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Abstract
In this paper a ring means a commutative ring with identity element and S is a multiplicatively
closed subset of the studied ring whose elements are regular. Inspiring from the work of J. Arnold
about strongly finite type rings and D. E. Rush,s about noetherian spectrum rings, we introduce
two types of rings that are S-strongly finite type rings and S-noetherian spectrum rings. We give
some characterizations of these rings and we illustrate them by many examples.
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1 Introduction

In this work R is a commutative ring with identity, I is an ideal and S is a multiplicative (closed
under multiplication) subset of R whose elements are regular. Many classic concepts from ideal
theory are generalized to S-concepts for instance see [1], [2], [3], [4], [5]. In [6], Anderson et al.
defined the ideal I to be an S-finite ideal, if there exists an element s of S and a finitely generated
ideal J satisfying: sI ⊆ J ⊆ I. When J is principal, I is said to be S-principal. Then they defined
the S-noetherian ( respectively, the S-principal) ring to be the ring whose all ideals are S-finite (
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respectively, S-principal). In [7], Arnold introduced the concept of strongly finite type ideal of R.
The ideal I is said to be a strongly finite type ideal (shortly, SFT ideal ) if there exists a finitely
generated ideal J ⊆ I and n ∈ N∗ such that xn ∈ J,∀x ∈ I. A ring whose all ideals are SFT ideals
is called a strongly finite type ring (shortly, SFT ring). In the same mode, We define the ideal I to
be an S-Strongly finite type ideal (in short S-SFT ideal) if there exists an S-finite ideal J ⊆ I and
n ∈ N∗ such that xn ∈ J,∀x ∈ I. A ring whose all ideals are S-SFT ideals is called an S-strongly
finite type ring (in short, S-SFT ring). Many characterizations and examples for this type of rings
are given. We show that a homomorphic image of an S-SFT ring is an f(S)-SFT ring, f is the ring
homomorphism. We generalize the results of Arnold of [7] and for SFT ideals and SFT-rings to
S-SFT cases. We introduce the concept of S-radical ideal and we define the S-radical of an ideal.
We introduce and study the class of S-noetherian spectrum rings.

2 S-SFT rings

Definition 2.1. Let R be a commutative ring and S be a multiplicative subset of it. Let I be an
ideal of R.

1. [According to [6]] We say that I is an S-finite ideal if there exist a finitely generated ideal J
of R and an s ∈ S satisfying sI ⊆ J ⊆ I.

2. We say that I is an S-strongly finite type ideal , in short S-SFT ideal, if it contains an
S-finite ideal F of R and there exists n ∈ N∗ such that ∀x ∈ I, xn ∈ F .

Remark 2.2. Let R, I and S be as in the Definition 2.1.

1. If I is S-finite or SFT ideal then it is an S-SFT ideal.

2. If T is a multiplicative set containing S then I is S-SFT ideal implies that it is a T -SFT
ideal.

3. I is an SFT ideal if and only if it is an U(R)-SFT ideal if and only if it is an E-SFT ideal
for some multiplicative E set of U(R). U(R) denotes the units set of R.

4. If I ∩ S ̸= ∅ then I is a S-SFT ideal.

Proof:

1. Immediately, from Definition 2.1.

2. if I is an SFT ideal then there exists n ∈ N∗ and J ⊆ I finitely generated such that
∀x ∈ I, xn ∈ J . Since J is finitely generated then it is S-finite and satisfies 2.1.2. Then I is
an S-SFT ideal.

3. Since each S-finite ideal is a T -finite ideal, we get immediately this result.

4. It is obvious that an ideal J is finitely generated iff it is U(R)-finite iff it is E-finite because
sJ = J,∀s ∈ U(R).

Definition 2.3. Let R be a commutative ring and S a multiplicative set of it.

1. [According to [6]] R is said to be S-noetherian if all its ideals are S-finite.

2. We define R to be S-strongly finite type ring (in short S-SFT ring ) if all its ideals are S-SFT
ideals.

Immediately from Remark 2.2, we have.

Remark 2.4. Let R, I and S be as in Definition 2.1.
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1. If R is an S-noetherian or an SFT ring then it is an S-SFT ring.

2. If T is a multiplicative set containing S then all S-SFT rings are T -SFT rings.

3. R is an SFT ring if and only if it is an U(R)-SFT ring if and only if it is an E-SFT ring
for some multiplicative set E of U(R).

Lemma 2.5. Let R, I and S be as in Definition 2.1. For n ∈ N∗ we denote by (I, n) the ideal of
R that is generated by {xn, x ∈ I}. The following are equivalent:

1. I is an S-SFT ideal.

2. There exists n ∈ N∗ such that (I, n) is S-finite.

3. There exists n ∈ N∗, s ∈ S and J ⊆ I finitely generated such that ∀x ∈ I, sxn ∈ J .

Proof: 1.⇒ 2. If I is an S-SFT ideal, then ∃s ∈ S, n ∈ N∗, F an ideal and J finitely generated
such that sF ⊆ J ⊆ F ⊆ I and xn ∈ F,∀x ∈ I. Then (I, n) ⊆ F and we get s(I, n) ⊆ J ⊆ (I, n) ,
hence (I, n) is S-finite.
2.⇒ 3. , 3.⇒ 2 . and 2.⇒ 1. are immediate.

Example 2.6. Let K be a field , {Xi, i ∈ N} be a set of indeterminates over K. Let R :=
K[Xi, i ∈ N], S be a multiplicative set of it and M = (Xi, i ∈ N) the ideal of polynomials with
zero constant term. Then M is an S-SFT ideal iff M ∩ S ̸= ∅. The if part is obvious. For
the only if part, take S such that M ∩ S = ∅ and suppose that M is an S-SFT ideal. Then
there exists f1, ..., fr ∈ M,n ∈ N∗ and s ∈ S /∀f ∈ M, sfn ∈ (f1, ..., fr). Since s, f1, ..., fr are
polynomials then they use only finite number of variables, let them be X1, ..., Xt. Xt+1 ∈ M then
sXn

t+1 = P (X1, ..., Xt) ∈ (f1, ..., fr). Since P (X1, ..., Xt) ∈ M , then its constant term is zero then ,
by taking X1 = .... = Xt = 0 we get s(0, ..., 0)Xn

t+1 = P (0, ..., 0) = 0.That is s(0, ..., 0) = 0, then s
has zero constant term. Consequently, s ∈ M then we get a contradiction, since M ∩ S = ∅.

Definition 2.7. If S is a multiplicative set of R, the set S := {x ∈ R/∃y ∈ R, xy ∈ S} is called
the saturation of S.

Proposition 2.8.

1. An ideal I is an S-SFT ideal if and only if it is an S̄-SFT ideal.

2. A ring R is an S-SFT ring if and only if it is S̄-SFT ring.

Proof:

1. Assume that I is an S-SFT ideal. Since S ⊆ S̄, by Remark 2.2. 2, I is an S̄-SFT ideal.
Conversely, if I is an S̄-SFT ideal then, Lemma 2.5, there exist s ∈ S̄, n ∈ N∗ and a finitely
generated ideal J ⊆ I such that ∀x ∈ I, sxn ∈ J . s ∈ S̄ then ∃y ∈ R/ ys ∈ S and then
∀x ∈ I, (ys)xn ∈ J . Consequently, I is S-SFT ideal.

2. immediatly from 1.

Theorem 2.9. Let A , B be two rings, S be a multiplicative set of A and f : A −→ B be a ring
homomorphism such that for all x ∈ S, f(x) is regular in the ring f(A). If A is an S-SFT ring
then f(A) is an f(S)-SFT ring.

Proof: It is clear that f(S) is multiplicative set of the ring f(A). If H is an ideal of f(A) then
f−1(H) := {x ∈ A/ f(x) ∈ H} is an ideal of A. Then it is an S-SFT ideal. By [Lemma 2.5], there
exists s ∈ S, n ∈ N∗, J ⊆ f−1(H) finitely generated ideal such that sxn ∈ J,∀x ∈ f−1(H). Then
∀y ∈ H, ∃x ∈ f−1(H)/ y = f(x). We have f(s)f(x)n ∈ f(J) ⊆ H since f(J) is finitely generated
then H is an f(S)-SFT ideal.
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Corollary 2.10. Let R be a ring and S be a multiplicative set of it.

Let I be an ideal of R disjoint from S . If R is an S-SFT ring then R/I is an S/I-SFT ring. Here
S/I = {s+ I, s ∈ S}.

Proof: 1. It is clear that R/I is a homomorphic image of R and the same homomorphism send S
to S/I. According to Theorem 2.9, we get the result.

A valuation ring is integral domain whose ideals are totally ordered by inclusion.

Proposition 2.11. Let D be a valuation ring and S be a multiplicative set of it . Let I be an ideal
disjoint from S. The following are equivalent:

1. I is an S-SFT ideal.

2. I2 ̸= I.

3. I is an SFT ideal

Proof: 1.⇒ 2. Assume that I is an S-SFT ideal of D disjoint from S. Suppose I2 = I. Since I is an
S-SFT ideal, then there exist s ∈ S, n ∈ N∗ and J ⊆ I finitely generated such that sxn ∈ J,∀x ∈ I.
D is a valuation ring then J is principal. Then there exists s ∈ S, n ∈ N∗ and a ∈ I such that
sxn ∈ aD, ∀x ∈ I then sIn ⊆ aD. Since s ̸∈ I, then sI ⊆ aD ⊆ I ⊆ sD(∗) then sI2 ⊆ aI ⊆ I2 ⊆ sI
then sI = aI = I. By (*), I = aD then aD = a2D. Since D is a domain then we get a invertible
and then I = D , contradiction. Then I2 ̸= I.

2.⇒ 3. if I2 ̸= I let a ∈ I \ I2 then I2 ⊆ aD then I is an SFT ideal.
3.⇒ 1. is immediate.
The following is a generalization of Lemma 2.1 of [8].

Lemma 2.12. Let I1 and I2 be two S-SFT ideals of a ring R. Let J be an ideal of R such that
I1I2 ⊆ J ⊆ I1 ∩ I2 then J is also an S-SFT ideal of R.

Proof: Since Ii is an S-SFT ideal then there exist si ∈ S, ni ∈ N∗ and Ji a finitely generated ideal
such that ∀x ∈ Ii, six

ni ∈ Ji ⊆ Ii. Consequently, ∀x ∈ J, s1s2x
n1+n2 ∈ J1J2 ⊆ I1I2 ⊆ J . Since

J1J2 is finitely generated we conclude that J is an S-SFT ideal.

Proposition 2.13. R is an S-SFT ring if and only if all its prime ideals(disjoint from S) are
S-SFT ideals

Proof: Suppose that R is not an S-SFT ring. Then the set of non S-SFT ideals is nonempty. By
Zorn Lemma there exists a maximal element P in the set of non S-SFT ideals. If P is not prime
then there exists x, y ∈ R \ P such that xy ∈ P then P + xR and P + yR are S-SFT ideals. Since
(P +xR)(P + yR) ⊆ P ⊆ (P +xR)∩ (P + yR), then P is S-SFT, by Lemma 2.12. This means that
P is prime. And this contradicts the fact all primes are S-SFT ,s. We conclude that if all primes
are S-SFT ,s then so is R. The converse, is immediate.

Let R be a ring and K its total quotient ring. An overring R1of R is a ring satisfying R ⊆ R1 ⊆ K.
R1 is said to be a flat overring of R if it is flat as an R-module. The following definition is
given in [9]. Let S be a multiplicative (i. e. multiplicatively closed) set of ideals of R and set
RS := {x ∈ K/ xA ⊆ R for some A ∈ S}. Then RS is an overring of R called the S-transform of
R.

Theorem 2.14. [Theorem 1.3 [9]] R1 is flat overring of R iff R1 = RT , T is multiplicative set of
ideals of R.
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Theorem 2.15. Let R1 be a flat overring of R. If R is an S-SFT ring then so is R1. In particular,
RS is an S-SFT.

Proof: Let Q be a prime ideal of R1. then P := Q∩R is a prime ideal of R. Since R is S-SFT then
so is P and then there exist an S-finite ideal F ⊆ P of R and n ∈ N∗ such that: ∀p ∈ P, pn ∈ F .

Let q ∈ Q ⊆ R1 = RT , there exists A ∈ T such qA ⊆ R and then qA ⊆ R ∩ Q = P . Then
∀a ∈ A, qnan ∈ F . Let J = {x ∈ R1/q

nx ∈ FR1}. It is easy to check that J is an ideal of R1.

Remark that AR1 ⊆
√
J . According to Theorem 2.14 AR1 = R1 and then R1 =

√
J so R1 = J .

Consequently, qn ∈ FR1 ⊆ Q. Since FR1 is S-finite then Q is an S-SFT ideal of R1.

Example 2.16. If D is a non SFT domain and S = D \{0} then DS = q.f{D} is an SFT domain
(noetherian) but D is not S-SFT (not SFT). This example shows that the converse of Theorem
2.15 is false.

3 Ring with S-noetherian spectrum

As it is well known a Noetherian spectrum ring is a ring satisfying the ascending chain condition
on radical ideals equivalently it is a ring whose primes are radicals of finite type ideals [See [10]].
In this paragraph, we generalize this concept to a S-concept and we give some results about it.

Notation: We denote by Spec(R,S) the set of all prime ideals of R disjoint from S.

Definition 3.1. Let S be a multiplicative set of the ring R and I be one of its ideals.

1. We define the S-radical of I and we denote it by S
√
I as the following:

• S
√
I =

∩
I⊆P∈Spec(R,S)

P , if S ∩ I = ∅.

• S
√
I = R otherwise.

2. I is said to be S-radical if
S
√
I = I.

3. R is called S-noetherian spectrum ring if it satisfies the ascending chain condition (acc) on
S-radicals.

4. I is said to be S-radically finite if there exists a finitely generated ideal J ⊆ I of R such that
S
√
I =

S
√
J .

R[[X]] denotes the formal power series ring in one indetermite X with coefficients in R. If I is an

ideal of R then I[[X]] is the ideal whose elements have coefficients in I. I.R[[X]] = {
∑

finite

xifi;xi ∈

I, fi ∈ R[[X]]} it is an ideal of R[[X]]. If I is finitely generated then I[[X]] = I.R[[X]].

Remark 3.2.

1. ∀P ∈ Spec(R,S), P is S-radical.

2. ∀P ∈ Spec(R,S), P [[X]] ∈ Spec(R[[X]], S) and then is S-radical of R[[X]].

3. ∀s ∈ S, I ideal of R,
S
√
sI =

S
√
I.

4. Spec(R, S̄) = Spec(R,S) and ∀I ideal of R,
s̄
√
I =

S
√
I.

Proof:

1. It is immediate.
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2. Since P is prime disjoint from S then P [[X]] is prime of R[[X]] disjoint from S and then, by
1. it is S-radical of R[[X]].

3. If I ∩ S ̸= ∅ then so is sI then
S
√
sI = R =

S
√
I. Otherwise,

S
√
sI =

∩
sI⊆P∈Spec(R,S)

P , here

each P is prime not containing s then sI ⊆ P ⇔ I ⊆ P . And then
S
√
sI =

∩
sI⊆P∈Spec(R,S)

P =∩
I⊆P∈Spec(R,S)

P =
S
√
I.

Proposition 3.3. Let S ⊆ T be tow multiplicative sets of the ring R. For all I and J ideals of R,
we have the following.

1. I ⊆ S
√
I.

2.
√
I =

S
√
I, ∀I ideal of R iff S ⊆ U(R).

3. I ⊆ J ⇒ S
√
I ⊆ S

√
J

4.
S
√
I ⊆ T

√
I.

5.
S

√
S
√
I =

S
√
I.

6.
T

√
S
√
I =

T
√
I.

7.
S

√
T
√
I =

T
√
I.

8.
S
√
IJ =

S
√
I ∩ J =

S
√
I ∩ S

√
J . In particular,

S
√
In =

S
√
I, for n ∈ N∗.

Proof:

1. Immediately from the definition.

2. If S ⊆ U(R) then Spec(R,S) = Spec(R) and then
√
I = s

√
I, ∀I. Conversely, suppose that

S ̸⊆ U(R) then ∃s ∈ S not invertible then there exists P ∈ Spec(R)containing s that is

P ̸∈ Spec(R,S). Consequently, s
√
P = R ̸=

√
P = P . Contradiction.

3. Immediate from the definition of the S-radical of an ideal.

4. S ⊆ T then F = {P ∈ Spec(R, T ); I ⊆ P} ⊆ G = {P ∈ Spec(R,S); I ⊆ P} and then∩
P∈G

P ⊆
∩
P∈F

P that is S
√
I ⊆ T

√
I.

5. Since {P ∈ Spec(R,S); I ⊆ P} = {P ∈ Spec(R,S); S
√
I ⊆ P} then S

√
S
√
I = S

√
I.

6. I ⊆ S
√
I ⊆ T

√
I. Then T

√
I ⊆ T

√
S
√
I ⊆ T

√
T
√
I = T

√
I and we get the result.

7. In the same way as the proof of 6.

8. IJ ( respectively, I ∩ J) ⊆ P ∈ spec(R,S) ⇒ I (or J) ⊆ P then
S
√
I ∩ S

√
J =

∩
IorJ⊆P

P ⊆∩
IJ⊆P

P =
S
√
IJ , by 3. and 5. we get the inverse inclusion and then

S
√
I ∩ S

√
J =

S
√
IJ . In

the same way we prove
S
√
I ∩ S

√
J =

S
√
I ∩ J .

Proposition 3.4.

1. Each noetherian spectrum ring is S-noetherian spectrum ring.

2. Let S ⊆ T be two multiplicative sets of R. If R is an S-noetherian spectrum ring then it is
a T -noetherian spectrum ring.
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Proof:

1. Here the ring satisfies (acc) on all ideals in particular, on S-radicals.

2. Let R be a ring satisfying the (acc) on S-radicals and ( T
√
Ii)i be an ascending chain of T -

radicals of R. Since T
√
Ii =

S

√
T
√
Ii, the ascending chain ( T

√
Ii)i is in fact an ascending

chain of S-radicals then it stabilizes.

Proposition 3.5. If R is an S-SFT ring then each S-radical is an S-radically finite.

Proof:
Let I ̸= R be an S-radical then I ∩ S = ∅. I is S-SFT ideal. Then there exists s ∈ S, n ∈ N∗, F, J
ideals of R with J finitely generated such that sF ⊆ J ⊆ F ⊆ I and xn ∈ F, ∀x ∈ I. Then
I ⊆

√
F ⊆ S

√
F =

S
√
sF ⊆ S

√
J ⊆ S

√
F ⊆ S

√
I. We take the S

√
of all the terms of the previous

inclusions and we get
S
√
I ⊆ S

√
F =

S
√
J ⊆ S

√
F ⊆ S

√
I then

S
√
I =

S
√
J .

Theorem 3.6. For R a ring and S a multiplicative set of R, the following are equivalent:

1. R has (acc) on S-radical ideals ( i. e. R has S-noetherian spectrum ).

2. Each S-radical ideal is the S-radically finite.

3. Each prime ideal disjoint from S is the S-radically of a finite.

4. R has (acc) on prime ideals disjoint from Sand min(I, S) is finite for each ideal I disjoint
from S.

5. R has (acc) on prime ideals disjoint from S and min(I, S) is finite for each finitely generated
ideal I disjoint from S.
Here min(I, S) denotes the set of primes minimal on I and disjoint from S.

Proof: 2. ⇒ 1. Let (Ik, k ≤ 1) be an ascending chain of S-radicals and I = ∪kIk.
S
√
I is an

S-radical then there exists a finitely generated ideal F ⊆ I such that
S
√
I =

S
√
F . Then there exists

l ≥ 1 such that F ⊆ Il and then I ⊆ S
√
I =

S
√
F ⊆ S

√
Il = Il ⊆ I then the chain (Ik, k ≤ 1)

stabilizes.

3. ⇒ 2. Suppose that the set F of all S-radicals that are not S-radically finite is not empty.
This set ordered by inclusion is inductive. Let I be a maximal element of it. We prove that I
is prime. Suppose that it is not prime, then there exist x1x2 ∈ I, xi ̸∈ I then I ( S

√
xiR+ I

then there exists Hi ⊆ xiR + I finitely generated such that S
√
xiR+ I = S

√
Hi. We have I2 ⊆

(x1R + I)(x2R + I) ⊆ I then
S
√
I2 ⊆ S

√
(x1R+ I)(x2R+ I) ⊆ S

√
I. By Proposition 3.3- 8.,

S
√
I ⊆

S
√

(x1R+ I)(x2R+ I) =⊆ S
√

(x1R+ I)∩ ⊆ S
√

(x2R+ I) = S
√

H1)∩ ⊆ S
√
H2 = S

√
H1H2) ⊆ S

√
I

then I =
S
√
I = S

√
H1H2). This is a contradiction because I is not S-radically finite.

Then I is prime. By 3., I ̸∈ F , contradiction, then F = ∅ and then all S-radicals are S-radically
finite.

1. ⇒ 4.: Prime ideals disjoint from S are S-radicals then the (acc) on S-radicals implies the (acc)
on prime ideals disjoint from S. Suppose that there exists an ideal I with min(I, S) is infinite.

Since min(I, S) = min(
S
√
I, S), we can assume that I is an S-radical. By 1. the set of all S-

radicals I with infinite min(I, S) has maximal elements. Take I a maximal element of the previous
set, I is not prime (if it is prime min(I, S) = {I} finite ) then there exist x1, x2 ∈ R such that

xi ̸∈ I, x1x2 ∈ I we have I ( S
√
I + xiR then min(I + xiR,S) is finite. By , I =

S
√
I =

S
√
I2 ⊆

S
√

(I + x1R)(I + x2R) = S
√

(I + x1R) ∩ S
√

(I + x2R) ⊆ S
√
I then

∩
p∈min(I,S)

P =
∩

1≤k≤n

Pk,with
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{P1, ..., Pn} = min(I + x1R,S) ∪ min(I + x2R,S). ∀P,
∩

1≤k≤n

Pk ⊆ P then one of the P ,
ks is

contained in P since I ⊆ Pk and P is minimal over S then P = Pk and then min(I, S) is finite,
contradiction.

4. ⇒ 5. is clear.
5. ⇒ 3.: Suppose that there exists a prime P disjoint from S that is not S-radically finite, then
P ̸= {0}. Take x ∈ P , by 5. min(xR, S) is finite. Suppose ∀Q ∈ min(xR, S), P ⊆ Q then

P ⊆
∩

Q∈min(xR,S)

Q =
S
√
xR ⊆ S

√
P = P this contradicts the fact that P is not S-radically finite.

Then there exists Q ∈ min(xR, S) such that P ̸⊆ Q. Take xQ ∈ P \Q and I1 the ideal generated
by the finite set {x, xQ;P ̸⊆ Q ∈ min(xR, S)}. Since P is not S-radically finite then I1 ( P . I1 is
finitely generated thenmin(I1, S) is finite. As formin(xR, S) there existsQ1 ∈ min(I1, S)/ P * Q1.
S
√
xr =

∩
Q∈min(xR,S)

Q ⊆ S
√
I1 ⊆ Q1 then there exists Q ∈ min(xR, S) / Q ⊆ Q1. P * Q1 then

P * Q. Since xQ ∈ Q1 \Q then Q ( Q1.

Take xQ1 ∈ P \ Q1 and I2 the ideal generated by the set {x, xQ;P ̸⊆ Q ∈ min(xR, S), xQ1 ;P *
Q1 ∈ min(I1, S)}. In the same way we find Q2 ∈ min(I2, S); P ⊆ Q2 and a chain Q ( Q1 ( Q2.
Repeating the previous process, we construct a chain of finitely generated ideals contained in P
xR ⊆ I1 ⊆ I2 ⊆ ... ⊆ Ik... and a chain of primes Q ( Q1 ( Q2 ( .... R has (acc) on primes disjoint
from S then the previous process must stop at a level k that is for all Qk ∈ min(Ik, S), P ⊆ Qk and

then P ⊆
∩

Qk∈min(Ik,S)

= S
√
Ik ⊆ S

√
P = P and then P = S

√
Ik. This contradicts the supposition

that P is not S-radically finite.

Theorem 3.7. An S-SFT ring is an S-notherian spectrum ring.

Proof: Immediatly by Proposition 3.5 and Theorem 3.6.

Theorem 3.8. Let R be a ring and S be a multiplicative set of R. For the following conditions:

1. There exists an ideal I of R disjoined to S such that I[[X]] ̸⊆ S
√

I.R[[X]].

2. There exists an ideal P ∈ Spec(R,S) such that P [[X]] ̸= S
√

P.R[[X]].

3. The ring R is not a S-SFT ring,
we have 1) and 2) are equivalent and imply 3).

Proof:
1.⇒ 2. : I[[X]] ̸⊆ S

√
I.R[[X]] then there exists P ∈ spec(R[[X]], S) such that I.R[[X]] ⊆ P ̸⊇ I[[X]].

Let P = R ∩ P , then S
√

P.R[[X]] ⊆ P and I[[X]] ̸⊆
S
√

P.R[[X]] . We have I.R[[X]] ⊆ P then I ⊆ P and then I[[X]] ⊆ P[[X]]. Consequently, P[[X]] ̸=S√
P.R[[X]].

2.⇒ 1. is immediate.
2.⇒ 3.

Let P ∈ Spec(R,S) such that P [[X]] ̸= S
√

P.R[[X]]. Suppose R is an S-SFT ring then P is an
S-SFT ideal then there exists s ∈ S, n ∈ N, B ⊆ P finitely generated such that ∀x ∈ P, sxn ∈ B ⇒
(sx)n ∈ B and then (sx)n = 0 ∈ R/B. By [7] Lemma 4 of Arnold, sP [[X]] ⊆

√
B[[X]] ⊆

√
P [[X]].

Then S
√

sP [[X]] ⊆ S

√√
B[[X]] ⊆S

√√
P [[X]].

Since S
√

sP [[X]] =S
√

P [[X]] = P [[X]] and S

√√
B[[X]] =S

√
B[[X]], then

8
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P [[X]] ⊆ S
√

B[[X]] ⊆ P [[X]], that is S
√

B[[X]] = P [[X]]. On the other hand, B is finitely generated

then B[[X]] = B.R[[X]] ⊆ P.R[[X]] ⊆ P [[X]] then P [[X]] = S
√

B[[X]] ⊆S
√

P.R[[X]] ⊆ P [[X]], then
S
√

P.R[[X]] = P [[X]], contradiction. Consequently, R is not a S-SFT ring.

Corollary 3.9. If R is an S-SFT ring then: S
√

I[[X]] = S
√

I.R[[X]], ∀I ideal of R. In particular

if I is prime, I[[X]] = S
√

I.R[[X]]

4 Conclusion

We introduced two types of rings: the S-sft ring and the S-noetherian spectrum ring. We characterize
and illustrate them by many examples. We generalize some known results.
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