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Abstract 
 

In this paper, we estimate a shape parameter of the Weibull-Frechet distribution by considering the 
Bayesian approach under two non-informative priors using three different loss functions. We derive the 
corresponding posterior distributions for the shape parameter of the Weibull-Frechet distribution 
assuming that the other three parameters are known. The Bayes estimators and associated posterior               
risks have also been derived using the three different loss functions. The performance of the Bayes 
estimators are evaluated and compared using a comprehensive simulation study and a real life application 
to find out the combination of a loss function and a prior having the minimum Bayes risk and hence 
producing the best results. In conclusion, this study reveals that in order to estimate the parameter in 
question, we should use quadratic loss function under either of the two non-informative priors used in this 
study. 
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1 Introduction 
 
The Fréchet distribution is mostly used in extreme value theory and it has applications ranging from 
accelerated life testing through to earthquakes, floods, horse racing, rainfall, queues in supermarkets, wind 
speeds and sea waves. To get details on the Fréchet distribution and its applications, readers can study [1]. 
Moreover, applications of this distribution in various fields are given in Harlow [2], where it has been 
proven that the frechet distribution is used for modeling the statistical behaviour of materials properties for a 
variety of engineering applications. Nadarajah and Kotz [3] discussed the sociological models based on 
Fréchet random variables. Zaharim et al. [4] applied the Fréchet model for analysing the wind speed data. 
Mubarak [5] studied the Fréchet progressive type-II censored data with binomial removals. 
 

A random variable X is said to follow a Fréchet distribution with parameters   and  if its probability 
density function (pdf) is given by 
 

 1( ) xf x x e


 
                                                                                                               (1.1) 

 
and the corresponding cumulative distribution function (cdf) is given as 
 

 
( ) xF x e


                                                                                                                               (1.2) 

 

For 0, 0, 0x      where  and  are the scale and shape parameters of the Fréchet respectively. 
 
Many authors have developed generalisations of the Fréchet distribution. For instance, [3] pioneered the 
exponentiated Fréchet, [6] and [7] studied the beta Fréchet, [8] proposed the transmuted Fréchet, [9] 
introduced the Marshall-Olkin Fréchet, [10] defined the gamma extended Fréchet, [11] studied the 
transmuted exponentiated Fréchet, [12] introduced the Kumaraswamy-Fréchet, [13] investigated the 
transmuted Marshall-Olkin Fréchet distributions, [14] studied the transmuted complementary Weibull 
geometric distribution and [15] studied the Weibull-Fréchet distribution. Of interest to us in this paper is the 
Weibull-Fréchet distribution (WFrD) proposed by [15]. This is because the parameters, properties and 
applications of this four parameter distribution have been studied and compared with some other 
distributions and the result showed that it is more fitted compared to kumaraswamy Frechet (KFr), 
exponentiated Frechet (EFr), beta Frechet (BFr), gamma extended Frechet (GEFr), transmitted 
marshallOlkin Frechet (TMOFr) and Frechet (Fr) distributions ([15]). 
 
The probability density function (pdf) and cumulative distribution function (cdf) of the Weibull-Fréchet 
distribution are given by (for x > 0) 
 

     
1

1 1( ) 1x e xf x x xe e e







 

 
   


 

  

 
   
 

 
 

 

           (1.3) 

 
and 
 

 
  1

1
xe

F x e





 
  
 
                                                                                               (1.4) 

 

Respectively, where 0   is a scale parameter and , , 0    are the shape parameters of the Fréchet 
distribution respectively according to Afify et al. [15]. 
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There are two main philosophical approaches to statistics. The first is called the classical approach which 
was founded by Professor R.A. Fisher in a series of fundamental papers round about 1930. In the classical 
approach, the parameters are considered to be fixed while in the non-classical or Bayesian concept, the 
parameters are viewed as unknown random variables. However, in many real life situations represented by 
life time models, the parameters cannot be treated as constant throughout the life testing period ([16]; [17]; 
[18]) and hence the need for Bayesian estimation for life time models.  
 
Recently Bayesian estimation approach has received great attention by most researchers among them are Al-
Aboud [19] who studied Bayesian estimation for the extreme value distribution using progressive censored 
data and asymmetric loss. Ahmed et al. [20] considered Bayesian Survival Estimator for Weibull distribution 
with censored data. Feroze [21] discussed the Bayesian analysis of the scale parameter of inverse Gaussian 
distribution using different priors and loss function. Almutairi and Heng [22] obtained the shape parameter 
of Generalized Power Distribution (GPD) via Bayesian approach under the non-informative (uniform) and 
informative (gamma) priors using the squared error loss function. Azam and Ahmad [23] estimated the scale 
parameter of Nakagami distribution using Bayesian approach. The Bayesian estimate of the scale parameter 
of Nakagami distribution under uniform prior, inverse exponential and levy prior distributions using squared 
error, quadratic and precautionary loss functions were also obtained by Azam and Ahmad [24] and again 
Ieren and Oguntunde [25] made a Comparison between Maximum Likelihood and Bayesian Estimation 
Methods for a Shape Parameter of the Weibull-Exponential Distribution under uniform and Jeffrey’s priors 
and found that Bayesian method under uniform prior is better using quadratic loss function.  
 

The main objective of this paper is to introduce a statistical comparison between the Bayesian and Maximum 
likelihood estimation procedures for estimating the shape parameter of WFrD. The layout of the paper is as 
follow. In Section 2, we take a look at the materials and methods used which include the priors and the 
different loss functions. In Section 3, we obtained Maximum likelihood estimates of the shape parameter in 
question. Also, we estimate the shape parameter of the WFrD under uniform and Jeffrey’s priors in section 4 
and section 5 respectively using three different loss functions. The posterior risks of the estimators obtained 
under the two priors using the three different functions were derived in section 6. Finally, a comparison 
between Bayes and Maximum likelihood estimates have been made using simulation study in Section 7 with 
Some concluding remarks given in Section 8. 

 

2 Materials and Methods 
 
2.1 Priors and loss functions 

 
The Bayesian inference requires an appropriate choice of prior(s) for the parameter(s). From the Bayesian 
viewpoint, there is no clear cut way from which one can conclude that one prior is better than the other. 
Nevertheless, very often priors are chosen according to one's subjective knowledge and beliefs. However, if 
one has adequate information about the parameter(s), it is better to choose informative prior(s); otherwise, it 
is preferable to use non-informative prior(s). In this paper, we consider two non-informative priors: the 
uniform and Jeffreys’ prior.  

 
To obtain the posterior distribution of the shape parameter once the data has been observed, we apply bayes’ 
Theorem which is stated in the following form: 
 

 
   

   
0

|
|

|

L X p
p X

L X p d

 


  





                                                                     (2.1) 

where  p  and  |L X  are the prior distribution and the Likelihood function respectively. 
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The uniform prior as a non-informative prior relating to the shape parameter   is defined as: 
 

  1;0p     
                                                                                                                 (2.2)                                     

 

The posterior distribution of the shape parameter   for a given data under uniform prior is obtained from 
equation (2.1) using integration by substitution method as 
 

 

 

 

1

( 1)

1

1

1

|
1

n

xi
xi

i

n
n

n

i

e

p X
n

e e














 
 
 



  
  
 
 



        
 


                                                    (2.3) 

 

Also, the Jeffrey’s prior as a non-informative prior relating to the shape parameter  of the WFrD 
distribution is defined as: 
 

 
1

;0p  


                                                                                                                  (2.4) 

 

The posterior distribution of the shape parameter   for a given data under Jeffrey prior is obtained from 
equation (2.1) using integration by substitution method as 
 

 

 

 

1

1 1

1

1

|

n

xi
xi

i

n
n

n

i

e

p X
n

e e














 
 
 



 
   
 
 



        



                                                     (2.5) 

 
In statistics and decision theory, a loss function is a function that maps an event into a real number 
intuitively representing some cost associated with the event. Typically it is used for parameter estimation 
and that event in question is some function of the difference between estimated and true values for an 

instance of data. A Loss function,
 , SELFL  

 is that which describes the losses incurred by making an 

estimate ̂  of the true value of the parameter is α. A number of symmetric and asymmetric loss functions 
have been shown to be functional in so many studies including; [26], [27], [28], [29], [30], [31], [32], [33], 
[34], [35], [36] and [37] and so forth.  
 
With the above priors and prior distributions, we will use three loss functions to estimate the shape 
parameter of the WFrD and these loss functions are defined as follows: 
 
(a) Squared Error Loss Function (SELF) 
 

The squared error loss function relating to the scale parameter   is defined according to [24] as 
 

   
2

, SELF SELFL                                                                                                          (2.6) 

 

 where SELF
 is the estimator of the parameter   under SELF. 
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(b) Quadratic Loss Function (QLF)  
 
The quadratic loss function is defined from [23] as 
 

 
2

, QLF

QLFL
 

 


 
  
 

                                                                                                     (2.7) 

 

where QLF
 is the estimator of the parameter   under QLF. 

 

(c) Precautionary Loss Function (PLF) 
 

The precautionary loss function (PLF) according to [24] is an asymmetric loss function and is defined as 
 

 
 

2

, PLF

PLFL
 

 



                                                                                                       (2.8) 

 

where PLF
 is the estimator of the parameter   under PLF. 

 

3 Maximum Likelihood Estimation 
 
Here we present the estimation of the shape parameter of the Weibull-Fréchet distribution (WFrD) using the 

method of maximum likelihood estimation. Let nXXX ,.......,, 21  be a random sample from the WFrD with 

unknown parameter vector  , , ,
T

     . The total log-likelihood function for   is obtained from f(x) 

as follows: 
 

         
1

1

1

11 1

| , , , exp 11
n

x xi i
i

n n nn

i
ii i

L X x xie e e
 

 





 




     

 


 

 

                 

 
   

 
 

   (3.1) 

 

The likelihood function for the shape parameter, , is given by; 
 

     
1 2

1

, ,....., / exp 1xi

n
n

n
i

L x x x e





  




    
    

   
                                                                       (3.2) 

 

Let the log-likelihood function,  log |l L X , therefore 

 

 
1

log 1xi

n

i

l n e





 




 
   

 
                                                                                                              (3.3)   

 

Differentiating � partially with respect to , the shape parameter and solving for ̂  gives; 
 

 
1

1xi

n

i

l n
e






 





  
     


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 
1

ˆ

1xi

n

i

n

e











 

 
 


                                                                                                               (3.4) 

 
Hence, equation (3.4) is the estimator for the shape parameter of the Weibull-Frechet distribution obtained 
by the method of maximum Likelihood estimation. 
 

4 Bayesian Estimation of the Shape Parameter of the WFrD under 
Uniform Prior by Using the Three Different Loss Functions 

 
Here, we estimate the shape parameter of the WFrD under three loss functions using the posterior 
distribution obtained from the uniform prior in equation (2.3).  
 

4.1 Estimation using squared error loss function (SELF) 
 
The derivation of Bayes estimator using SELF under uniform prior is as given below: 
 

   |SELF E E X   
 

 

   
0

| |E X p X d   


                                                                                                    (4.1) 

 

Substituting for  |p X  in equation (4.1); we have:    

                         

 

 

 
1

1

1 11

0

1

|
1

xi

n

xi

i

n
n

i n eE X d
n

e
e










  


 
 
 





 
     
 

  
      

 


                                             (4.2) 

 
Now, using integration by substitution method in equation (4.2) and simplification, we obtained the Bayes 
estimator using SELF under uniform prior as: 
 

 
 

   
1

2
|

1 1xi

SELF
n

i

n
E X

n e





 




 
 

 
   

 


 
 

 
 

1

1
|

1xi

SELF
n

i

n
E X

e





 





 

 
 

 


                                                                                   (4.3) 

 

4.2 Estimation using quadratic loss function (QLF) 
 
The derivation of Bayes estimator using QLF under uniform prior is given below: 
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 
 

 
 

1 1

2 2

|

|
QLF

E E X

E E X

 


 

 

 
 

 
 

   1 1

0

| |E X p X d   


                                                                                               (4.4) 

 

Substituting for  |p X  in equation (4.4); we have:        

                     

 

 

 
1

1

1 11 1

0

1

|
1

xi

n

xi

i

n
n

i n eE X d
n

e
e










  


 
 
 





 
      
 

  
      

 


                                         (4.5) 

 
Using integration by substitution method in equation (4.5) and simplifying, we obtained the Bayes estimator 
using QLF under uniform prior as: 
 

 
 

 
 

 

   

1 1

2 2

1

|

|
1 1xi

QLF
n

i

E E X n

E E X
ne






 


 

 

 




  

  
       


 

 

 
 

 
   

1 1

2 2

1

| 1

|
1xi

QLF
n

i

E E X n

E E X
e






 


 

 

 




  

 
 

 


                                                            (4.6) 

 

4.3 Estimation using precautionary loss function (PLF) 
 
Similarly, the derivation of Bayes estimator under PLF using uniform prior is given below: 
 

       
1 1
2 22 2 2| |PLF E E X E X     

 
 

   2 2

0

| |E X p X d   


                                                                                                 (4.7) 

 

Substituting for  |p X  in equation (4.7); we have:    

                     

 

 

 
1

1

1 12 2

0

1

|
1

xi

n

xi

i

n
n

i n eE X d
n

e
e










  


 
 
 





 
     
 

  
      

 


                                          (4.8) 

 

Again using integration by substitution method in equation (4.8) and simplifying, we obtained the Bayes 
estimator using PLF under uniform prior as: 
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    

   

1
22

2

1

3
|

1 1xi

PLF
n

i

n
E X

ne





 




 
 

  
       


 

 

  
  

 

1
2

0.5

2

1

2 1
|

1xi

PLF
n

i

n n
E X

e





 




    
 

 
 


                                                                        (4.9) 

 

It is very clear that the relationship: PLF
> SELF

> MLE
> QLF

 holds for all parameter values and QLF
 

under the uniform prior is obviously the minimum.  
  

5 Bayesian Estimation of the Shape Parameter of the WFrD under 
Jeffrey’s Prior by Using the Three Different Loss Functions 

 
This section presents the estimation of the shape parameter of the WFrD using three loss functions and the 
posterior distribution obtained from Jeffrey’s prior in equation (2.5).  
 

5.1 Estimation using squared error loss function (SELF) 
 
The derivation of Bayes estimator under SELF using Jeffrey’s prior is as given below: 
 

   |SELF E E X   
 

 

   
0

| |E X p X d   


                                                                                                    (5.1) 

 

Substituting for  |p X  in equation (5.1); we have:     

                        

 

 

 
1

1 1

0

1

|

xi

n

xi

i

n
n

i n eE X d
n

e
e










  


 
 
 





 
   
 
 

  
      




                                                  (5.2) 

 

Using integration by substitution method in equation (5.3) and simplifying, we obtained the Bayes estimator 
using SELF under Jeffrey prior as: 
 

 

 
 

   
1

1
|

1xi

SELF
n

i

n
E X

ne





 




 
 

 
  

 


 
 

 
 

1

|

1xi

SELF
n

i

n
E X

e





 




 
 

 
 



                                                                                   (5.3) 
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5.2 Estimation using quadratic loss function (QLF) 
 

Also, the derivation of Bayes estimator under Jeffrey’s prior using QLF is given below: 
 

 
 

 
 

1 1

2 2

|

|
QLF

E E X

E E X

 


 

 

 
 

 
 

   1 1

0

| |E X p X d   


                                                                                               (5.4) 

 

Substituting for  |p X  in equation (5.4); we have:      

                       

 

 

 
1

1 11 2

0

1

|

xi

n

xi

i

n
n

i n eE X d
n

e
e










  


 
 
 





 
      
 

  
      




                                           (5.5) 

 

Using integration by substitution method in equation (5.5) and simplifying, we obtained the Bayes estimator 
using QLF under Jeffrey prior as: 
 

 
 

 
 

 

   

1 1

2 2

1

| 1

|
1 2xi

QLF
n

i

E E X n

E E X
ne






 


 

 

 



 
  

  
       


 

 

 
 

 
   

1 1

2 2

1

| 2

|
1xi

QLF
n

i

E E X n

E E X
e






 


 

 

 




  

 
 

 


                                                                  (5.6) 

 

5.3 Estimation using precautionary loss function (PLF) 
 
Similarly, the derivation of Bayes estimator under PLF using Jeffrey’s prior is given below: 
 

       
1 1
2 22 2 2| |PLF E E X E X     

 
 

   2 2

0

| |E X p X d   


                                                                                                 (5.7) 

Substituting for  |p X  in equation (5.7); we have:    

                         

 

 

 
1

1 12 1

0

1

|

xi

n

xi

i

n
n

i n eE X d
n

e
e










  


 
 
 





 
     
 

  
      




                                             (5.8) 
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Using integration by substitution method in equation (5.8) and simplifying, we obtained the Bayes estimator 
using PLF under Jeffrey prior as: 
 

    

   

1
22

2

1

2
|

1xi

PLF
n

i

n
E X

ne





 




 
 

  
      


 

 

  
   

 

1
2

1
22

1

1
|

1xi

PLF
n

i

n n
E X

e





 





 

 
 

 


                                                                            (5.9) 

 

It is also clear that MLE
 is the same as SELF

 under Jeffrey’s prior and the relationship: PLF
> SELF

>

MLE
> QLF

 holds for all parameter values and QLF
under the Jeffrey's prior appears to be the minimum. 

 

6 Posterior Risks under the Priors Using the Different Loss Functions 
 
The posterior risks of the Bayes estimators under the three loss functions from both uniform and Jeffrey’s 
prior are obtained as follows: 
 

6.1 Posterior risks under the uniform prior 
 
Using Squared Error Loss Function (SELF): 
 

Using the Squared error loss function (SELF), the posterior risk, 
 SELFp 

is defined from [24] as: 
 

      
22 | |SELFP E X E X   

                                                                                 (6.1) 
 

And it is obtained as 
 

 
     

 

2

2

1

2 1 1

1xi

SELF
n

i

n n n
P

e










   


  
     


                                                                                (6.2) 

Using Quadratic Loss Function (QLF) 

Using the Quadratic loss function (QLF), the posterior risk, 
 QLFp 

is defined from [24] as: 
 

 
  
 

2
1

2

|
1

|
QLF

E X
P

E X









 

                                                                                                (6.3) 
 

Therefore, the posterior risk under uniform prior using the Quadratic loss function is given as: 
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  1
QLFP

n
 

                                                                                                                              (6.4) 
 

Precautionary Loss Function (PLF) 
 

Using the Precautionary loss function (PLF), the posterior risk, 
 PLFp 

is defined from [24] as: 
 

    2 |PLF PLFP E X   
                                                                                           (6.5) 

 

And calculated to be: 
 

 
     

 

1
2

1

2 1 1
2

1xi

PLF
n

i

n n n
P

e










 
     

  
      


                                                                         (6.6) 

 

6.2   Posterior risks under Jeffrey’s prior 
 
The posterior risks of the Bayes estimators under the three loss functions from the Jeffrey’s prior are as 
follows:  
 
Using Squared Error Loss Function (SELF) 
 

Using the Squared error loss function (SELF), the posterior risk, 
 SELFp 

under Jeffrey’s prior is defined 
from [24] as: 
 

      
22 | |SELFP E X E X   

                                                                                 (6.7) 
 
Therefore, the posterior risk under Jeffrey’s prior using the squared error loss function is: 
 

 
 

2

1

1xi

SELF
n

i

n
P

e











  

     


                                                                                           (6.8) 
 
Using Quadratic Loss Function (QLF) 
 

Using the Quadratic loss function (QLF), the posterior risk, 
 QLFp 

under Jeffrey’s prior is defined from 
[24] as: 
 

 
  
 

2
1

2

|
1

|
QLF

E X
P

E X









 

                                                                                                (6.9) 
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Hence, it is obtained as:             
                  

  1

1
QLFP

n
 

                                                                                                                      (6.10) 
 
Using Precautionary Loss Function (PLF) 
 

Using the Precautionary loss function (PLF), the posterior risk, 
 PLFp 

is defined as: 
 

    2 |PLF PLFP E X   
                                                                                          (6.11) 

 
Hence, obtained as: 
 

 
  

 

1
2

1

1
2

1xi

PLF
n

i

n n n
P

e










 
   

  
      


                                                                                         (6.12) 

 
Table 6.1. A summary of the expressions for MLE, bayes estimators and posterior risks under uniform 

prior and Jeffrey’s prior is as follows: 
 

PRIORS MLE SELF QLF PLF 

Estimators 

UNIFORM 

 
1

1xi

n

i

n

e







 
 

 


 

 
1

1

1xi

n

i

n

e









 
 

 


 

 
1

1

1xi

n

i

n

e









 
 

 


 

  

 

0.5

1

2 1

1xi

n

i

n n

e







   

 
 

 


 
JEFFREY’S 

 
1

1xi

n

i

n

e







 
 

 


 

 
1

1xi

n

i

n

e







 
 

 


 

 
1

2

1xi

n

i

n

e









 
 

 


 

   
 

1
2

1

1

1xi

n

i

n n

e









 
 

 


 
Posterior risks 

UNIFORM       

 

2

2

1

2 1 1

1xi

n

i

n n n

e







   

  
     


 

1

n  
      

 

1
2

1

2 1 1
2

1xi

n

i

n n n

e







 
     
 

      


 
JEFFREY’S  

 
2

1

1xi

n

i

n

e







  
     


 

1

1n     
 

1
2

1

1
2

1xi

n

i

n n n

e







 
   
 

      

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7 Comparison of Estimation Methods 
 

7.1 Comparison based on simulated dataset 
 
We used a package in R software to generate random sample of size n = (20, 45, 85, 120) from WFrD by 

using 1.0  , 
0.5 

, 1.0   and 1.5  ; 1.0  , 
2.5 

, 0.5   and 0.5   and 

1.0  , 
1.0 

, 2.5   and 0.5  . The following tables present the results of our simulation 
study by listing the estimates of the shape parameter under the appropriate estimation methods such as the 
Maximum Likelihood Estimation (MLE), Squared Error Loss Function (SELF), Quadratic Loss Function 
(QLF) and Precautionary Loss Function (PLF) under both Uniform and Jeffrey prior. 
 

Table 7.1. Estimates of the shape parameter, their biases, mean squared errors and posterior risks 

based on the replications and sample sizes where 1.0  , 
0.5 

, 1.0   and 1.5   
 
Sample  
sizes 

Measures MLE Uniform prior Jeffrey’s prior 
SELF QLF PLF SELF QLF PLF 

20 Estimate 4.1239 4.3301 3.9177 4.4320 4.1239 3.7115 4.2257 
BIAS 5.3358 5.6030 5.0685 5.7351 5.3358 4.8012 5.4678 
MSE 4.3303 4.775 3.9076 5.0023 4.3303 3.5066 4.5471 

 Risk  8928.4 0.05 20.3797 8503.2 0.0526 20.3680 
45 Estimate 2.6611 2.7203 2.6020 2.7497 2.6611 2.5429 2.6905 

BIAS 1.9517 1.9951 1.9083 2.0166 1.9517 1.8649 1.9732 
MSE 5.2313 5.4665 5.0012 5.5853 5.2313 4.7765 5.3476 

 Risk  160867.3 0.0222 58.8185 157370.2 0.0227 58.8115 
85 Estimate 4.2704 4.3206 4.2202 4.3457 4.2704 4.1699 4.2955 

BIAS 5.2844 5.3465 5.2222 5.3775 5.2844 5.1599 5.3153 
MSE 3.6619 3.7486 3.5763 3.7922 3.6619 3.4916 3.7050 

 Risk  217069.5 0.0118 50.0949 214545.4 0.0119 50.0932 
120 Estimate 8.1260 8.1937 8.0583 8.2275 8.1260 7.9905 8.1598 

BIAS 9.0401 9.1155 8.9648 9.1531 9.0401 8.8894 9.0777 
MSE 1.0284 1.0456 1.0113 1.0543 1.0284 0.9944 1.0370 

 Risk  NaN NaN Inf NaN NaN Inf 

 
From Table 7.1, we can see that both MLE and SELF (under Jeffrey prior) have the same estimate just as 
found in the derivations as well as their bias and MSE irrespective of the variation in the samples indicating 
that the two methods have the same performance considering this shape parameter. The table clearly shows 
that using the QLF under both uniform and Jeffrey’s prior produces the best results and hence the best 
approach for estimating the shape parameter of the WFrD irrespective of the different sample sizes. 
 
Table 7.2 also gives a similar pattern of the result found in table 7.1 with similar estimates, biases and MSE 
for the MLE and SELF (under Jeffrey’s prior) with QLF (under Jeffrey’s prior) having the best performance 
(under Jeffrey’s prior) as well as the QLF under uniform prior. Again these performances are found to be 
consistent irrespective of the different sample sizes and the parameter values used. 

 
 

The above table (Table 7.3) also shows the uniform and Jeffrey’s priors with QLF resulting in better 
estimates for the shape parameter, however, there are some variations in the pattern of the measures or 
values for bias and MSE which are as a result of the increase in the value of the one and only scale 

parameter, 2.5  ,and hence we say that increasing the value of the scale parameter,  affects the nature 
of our performance measures (increasing MSE instead of decreasing) though not the entire performance of 
the estimators and so looking at all the results presented in the tables, we can conclude that Bayes estimates 
using Quadratic loss function under Jeffrey’s and uniform priors are associated with minimum risks, biases 
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and MSEs and are better when compared to those obtained from MLE, PLF and SELF under Jeffrey’s and 
uniform priors irrespective of the parameter values and the allocated sample sizes of n=20, 45, 85 and 120. 

 
Table 7.2. Estimates of the shape parameter, their biases and mean squared errors and the posterior 

risks based on the replications and sample sizes where 1.0  , 
2.5 

, 0.5   and 0.5   
 

Sample  
sizes 

Measures MLE Uniform prior Jeffrey’s prior 
SELF QLF PLF SELF QLF PLF 

20 Estimate 6.7477 7.0852 6.4103 7.2518 6.7477 6.0729 6.9143 
BIAS 8.6732 9.1068 8.2395 9.3211 8.6732 7.8058 8.8873 
MSE 5.1344 5.6607 4.6338 5.9302 5.1344 4.3588 5.3911 

 Risk  2390384 0.05 333.46 2276556 0.0526 333.27 
45 Estimate 5.7931 5.9219 5.6644 5.9859 5.7931 5.5357 5.8571 

BIAS 2.9610 3.0268 2.8952 3.0595 2.9610 2.8294 2.9937 
MSE 4.7391 4.9520 4.5308 5.0597 4.7391 4.1272 4.8444 

 Risk  7623573589 0.0222 12804.4 7457843728 0.0227 12802.87 
85 Estimate 1.6114 1.6303 1.5924 1.6398 1.6114 1.5735 1.6208 

BIAS 2.3176 2.3449 2.2903 2.3585 2.3176 2.2631 2.3312 
MSE 5.3708 5.4979 5.2451 5.5618 5.3708 5.1210 5.4339 

 Risk  30907082847 0.0118 18902.65 30547698162 0.0119 18902.01 
120 Estimate 6.9325 6.9902 6.8747 7.0190 6.9325 6.8169 6.9613 

BIAS 3.2719 3.2992 3.2447 3.3128 3.2719 3.2174 3.2855 
MSE 1.0704 1.0884 1.0527 1.0973 1.0704 1.0351 1.0794 

 Risk  NaN NaN Inf NaN NaN Inf 

 
Table 7.3. Estimates of the shape parameter, their biases and mean squared errors and the posterior 

risks based on the replications and sample sizes where 1.0  , 1.0  , 2.5   and 0.5   
 

Sample  
sizes 

Measures MLE Uniform prior Jeffrey’s Prior 
SELF QLF PLF SELF QLF PLF 

20 Estimate 1.1478 1.2052 1.0904 1.2336 1.1478 1.0330 1.1762 
BIAS 1.1347 1.1914 1.0780 1.2195 1.1347 1.0212 1.1627 
MSE 1.2767 1.4076 1.1522 1.4746 1.2767 1.0341 1.3406 

 Risk  6916977 0.05 567.24 6587597 0.0526 566.92 
45 Estimate 2.1914 2.2400 2.1426 2.2643 2.1914 2.0940 2.2156 

BIAS 1.7460 1.7848 1.7072 1.8041 1.7460 1.6684 1.7653 
MSE 2.9566 3.0895 2.8267 3.1566 2.9566 2.6996 3.0223 

 Risk  1.09083e+13 0.0222 484349 1.067117e+
13 

0.0227 484291.4 

85 Estimate 1.4828 1.5002 1.4653 1.5089 1.4828 1.4479 1.4915 
BIAS 3.0022 3.0376 2.9669 3.0552 3.0022 2.9316 3.0198 
MSE 9.0134 9.2267 8.8026 9.3340 9.0134 8.5942 9.1194 

 Risk  26169876366 0.0118 17393.8 258655754
78 

0.0119 17393.22 

120 Estimate 1.3414 1.3526 1.3302 1.3581 1.3414 1.3190 13470 
BIAS 4.2384 4.2738 4.2031 4.2914 4.2384 4.1678 4.2560 
MSE 1.7964 1.8265 1.7666 1.8416 1.7964 1.7371 1.8114 

 Risk  NaN NaN Inf NaN NaN Inf 

 

7.2 Comparison based on real life data application 
 
In this section, a package in R software was used to generate random sample of size n = (20, 45, 85, 120) 
from a real life data which represents the remission times (in months) of 128 bladder cancer patients by 

using 1.0  , 0.5  , 1.0   and 1.5  ; 1.0  , 2.5  , 0.5   and 0.5   and 

1.0  , 
1.0 

, 2.5   and 0.5  . The following tables present the results of our study by 
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presenting the estimates of the shape parameter under the appropriate estimation methods considered in the 
previous section. This data has previously been used by Lee and Wang [38] and Rady et al. [39]. It is as 
follows:  0.080, 0.200,  0.400, 0.500, 0.510, 0.810, 0.900, 1.050, 1.190, 1.260, 1.350, 1.400, 1.460, 1.760, 
2.020, 2.020, 2.070, 2.090, 2.230, 2.260, 2.460, 2.540, 2.620, 2.640, 2.690, 2.690, 2.750, 2.830, 2.870, 
3.020, 3.250, 3.310, 3.360, 3.360, 3.480, 3.520, 3.570, 3.640, 3.700, 3.820, 3.880, 4.180, 4.230, 4.260, 
4.330, 4.340, 4.400, 4.500, 4.510, 4.870, 4.980, 5.060, 5.090, 5.170, 5.320, 5.320, 5.340, 5.410, 5.410, 
5.490, 5.620, 5.710, 5.850, 6.250, 6.540, 6.760, 6.930, 6.940, 6.970, 7.090, 7.260, 7.280, 7.320, 7.390, 
7.590, 7.620, 7.630, 7.660, 7.870, 7.930, 8.260, 8.370, 8.530, 8.650, 8.660, 9.020, 9.220, 9.470, 9.740, 
10.06, 10.34, 10.66, 10.75, 11.25, 11.64, 11.79, 11.98, 12.02, 12.03, 12.07, 12.63, 13.11, 13.29, 13.80, 
14.24, 14.76, 14.77, 14.83, 15.96, 16.62, 17.12, 17.14, 17.36, 18.10, 19.13, 20.28, 21.73, 22.69, 23.63, 
25.74, 25.82, 26.31, 32.15, 34.26, 36.66, 43.01, 46.12, 79.05. 
 

Table 7.4. Estimates of the shape parameter, their Biases, Mean Squared Errors and posterior risks 

based on the real life data for 1.0  , 0.5  , 1.0   and 1.5   
 

Sample  
sizes 

Measures MLE Uniform prior Jeffrey’s prior 
SELF QLF PLF SELF QLF PLF 

20 Estimate 2.3580 2.4759  2.2401  2.5342 2.3580  2.1222  2.4162  
BIAS 2.3580 2.4759 2.2401 2.5342 2.3580 2.1222 2.4162  
MSE 5.5601 6.1300  5.0180  6.4219  5.5601  4.5037 5.8381  

 Risk  2919086139  0.05  11652.89  2780082037  0.0526  11646.2  
45 Estimate 5.3055  5.4234  5.1876  5.4820  5.3055  5.0697  5.3641  

BIAS 5.3055 5.4234 5.1876 5.4820  5.3055 5.0697 5.3641  
MSE 2.8148  2.9413  2.6911  3.0053 2.8148  2.5702 2.8774 

 Risk  6394188685  0.0222  11726.61  6255184583  0.0227  11725.22  
85 Estimate 1.0022 1.0139  0.9904  1.0198  1.0022 0.9786 1.0080  

BIAS 1.0021  1.0139  0.9904 1.0198  1.0021  0.9786 1.0080  
MSE 1.0043  1.0281 0.9808  1.0400  1.0043  0.9576 1.0161  

 Risk  11954352758  0.0118 11755.92  11815348656 0.0119  11755.53  
120 Estimate 1.4148  1.4266  1.4030  1.4325 1.4148  1.3912  1.4207 

BIAS 1.4148 1.4266 1.4030  1.4325 1.4148  1.3912  1.4207 
MSE 2.0017 2.0352 1.9684  2.0520 2.0017 1.9355 2.0183  

 Risk  NaN  NaN Inf NaN NaN Inf 

 
Table 7.5. Estimates of the shape parameter, their Biases, Mean Squared Errors and posterior risks 

based on the real life data for 1.0  , 
2.5 

, 0.5   and 0.5   

 
Sample  
sizes 

Measures MLE Uniform prior Jeffrey’s prior 
SELF QLF PLF SELF QLF PLF 

20 Estimate 1.3172 1.3830  1.2513  1.4156 1.3172 1.1855 1.3497  
BIAS 1.3172 1.3830  1.2513  1.4156 1.3172 1.1854  1.3497 
MSE 1.7349  1.9128 1.5658 2.0038  1.7349  1.4053 1.8217 

 Risk  910849437  0.05  6509.287  867475655  0.0526  6505.55  
45 Estimate 2.9636  3.0295  2.8978 3.0623 2.9636  2.8319  2.9964 

BIAS 2.9636  3.0295 2.8978 3.0622  2.9636  2.8319  2.9964 
MSE 8.7831  9.1778  8.3971  9.3774 8.7831  8.0198 8.9783  

 Risk  1995194006  0.0222  6550.469  1951820223  0.0227  6549.69  
85 Estimate 5.5980 5.6638  5.5321  5.6967 5.5980 5.4663 5.6308  

BIAS 5.5980 5.6638  5.5321  5.6967 5.5980 5.4663 5.6308  
MSE 3.1337  3.2079  3.0604  3.2452 3.1337  2.9880 3.1706  

 Risk  3730145315  0.0118 6566.843  3686771532  0.0119  6566.62  
120 Estimate 7.9030 7.9689  7.8372 8.0018 7.9030  7.7713  7.9359  

BIAS 7.9030 7.9689  7.8372 8.0018 7.9030  7.7713  7.9359  
MSE 6.2458  6.3503  6.1421  6.4028  6.2458  6.0393 6.2979 

 Risk  NaN  NaN  Inf  NaN NaN Inf 
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Table 7.6. Estimates of the shape parameter, their Biases, Mean Squared Errors and posterior risks 

based on the real life data for 1.0  , 
1.0 

, 2.5   and 0.5   
 

Sample  
sizes 

Measures MLE Uniform prior Jeffrey’s prior 
SELF QLF PLF SELF QLF PLF 

20 Estimate 1.2216 1.2827 1.1605  1.3129 1.2216 1.0994  1.2518 
BIAS 1.2216 1.2827 1.1605  1.3129  1.2216 1.0994  1.2518 
MSE 1.4923 1.6452  1.3468 1.7236  1.4923  1.2087  1.5669 

 Risk  7.834444e+14  0.05  6036903  7.461375e+14  0.0526  6033437  
45 Estimate 2.7486 2.8097 2.6875 2.8400  2.7486 2.6264  2.7789  

BIAS 2.7486 2.8097 2.6875 2.8400  2.7486 2.6264  2.7789  
MSE 7.5546  7.8941  7.2226  8.0657  7.5546  6.8980  7.7225  

 Risk  1.716116e+15  0.0222 6075096  1.678809e+15  0.0227  6074374  
85 Estimate 5.1917  5.2528  5.1307 5.2833 5.1917  5.0696 5.2222 

BIAS 5.1917  5.2528  5.1307 5.2833 5.1917  5.0696 5.2222 
MSE 2.6954  2.7592  2.6324 2.7913  2.6954  2.5701 2.7271  

 Risk  3.208391e+15  0.0118 6090282  3.171084e+15  0.0119  6090076  
120 Estimate 7.3295  7.3906  7.2684  7.4211 7.3295  7.2074 7.3600 

BIAS 7.3295  7.3906  7.2684  7.4211 7.3295  7.2074 7.3600 
MSE 5.3722 5.4621  5.2830  5.5072  5.3722 5.1946  5.4170 

 Risk  NaN  NaN  Inf  NaN NaN Inf 

 
Tables 7.4, 7.5 and 7.6 present results of our comparison based on real life data and it confirms the results of 
the simulation study which reveal that the estimators obtained using QLF under both uniform and Jeffrey’s 
priors are the best irrespective of the different parameter values and the sample sizes. 
 

8 Summary and Conclusions  
 
In this paper, we obtain Bayesian estimators of the shape parameter of WFrD. The Posterior distributions of 
this parameter are derived by using Uniform and Jeffrey’s priors. Bayes estimators and their risks have been 
obtained by using three different loss functions under the two prior distributions. The three loss functions 
taken up are Squared Error Loss Function (SELF), Quadratic Loss Function (QLF) and Precautionary Loss 
Function (PLF). The performance of these estimators is assessed on the basis of their relative posterior risks, 
Biases and Mean Square Errors. The performance of the different estimators has been evaluated under a 
detailed simulation study and real life application. The study proposed that in order to estimate this shape 
parameter of the WFrD, the use of Quadratic loss function under Jeffrey’s prior and secondly uniform prior 
can be preferred to produce the best results irrespective of the values of the parameters and the different 
sample sizes. However, it should be noted that as sample size increases (n>100: n=120) the results are not 
valid in case of estimators as indicated by values (NAN and Inf) of the posterior risks. 
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