled an a posteriori comparison, the efficiency among the four prototype injectors in contrast to fertilizer 
solutions with the pure water control. 

In the simulations, its included temperatures recorded over the last 30 years at station Actopan Clave Clicom 
30003, which is located near where validation of the prototype of the Venturi-type injector was performed. 
Temperature records oscillated within a range of 5 to 43.5 °C (CONAGUA, 2016). Simulations were performed 
at intervals of 5 °C, beginning at 15 °C. Temperatures between 5 and 10 °C were discarded as they were 
considered extreme values for the region and with low probability of occurrence. Temperatures for fertilizer 
solutions at the suction inlet port were considered for simulations including 15, 20, 25, 30, 35, 40 and 45 °C. 

At the temperatures mentioned, simulations for each of the four selected injectors were made, for each of which 
was made three solutions of fertilizer and water with different concentrations of urea and Triple-17 by 
RALIGREEN ™, México (Table 4), with pure water as a control. These simulations included suction of the 
fertilizer doses with their corresponding properties in solution at inlet ports for fertilizer-water solutions in the 
models. A total of 112 simulation tests were performed with the four prototype models selected, with 28 tests for 
each model, seven temperature levels, four levels of fertilizer concentration, and controls (pure water, no 
fertilizers). Tests of the prototype models should reveal which model produced significantly higher fluid velocity 
at the outlet. 

Stages 4 and 5: Analysis of the resulting simulation data, and statistical conclusions. Results from all simulations 
provided a data set of fluid velocities at the outlet. The CFD simulations use a numerical method. This was used 
to determine the average fluid velocity at the injector outlet. 

To statistically evaluate the performance of the four injector’s models, a nested factorial arrangement in a 
completely randomized experimental design was used. The factors evaluated were: 1) The models selected from 
stage three, with four levels (M2, M11, M14 and M15); 2) The temperature of the solutions with seven levels (15, 
20, 25, 30, 35, 40 and 45 °C); and 3) fertilizer solutions, including the control, with a total of four levels (S1, S2, 
S3 and pure water). The combination of levels of the three factors resulted in 112 different treatment 
combinations, with 1000 iterations for each simulation for these tests. Given that solutions were included in the 
simulations, the prototype providing a significantly greater mean value for fluid velocity at the injector outlet 
was selected. The selection was accomplished using a comparison of means; subsequent to an analysis of 
variance on the fluid velocities at the injector outlets obtained from the prototype simulations. This ANOVA was 
designed with a confidence interval (C.I.) of 95 %. Statistical analyses were performed using Statistica® V10 
software by Statsoft ™. 

Stage 6: Once an injector model was selected that showed the greatest efficiency in the simulations, we 
proceeded with its construction. The prototype was made to scale using hydraulic Poly Vinyl Chloride (PVC) 
pipes and fittings, fiberglass and polyester resins for moulding, and to hold the pieces together and support the 
hydraulic pressure. 

 

 



jas.ccsenet.

3. Results

Stage 2: D
hydraulic p
rate of 35 
which 20 
shows a pr

 

Table 5. R
SolidWork

 

Figu

 

The Figure
the fluid o
value = 0.0

Subsequen
means for 
20 simulat
means com
models ch
fertilizer-w

 

org 

 

Design and eva
pressure in the
l/s (“El Manz
prototype inje

rototype fertili

Results of cal
ks FlowSimula

Varia

Inlet f
Incom
Outco
Effici
Total 
Inject

ure 3. One of p

e 4 shows one
outlet velocities
05396, sugges

ntly, the ANO
the 20 models

ted prototype m
mparisons. Po
hosen in Stage 
water solutions

aluation of the 
e multi-gated l
zano” project)
ectors were m
izer injector m

lculated variab
ator® 2014. Al

able 

fertilizer absorp
me Flow Rate 
ome Flow Rate 
iency 
pressure rate 

tion capacity 

prototypes ferti

 of the 20 simu
s developed by
ting a margina

OVA of flow r
s (α = 0.05, F 
models compa
steriory, a Tuk
 3 (M2, M11,
s are highlighte

Journal of A

20 prototypes
low-pressure i
). The above p

modelled (Table
modelled in 3D.

bles for the p
ll values were 

tion Flow Rate

ilizer injector, 

mulations with w
y each model. 
ally normal dis

rates at the inj
= 3172, p val

ared with pure
key test, α = 
 M14 and M1
ed in a pure wa

Agricultural Sci

32 

s. For the proto
rrigation syste

parameters we
e 5). For its c
. 

rototype desig
a reference va

modelled in 3

which the stati
As a result of 

stribution.  

njector outlets 
lue ≤ 2 e-16). F
e water at an a
0.05 was perf

15) as the prot
ater simulation

ience

otype design, t
em of 0.7 kg/cm
ere used to des
calculation, equ

gn used for p
alues for simula

Results

18 l/min
35 l/s 
29 l/s 
77.5 %
1.25 
0.62 l/s

D, using the so

istical compari
f the normality 

resulted in si
Figure 5 displa
ambient tempe
formance (Tab
totypes having
n. 

the real condit
m2 and an irrig
sign the inject

quations 1-5 w

prototypes in t
ations 

 

oftware Solidw

ison of means 
test, the t-test 

ignificant diffe
ays the means c
erature of 20 °
ble 6). As can
g the best perf

Vol. 15, No. 2;

tions involved 
gation system 
tor prototype, 

were used. Figu

the simulation

works® 2014

was performe
significance w

erences among
comparisons o
C and the mu

n be seen, the 
formance regar

2023 

were 
flow 
from 
ure 3 

ns by 

ed for 
was p 

g the 
of the 
ltiple 
four 

rding 



jas.ccsenet.

Figure 4. F
differenc

 

Figure 5. 

 

 

 

org 

Functional sim
ces indicate cha

Graphic comp

mulation of a pr
anges in total p

press

parison of the v

Journal of A

rototype using
pressure rate in
sure inside the 

velocity mean
with

Agricultural Sci

33 

g the software S
nside the injec
injector (right

s at the outlet 
h pure water

ience

Solidworks Flo
ctor (left-hand 
t-hand image)

for each of the

owSimulator 2
image) and ch

e 20 prototype 

Vol. 15, No. 2;

2014 ®. The co
hanges in dynam

models simula

2023 

 
olour 
mic 

ated 



jas.ccsenet.org Journal of Agricultural Science Vol. 15, No. 2; 2023 

34 

Table 6. Subgroups of model prototype fertilizer injectors according to their simulated mean outlet water 
velocities (Tukey HSD-test, α = 0.05) 

Model Means Groups of Models 

M2 2.796891 A 
M15 2.779598 B 
M14 2.772825 C 
M11 2.771627 C 
M10 2.766393 D 
M5 2.765823 D 
M9 2.757221 E 
M13 2.756660 E 
M20 2.753696 F 
M19 2.751474 Fg 
M4 2.749231 G 
M12 2.742583 H 
M8 2.739102 I 
M3 2.736710 J 
M18 2.733090 K 
M7 2.732917 K 

 

Stage 3: Simulated performance of the four prototypes including solutions and temperatures selected. The 
fertilizer mixtures suggested by the producers, and tested by Palma-López et al. (2002b), are shown in Table 7; 
equivalent solutions were then obtained for the fertilizer-water mixtures (Table 4). Based on laboratory analyses 
of these solutions, are obtained the results shown in Table 8, in which the calculated values of solution densities 
are included. Viscosity was also considered, which is automatically calculated by SolidWorks FlowSimulator® 
2014 software for the density and salinity data.  

 

Table 7. Solution dosses recommended for fertilizer applications per hectare per year in sugarcane for fertigation 
used in simulations (Palma-López et al., 2002) 

Dosses N (kg) PO (kg) KO (kg) H2O (L) 

D1 150 80 80 800 
D2 200 80 80 800 
D3 250 80 80 800 

 

Table 8. Calculated densities for the fertilizer solutions based on the mean densities used in the simulations. ppm 
it means part per million 

T (°C) 
Mean Salinity (ppm) Calculated Density (g/cm-3) 

S1 S2 S3 S1 S2 S3 

15 92.4 96.0 103.0 1.0992 1.0992 1.0992 

20 91.4 93.0 100.0 1.0983 1.0983 1.0983 

25 90.0 95.0 115.6 1.0971 1.0971 1.0971 

30 79.5 103.9 113.8 1.0957 1.0957 1.0957 

35 74.0 99.0 113.4 1.0941 1.0941 1.0941 

40 67.0 100.0 111.7 1.0923 1.0923 1.0923 

45 62.0 97.0 109.5 1.0902 1.0903 1.0903 

 

Effects from interactions among factors also were tested. The Multivariate analysis revealed significant 
differences for the treatment factor Solutions (α = 0.05), but not for the factors Models and Temperature. 
Therefore, an α = 0.01 adjust was maded. Whit this α, significant differences were observed for Models and 
Temperature (Table 9). Solutions factor presented no significant difference with C.I. of 99 %. When comparing 
treatments, the highest values for flow velocity at the injector outlet were found with increased performance in 
M15 at 45 °C (Figure 6). 
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& Wang, 2013b), which can occur when the system pressure for field tests is less than 2 kg/cm2. If this situation 
were to affect the injector, it would be necessary to control the hydraulic pressure head at the inlet of the injector 
using a pressure-regulating valve (Kuldeep & Saharan, 2016).  

4 Conclusions 

The designed prototypes were evaluated, through CFD, in two stages: the first 20 with pure water and the four 
most efficient, due to their structural characteristics, with the properties of the water-fertilizer mixtures. After of 
the simulations, the characteristics or structural parameters of the injector with which that was designed and 
showed better performance were: inlet and outlet diameters of 152.4 mm, a throat diameter of 76.2 mm, a 
fertilizer suction port diameter of 50.8 mm, and convergent and divergent angles of θc = 7.5° and θd = 10°. 

Hydraulic factors, such as convergent and divergent angles, diameters of inlet, outlet and throat, and pressure 
head, influence injector design. The convergent angles (θc) of 7.5° and 21°, which were already tested in 
Venturi-type injectors for drip irrigation systems, also work for injectors in multi-gated irrigation systems. The 
convergent angle of 16°, proposed for the design of the prototype injector in the present study, did not exceed the 
performance of the aforementioned angles. 

In the simulation process used in the present study, the designed M15 prototype injector developed a constant 
outlet velocity of 2.79 m/s, ensuring uniform application of the fertilizer-water solution. This was achieved by 
designing and modelling the device in 3D using the CFD software, which must include all fluid physical 
properties, particularly density, viscosity and temperature, which significantly influence the final results. 

In the review of literature carried out, there was little information on fertilizer application devices using the 
principle of the Venturi tube in low-pressure multi-gated irrigation systems. There are little information about 
this kind of systems (Mokhtari Hesari, Rezaei, & Shabanali Fami, 2020). So, it is important to develop a 
prototype that meets the needs for these irrigation systems to save water resources. None of the Venturi-type 
injector designs previously made has been used in multigate irrigation systems. In most cases, these injectors are 
used in drip irrigation systems, where the pressure is greater than that required in multi-gated systems, and the 
dimensions of the injectors and pipes are very small. 

The Venturi type injector designed herein will be tested and validated at field scale in another research stage, 
which has been started in this year. It is therefore clear that the present study corresponds to the first research 
stage of this project. The results that are to be obtain from the second research stage will be published in due 
time. 
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