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Abstract

The agriculture sector is the mainstay of the Kenyan economy. Thus, the sector has a significant
role and contribution to GDP. In this study, Box-Jenkins seasonal ARIMA time series modeling
approach is used to develop a model that best describes the quarterly agricultural gross
domestic product of Kenyan economy. Agricultural gross domestic product data collected
quarterly from 2000-2014 at constant 2001 prices is used for modeling. From the analysis,
SARIMA(1, 0, 0)(1, 1, 0)4 was found to be the best model describing the quarterly agricultural
gross domestic product of Kenyan economy.
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1 Introduction

Agriculture is the art and science of growing plants (crops) and the raising of animals for food,
for economic gain or other human needs. The Agriculture sector is the mainstay of the Kenyan
economy. The sector provides sustenance for more than 80% of the Kenyan population in terms of
employment and food security [1]. The sector contributes directly upto 24% to the national GDP
and 27% indirectly through linkages with manufacturing, distribution and other related sectors
[1]. In addition, the sector employs more than 40% of the total population and more than 70% of
Kenya’s rural people. The sector accounts for 65% of revenue from exports [1]. The agriculture
sector includes industrial crops, food crops, horticulture, livestock, fisheries and forestry sub sectors.
However its key to note that there are several factors which affect agriculture which in turn affects
the economy hence the GDP. Such includes land use, improvement of water resources and irrigation
development, governance, macroeconomic stability, science & technology and infrastructure. The
agriculture sector is large with multitude of actors such as private, non-governmental, parastatal
and public.

Gross domestic product (GDP) is the basic measure of the overall economic performance of a
country. It is the market value of all final goods and services produced within the borders of a
nation in a year. Information on GDP is regarded as an important index for assessing the national
economic development and for judging the operating status of macro-economy as a whole [2].

There exists a high correlation between the Kenyan economic growth rate and agricultural growth
rate [1]. Improving agricultural performance is at the heart of improved economic development
and growth. NEPAD [3] points out that there are several fundamental mutual reinforcing pillars
on which to base the immediate improvement of agriculture and even food security. Such include;
Extending the area under sustainable land management, improving rural infrastructure
and agricultural research, technology dissemination and adoption.

Techniques of analysing time series data have been widely applied on different areas (sectors)
namely; tourism, climate, GDP, crop yields among others. However, focus on the impact of
agriculture sector to a country’s economy is crucial. For instance, Enu [4] undertook a study
to determine the impact of the agricultural sector on Ghana’s economic growth using time series
data from 1996-2006. He found that agricultural output had a significant positive impact on the
nation’s growth. Rahman [5] undertook a study to fit the best ARIMA model to be used to make
efficient forecast of boro rice production in Bangladesh from fiscal year 2008-09 to 2012-13. Usman
[6] undertook a study on contribution of agriculture sector in the GDP growth rate of Pakistan. He
used time series data from 1990-2014 and fitted a regression model. From the model, he found that
the agricultural variables considered had a strong relationship with the GDP growth rate. Sayedul
and Mina [7] developed ARIMA(1,2,1) model as a reasonable model to forecast the yearly growth
rate of GDP of Bangladesh using time series data which would aid in decision making process. Udah
et al. [8] undertook a study to analyse contribution of various agricultural sub-sectors to Growth
in Nigeria Agricultural sector.

In this paper, effort is made to analyse the contribution of agricultural sector to the Kenyan
economy (at constant 2001 prices) from 2000 to 2014 to come up with the model that best describes
quarterly agricultural gross domestic product of Kenya. This is because we are not able to assess
the contribution of the sector to the Kenyan economy despite the effort made by the Government of
Kenya. This will enable decision makers and policy makers especially in the Ministry of Agriculture
and Kenya Agricultural & National Planning identify where policies can rightly be channelled
towards improving the performance of the sector which has been identified by The Vision 2030 as
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one of the key sectors to deliver the 10% annual economic growth rate under the Economic Pillar.
Box-Jenkins Seasonal Autoregressive Integrated Moving Average (SARIMA) modeling approach is
applied.

2 Methods and Materials

A time series is a set of observations xt each one being recorded at a specific time t [9]. Agricultural
gross domestic product when taken at equal time intervals over a period of time constitute a time
series data which can then be analysed using time series techniques. Basically, the purpose of time
series is to describe the observed time series data, construct a model that fits the data and to
forecast future values of the time series process.

Time series exhibit different types of components namely; trend seasonality and random component.
A time series in terms of the three components can be written as;

xt = St + Tt + Et (2.1)

where xt is the data at period t, St is the seasonal component at period t, Tt is the trend component
at period t and Et is the error component at period t. However, the series can also be expressed in
multiplicative form given as;

xt = St ∗ Tt ∗ Et (2.2)

[10] Time series ARIMA models were first introduced by Box and Jenkins in 1960 [11]. They
popularized the use of ARMA models including guidelines of transforming nonstationary time
series into stationary by differencing to bring about the ARIMA models. In time series analysis,
a stationary time series is one whose statistical properties remain unchanged over time. Thus for
every t and t − s: E(xt) = E(xt−s) (constant mean), E(xt − µ)2 = E(xt−s − µ) = σ2

x (constant
variance). If its not stationary it has to be transformed to stationary through differencing by use
of the operator ∇ defined by ∇d = (1 − B)d and B is the backward shift operator defined by
Bjxt = xt−j [9][11].

Box and Jenkins methodology involves the three key iterative steps namely; model identification,
parameter estimation and diagnostic checking. However, further development was done to add a
preliminary stage of data preparation and a last step of forecasting [12]. Data preparation involves
transformations and differencing if the data in consideration require this be done to meet Box and
Jenkins assumptions before modeling.

Mathematical transformations also provided simple means of modeling seasonality which resulted
into the general multiplicative seasonal ARIMA process of order (p, d, q)(P,D,Q)s which has been
useful to date [13], where p is the order of non-seasonal AR, d is the order of non-seasonal
differencing, q is the order of non-seasonal MA, P is the order of seasonal AR, D is order of
seasonal differencing, Q is the order of seasonal MA and s is periods in a season.

SARIMA models are formed by adding the seasonal terms in the usual ARIMA model. More
formally, a SARIMA model is expressed as,

Φ(Bs)ϕ(B)xt = Θ(Bs)θ(B)ωt (2.3)

where s is the number of periods per season, xt is the time series observation at time t, ωt is white
noise, Φ is the seasonal AR parameters, ϕ is the non-seasonal AR parameters, Θ is the seasonal MA
parameters, θ is the non-seasonal MA parameters and B is the back shift operator. With presence
of regular and seasonal differencing, equation 3 becomes;

Φ(Bs)ϕ(B)(1−B)d(1−Bs)Dxt = Θ(Bs)θ(B)ωt (2.4)
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where d is the order of non-seasonal differencing and D is the order of seasonal differencing [9][14].
The non-seasonal autoregressive (AR) and non-seasonal moving average (MA) components are;

ϕ(B) = 1− ϕ1B
1 − · · · − ϕpB

p (2.5)

and

θ(B) = 1− θ1B
1 − · · · − θqB

q (2.6)

respectively.

On the other hand, the seasonal autoregressive (SAR) and seasonal moving average (SMA) are;

Φ(Bs) = 1− Φ1B
s − · · · − ΦPB

Ps (2.7)

and

Θ(Bs) = 1 + Θ1B
s + · · ·+ΘQB

Qs (2.8)

respectively.

SARIMA models have extensively been used in modeling time series data collected either weekly,
quarterly or even monthly. For instance, Mwanga et al. [15] used SARIMA approach to model and
forecast sugarcane yields in Kenya Sugar Industry. They found that seasonal ARIMA(2, 1, 2)(2, 0, 3)4
to be the best model that fits quarterly sugarcane yields from 1973-2015. Otieno et al. [16] developed
a SARIMA model to describe the tourist accommodation demand in Kenya using quarterly data.
They found SARIMA(1, 1, 2)(1, 1, 1)4 to be the suitable model. Kibunja et al. [17] undertook a study
to forecast precipitation in Mt. Kenya region. They used SARIMA approach using monthly data
and concluded that SARIMA(1, 0, 1)(1, 0, 0)12 to be the best model to do forecasting of precipitation
in the region.

In the agricultural contribution to Kenyan GDP, use of SARIMA models is not evident. Ong’ala and
Mwanga [18] used time series to predict future adoption of sugarcane variety but did not consider
the contribution of sugarcane to Kenyan GDP. In their research, Musundi et al. [19] developed
an ARIMA model to describe and forecast the Kenyan GDP. However, this study did not consider
analyzing quarterly agricultural gross domestic product data of the Kenyan economy (at constant
2001 prices) which is key for decision makers especially in the Ministry of Agriculture and Kenya
Agricultural and National Planning to know where policies can rightly be channeled to improve the
performance of the sector.

Data on quarterly agricultural gross domestic product of the Kenyan economy was obtained from
Kenya National Bureau of Statistics office in Nairobi from January 2000 to January 2014 (at constant
2001 prices) at quarterly intervals. The data consisted of 57 observations and had no gaps. It was
then entered into a spreadsheet in Excel and saved as CSV format. R statistical software was
then used to read the data and for further analysis. The time series was explored to identify any
underlying patterns. This was achieved through decomposing the series through classical approach
to extract trend, seasonality and the random components.

Box-Jenkins SARIMA modeling approach was adopted as outlined in Box and Jenkins modeling
technique. The Box-Jenkins approach used involved the following stages: data preparation which
involved differencing to make the data stationary, model identification, model selection & parameter
estimation, diagnostic checking and finally forecasting. Model identification was done by studying
the ACF and PACF plots of the stationary series. The best SARIMA(p, d, q)(P,D,Q)s model was
then selected based on Akaike Information Criteria (AIC) for the data up to 2011. Maximum
likelihood method was used to estimate the parameters of the model. The data remaining for the
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nine quarters was used to check for the adequacy of the forecast. Model diagnostic checking was
done by examining the ACF of residuals and the Ljung-Box test of residuals to check if the residuals
look like white noise. In addition, Jarque Bera test and Shapiro-Wilk test were used to check for
normality of residuals.

3 Results and Discussion

Quarterly agricultural gross domestic product data has a mean of ksh 77,720 million. The time
series plot is as shown in Fig. 1.
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Fig. 1. Time plot of AGDP at constant prices

Upon decomposing using classical approach we have the output as in Fig. 2
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Fig. 2. Decomposed Series of AGDP

From the plot in Fig. 2, we observe that the series shows presence of an increasing trend (second from
top) and a pattern repeating itself every year implying seasonality at period four quarters of a year.
The Augmented Dickey-Fuller test confirmed that the series is non stationary (Dickey − Fuller =
−1.6212, lag = 3, p = 0.7268). To achieve stationarity, seasonal and regular differencing were
applied on the non stationary time series and the result is shown in Fig. 3.

From Fig. 3, it is observed that the series is stationary. This is confirmed by Augmented Dickey-
Fuller test which gave (Dickey − Fuller = −4.9253, lag =3, P = 0.01).
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Plot of Seasonally−trend differenced series
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Fig. 3. Plot of Seasonally-trend Differenced series

Model Identification

The autocorrelation and partial autocorrelation plots for the stationary series are shown in Figs. 4
and 5. The two were used to identify the order of AR, MA, SAR and SMA terms.
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Fig. 4. ACF of Seasonaly-trend differenced Series

From the ACF plot, autocorrelation at lag 1 is significant while autocorrelation at other lags lie
within the confidence bounds hence not significant. The PACF plot shows a significant spike at
lag 1 while the rest are insignificant. Investigating the ACF and PACF at lags s = 4, 8, 12, · · · to
identify the order of the seasonal components, we observe that the autocorrelations in both ACF
and PACF are insignificant. Since both regular and seasonal differencing were each done once, this
indicates that SARIMA(1, 1, 1)(0, 1, 0) are the possible models for the quarterly agricultural gross
domestic product data.

Parameter Estimation and Selection

To select the best model, we consider the model with the minimum value of AIC. The values of
AIC for the candidate models are given in Table 1.
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Fig. 5. PACF of Seasonally-trend differenced series

Table 1. AIC values for the models

Model AIC RMSE MAE

(0, 1, 0)(0, 1, 0)4 821.86 3163.219 2498.119

(0, 1, 1)(0, 1, 0)4 823.16 3136.798 2446.501

(1, 1, 0)(0, 1, 0)4 823.25 3140.413 2454.115

(1, 1, 1)(0, 1, 0)4 819.24 2850.201 2259.952

From Table 1, it is observed that SARIMA(1, 1, 1)(0, 1, 0)4 seems to be the best model to describe the
quarterly agricultural gross domestic product of the Kenyan economy. The model has a minimum
value of AIC which is 819.24.

The estimates of the parameter for the selected model are as in Table 2.

Table 2. Parameter estimates for SARIMA(1, 1, 1)(0, 1, 0)4

Model Parameter Parameter estimate Std Error

(1, 1, 1)(0, 1, 0)4 ϕ1 0.6422 0.1229

θ1 -1.0000 0.0665

When written in form of equation (4) with the estimated coefficients, the model becomes

xt − 0.64xt−1 + 0.64xt−2 − xt−4 + 1.64xt−5 − 0.64xt−6 = ωt − ωt−1 (3.1)

where xt is the quarterly agricultural gross domestic product at time t and ωt is the error term.

Model Diagnostic Checking

Model checking involves checking whether the residuals look like white noise. The Ljung-box test for
autocorrelation indicates that the residuals are white noise (X2=18.8661, df=19, p-value=0.4655).
Shapiro-Wilk test showed that the residuals are normally distributed (W = 0.9768, p-value=0.4535).
The ACF of residuals and the p-values for Ljung-Box test statistic are as in Fig. 6 from which we
observe that the residuals are white noise.

Using the ‘auto.arima’ function in R software, SARIMA(1, 0, 0)(1, 1, 0)4 emerged to be another
possible model to describe the data. The estimates for the parameters of the SARIMA(1, 0, 0)(1, 1, 0)4
model are ϕ1 = 0.6616 and Φ1 = −0.3702.

The SARIMA(1, 0, 0)(1, 1, 0)4 model had an AIC value of 756.7 which is less than that for SARIMA
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(1,1,1)(0,1,0)4. The SARIMA(1, 0, 0)(1, 1, 0)4 model was then subjected to diagnostic checking to
test if the residuals are white noise. The Ljung-Box test gave a p-value of 0.6499 which is greater
than 0.05 (X2 = 16.1107, df = 19, p− value = 0.6499) implying that the residuals are random. The
Jarque Bera test also gave a p-value greater than 0.05 an indication that the residuals are normally
distributed (X2 = 1.1518, df = 2, p − value = 0.5622). Shapiro-Wilk normality test produced
a p-value of 0.4646 which is greater than 0.05 also implying that the residuals are normal. The
diagnostic plots for the model is shown in Fig. 7.
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Fig. 6. ACF of residuals and Ljung-Box p-values

The two models seemed appropriate and thus to select best model, we consider the model with
minimum value of AIC and MAE. The values for the two models are shown in Table 3a and Table
3b.

Table 3a. AIC values for the 2 models

Model AIC

SARIMA(1, 1, 1)(0, 1, 0)4 819.24

SARIMA(1, 0, 0)(1, 1, 0)4 757.7

Table 3b. MAE values for the 2 models

Model ME RMSE MAE MPE MAPE MASE

SARIMA(1, 1, 1)(0, 1, 0)4 -230.95 2850.20 2259.95 -0.36 3.10 0.67

SARIMA(1, 0, 0)(1, 1, 0)4 33.73 2656.21 2052.69 -0.01 2.78 0.60

From Table 3a and Table 3b, we conclude that SARIMA(1, 0, 0)(1, 1, 0)4 is the best model for
forecasting since it has the least value of MAE. When the SARIMA(1, 0, 0)(1, 1, 0)4 model is
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Fig. 7. Diagnostic plot

expressed in form of equation 4 with the estimated coefficients of the model, we have;

xt − 0.66xt−1 − 0.63xt−4 + 0.42xt−5 − 0.37xt−8 + 0.24xt−9 = ωt (3.2)

where xt is the quarterly agricultural gross domestic product at time t and ωt is the error term.

Forecasting

Upon forecasting using the selected SARIMA(1, 0, 0)(1, 1, 0)4 model from 2012 to 2019, the plot in
Fig. 8 was obtained.

When the forecasted values from 2012 quarter 1 to 2014 quarter 1 are compared with the actual
values (Table 4), all the actual values lie within the confidence interval indicating high accuracy
level of forecasting of the model.

Fig. 9 shows a plot to compare the actual values with the forecasted values from 2012 quarter 1
to 2014 quarter 1. From the plot, it is observed that there is no much deviation of the forecasted
values (blue line) from the actual values (black dotted line) indicating that the selected model is
adequate.

Table 4. Forecasts from SARIMA(1, 0, 0)(1, 1, 0)4 model

Year Actual Point Forecast Lo 80 Hi 80 Lo 95 Hi 95

2012 Q1 78317 80369.24 76686.04 84052.45 74736.26 86002.23

Q2 74052 74872.25 70456.00 79288.50 68118.18 81626.32

Q3 93401 89471.41 84770.17 94172.66 82281.48 96661.35

Q4 97188 94368.30 89547.62 99188.97 86995.71 101740.89

2013 Q1 84873 81502.72 75811.54 87193.90 72798.81 90206.63

Q2 77741 76376.55 70343.78 82409.32 67150.22 85602.88

Q3 94428 90969.47 84793.14 97145.80 81523.59 100415.36

Q4 98470 96001.69 89763.57 102239.81 86461.31 105542.07

2014 Q1 85584 83314.31 76207.97 90420.66 72446.09 94182.54
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Forecasts from ARIMA(1,0,0)(1,1,0)[4] with drift
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Fig. 8. Forecasts from SARIMA(1, 1, 1)(0, 1, 0)4

Forecasts from ARIMA(1,0,0)(1,1,0)[4] with drift
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Fig. 9. Plot to compare actual and forecast values

4 Conclusion

The main objective of this study was to develop the best model that describes the quarterly
agricultural gross domestic product of the Kenyan economy. Box-Jenkins modeling technique was
applied for analysis. Seasonal and regular differencing were each done once to remove seasonality
and trend respectively. ACF and PACF plots for the stationary series were used to identify the
order of AR, MA, SAR and SMA terms. Based on AIC, SARIMA(1, 1, 1)(0, 1, 0)4 model seemed
to be the suitable model. Using the ‘auto.arima’ function in R software, SARIMA(1, 0, 0)(1, 1, 0)4
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emerged to be another possible model. The two were then compared based on AIC and MAE. From
the analysis, SARIMA(1, 0, 0)(1, 1, 0)4 model was identified to be the best model with the minimum
value of AIC and MAE, hence fits to the quarterly gross domestic product data from 2000 to 2014
quarter 1. The residuals of the model were found to be white noise. The SARIMA(1, 0, 0)(1, 1, 0)4
model predicted an increasing trend in the quarterly agricultural gross domestic product of Kenyan
economy with a drop from quarter 1 to quarter 2 for every year followed by increase in quarter
3 and quarter 4 of the same year. From equation (10), we conclude that the Kenyan agricultural
gross domestic product is based on the nine past agricultural gross domestic product values and the
random component. Also, the policy makers have to come up with strategies which would improve
the performance of the sector in quarter 2 of a year.

Acknowledgement

I acknowledge the Kenya National Bureau of Statistics for making the data on quarterly agricultural
gross domestic product available on their library and on their web where the data was accessed.

Competing Interests

Authors have declared that no competing interests exist.

References
[1] Government of Kenya (2009-2020). Agricultural Sector Development Strategy (ASDS).

[2] Ning W, Kuan-jiang B, Zhifa-fa Y. Analysis and forecast of Shaanxi GDP based on the ARIMA
model. Asian Agricultural Research. 2010;2(1):34–41.

[3] New Partnership for Africa’s Development (NEPAD). Comprehensive Africa Agriculture
Development Programme; 2003.

[4] Enu P. Analysis of the agricultural sector of Ghana and its economic impact on economic
growth. Academic Research International. 2014;5(4):267277.

[5] Rahman NMF. Forecasting of Boro rice production in Bangladesh: An ARIMA approach. J.
Bangladesh Agril. Univ. 2010;8(1):103-112.

[6] Usman M. Contribution of agriculture sector in the growth rate of Pakistan. Journal of Global
Economics. 2016;4(184). 6.

[7] Sayedul A, Mina MH. Time series modeling of the contribution of agriculture to GDP of
Bangladesh. European Journal of Business and Management. 2012;4(5): 111122.

[8] Udah SC, Nwachukwu IN, Nwosu AC, Mbanosar JA, Akpan SB. Analysis of contribution of
various agricultural subsectors to growth in Nigeria agricultural sector. International Journal
of Agriculture, Forestry and Fisheries. 2015;3(3):80–86.

[9] Brockwell JP, Davis AR. Introduction to time series and forecasting. Springer-Verlag New
York. 2002;169–174.

[10] Hyndman JR. Time series components; 2017.
Available:www.otexts.org/fpp/6/1

[11] Box GEP, Jenkins G. Time series analysis, forecasting and control. Holden-Day, San Francisco;
1970.

[12] Madrikadis S, Wheelright SC, Hyndman RJ. Forecasting: Methods and applications. New
York: Wiley and Sonsq; 1998.

[13] Choge M, Nyongesa K, Mulati O, Makokha L, Tireito F. Time series model of rainfall pattern
of Uasin Gishu County. IOSR Journal of Mathematics (IOSR-JM). 2016;11(5):77–84.

[14] Box GEP, Jenkins GM, Reinsel GC. Time Series analysis, forecasting and control. Prentice-
Hall, Inc., USA; 1994.

11



Musyoki et al.; AJPAS, 2(1): 1-12, 2018; Article no.AJPAS.45035

[15] Mwanga D, Ong’ala J, Orwa G. Modeling sugarcane yields in the Kenya sugar industry: A
SARIMA model forecasting approach. International Journal of Statistics and Applications.
2017;7(6):280–288.

[16] Otieno G, Mung’atu J, Orwa G. Time series modeling of tourist accomodation demands in
Kenya. Mathematics Theory and Modeling.2014;4(10):106–117.

[17] Kibunja WE, Kihoro MJ, Orwa OG, Yodah OW. Forecasting precipitation using SARIMA
model: A case study of Mt. Kenya region. Mathematical Theory and Modeling. 2014;4(11):50–
58.

[18] Ong’ala JO, Mwanga DM. Application of time series model for predicting future adoption
of sugarcane variety: KEN 83-737. Scholars Journal of Physics, Mathematics and Statistics.
2015;2:196–204.

[19] Musundi SW, M’mukiira PM, Mungai F. Modeling and forecasting Kenyan GDP using
Autoregressive Integrated Moving Average (ARIMA) models. Science Journal of Applied
Mathematics and Statistics. 2016;4(2):64–73.

——————————————————————————————————————————————–
c⃝ 2018 Musyoki et al.; This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here (Please copy paste the total link in your browser
address bar)
http://sciencedomain.org/review-history/27154

12

http://creativecommons.org/licenses/by/4.0

	Introduction
	Methods and Materials
	Results and Discussion
	Conclusion
	REFERENCES

