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ABSTRACT 
 

In our universe, there is a presence of random bit of disorder in every field that has to be 
contemplated and understood clearly. This random bit of disorder in a physical system is known as 
noise. Noise in the field of statistics can be defined as an additional meaningless information that 
cannot be clearly interpreted which is present in the entire dataset. In large-scale statistics, noisy 
data has an adverse effect on the results and it can lead to skewness in any data analysis process, 
if not properly understood or handled. The adverse effect on the results is mainly due to 
uncorrelated (zero autocorrelation) property of noise. This makes it completely unpredictable at 
any given point in time, hence thorough investigation and removal of noise plays a vital role in data 
analysis process. In the field of engineering, measurement of experimental data obtained by using 
scientific instruments consists of some values that are independent of the experimental setup. One 
of most widely technique is the optimization methods viz, gradient descent, conjugate gradient, 
Newton’s method etc. Most of these methods require the determination of derivative of a function 
specified by the dataset (using finite-difference approximation). If the noisy data is approximated 
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using a specific finite difference method this results in the amplification of noise present in the data. 
In order to overcome the aforementioned problem of amplification of noise in the derivative of a 
function, various regularization methods are employed. The parameter that plays a vital role in 
these methods are termed as regularization parameter. One of the most important technique used 
in the field of regularization is known as total variation regularization. This review aimed at 
gathering the disperse literature on the current state of various noises and their regularization 
methods. 
 

 
Keywords: Large-scale statistics; noisy data; regularization; data driven methods; amplification. 

 
1. INTRODUCTION 
 
In the modern field of engineering, we deal with a 
lot of experimental data that may consists of 
errors. These errors possess the properties of 
randomness and non-correlation meaning that 
they are completely unpredictable in nature. 
Hence the knowledge behind these errors, proper 
handling and removal techniques are prioritized 
during the early phase of data analysis [1]. 
Various numerical method for approximating the 
derivative of functions like finite-difference 
methods have taken center stage in many 
engineering interdisciplinary for optimization 
purposes. Application of these finite-difference 
methods to the noise contaminated dataset leads 
to the amplification of already present noise. 
These amplification in the derivatives can be 
suppressed by applying total variation (TV) 
regularization technique. TV deals directly with the 
process of differentiation. This process of 
regularization assures that the calculated 
derivative of the function adheres to a certain 
degree of regularity [2]. The successful 
implementation of this methods hinges on one 
aspect, i.e., clearly understanding and 
determination of regularization parameter. 
 
There are various methods that facilitates the 
determination of optimal regularization parameter 
One of the most important and widely used is the 
L-curve method. This method provides 
information on the regularization parameter based 
on the residual norm (L2) and the solution norm 
(L1) [3]. The graphical representation between 
the two for different regularization parameter 
provides an intersection point that stabilizes the 
effect of both the residual and the solution. This 
point is chosen as the optimal regularization 
parameter by using curvature plot [4]. 
 
A method that completely focuses on extensive 
analysis of residual vector is the normalized 
cumulative periodogram [5]. The selection of 
optimal regularization parameter is based on 
Kolmogorov-Smirnov test i.e., the cumulative 

periodogram must strictly lie within the 
confidence interval of 95% [6]. In these 
circumstances, the user is generally in a tough 
spot. Hence the generalized cross validation 
method is employed to overcome complexities of 
unknown exact data or the variance of noise [7]. 
 
These optimal parameters can then be used in 
the data-driven (sparse regression) method in 
order to determine the PDE of the governing 
equation. This method provides good ap- 
proximation of the system as this uses brute-
force search and the sparse regression 
technique for sparse nonlinear time series matrix 
in order to achieve its goal [8]. With this 
background, an attempt has been made in this 
study to investigate the implications of noisy data 
in large scale statistics and regularization of noisy 
data in order to retrieve vital information. 
 

2. GENERAL CONSIDERATION 
 
Raw data collection, different types of noise 
present in a general system, processing and 
regularization are the important steps of this 
study. There are many regularization methods, 
few of the commonly used in the field of signal 
processing are: Ridge regression; Least Absolute 
Shrinkage and Selection Operator (LASSO) and 
Total Variation Regularization or Rudin–Osher– 
Fatemi model. The collected data must then be 
organized for future analysis. This process of 
organization of collected data is known as data 
processing. Example of data processing is the 
placement of data into columns and rows with 
respective variable names in a statistical 
software (Microsoft® Excel or Minitab™). 
 

2.1 Different Types of Noise Present In a 
General System 

 

In order to maximize the potential of the 
aforementioned regularization methods, we shall 
start with the brief understanding of different 
types of noise present in a general system 
described in equation 2.1 with Fig. 1: 
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s = i + n 
 
where, s = Signal; i = Information and n = 
Noise. 

 
2.2.Data Analysis and Steps Involved In 

The Process 
 
The process of obtaining raw data and its 
conversion into information which is useful for 
decision-making by the user, this is known as 
data analysis. The various steps involved in data 
analysis are shown in Fig. 2. 
 
2.2.1 Data collection and processing 
 
Data in general can be collected from various 
number of sources. Digital sources of data 
collection are some of the most convenient and 
trusted forms. In today’s world where 
technological advancement is at its peak, sensors 
form a large part of data collection [9]. They are 
reliable, accurate and can transmit data round-
the-clock to computers which can then be 
analyzed by the engineers. Temperature sensors 
in nuclear power plants, on aircraft to monitor 
engine temperature, seismic sensors in high 

earthquake prone regions in world are few 
examples that can provide engineers and 
scientists’ accurate data that can save lives 
during critical situations. 

 
The collected data must then be organized for 
future analysis. This process of organization of 
collected data is known as data processing. 
Example of data processing is the placement of 
data into columns and rows with respective 
variable names in a statistical software 
(Microsoft® Excel or Minitab™). 

 
2.2.2 Cleaning of processed data 

 
Data cleaning (cleansing) is the process of 
understanding, collection and then removal of 
errors that may be present in the processed data 
[10]. This process is very critical during the final 
step of data analysis as it improves the accuracy 
of results. When dealing with quantitative 
processed data using various outlier removal 
methods forms the part of data cleaning. Outliers 
are values or observation in processed data that 
lie far part from the main pattern of the entire 
dataset. Fig. 2 shows a process with (Fig. 2a and 
without outliers 2b). 

 

 
 

(a) Information                                                (b) Noise (n) 
 

 
 

(C) Signal (S) 
 

Fig. 1. Graphs depicting the general system in equation 2.1 



 

Fig. 2. A picture showing the steps involved in data analysis
 

                              

 

Fig. 3. Representation of Outliers in a process
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A picture showing the steps involved in data analysis 

 
                     Time in seconds (s) 

 

(a) Graph Outlier 
 

 
Time in seconds (s) 

(b) Graph without outlier 

Fig. 3. Representation of Outliers in a process 

 
 
 
 

; Article no.JERR.50581 
 
 



 
 
 
 

Avinash et al.; JERR, 6(4): 1-16, 2019; Article no.JERR.50581 
 
 

 
5 
 

There are various methods to detect outliers in a 
process, one of the most commonly used 
technique is the scatterplot. This is very easy 
and quick process to detect the number of points 
lying outside the standard pattern of the whole 
process (Fig. 3). 
 

There are many other techniques like the box 
plot that are used in the detection of outliers in a 
process. The advantage of using box plot is that 
it provides clear information on mild and extreme 
outliers. Box plot also has the option of detecting 

outliers by using median, 1st and 3rd quartile 
principle. A typical boxplot is shown in Fig.  5. 
 
After the detection of outliers, one cannot simply 
employ univariate and multivariate methods to 
remove the detected outliers as it can have 
adverse effect on the entire process. So using 
robust techniques like "Minkowski error" method 
helps to reduce the impact of outliers on the 

dataset (or model). The major advantage of 
"Minkowski error" over RSS is that it reduces the 
effect of outliers by taking the power of error 
terms lesser than 2 [11]. 

 
In certain scenarios, processed data and/or 
processed data after treating outliers may be 
skewed. This type of skewed data needs to be 
transformed using certain transformation 
techniques before analyzing exploratory. The 
most common method employed for skewed data 
is the Box- Cox (or power) transformation. 

 

x(λ) =(xλ −1) λ = 0      (2.2) 

        Λ 
 
x(λ) = ln(x)       λ = 0                 (2.3) 

 
where, x(λ) = Transformed data; x = Skewed 
data; λ = Box-Cox parameter. 

 

 
 

Fig. 4. A scatterplot showing the process trend and the detected outliers 
 

 
 

Fig. 5. A boxplot showing the detected outliers 
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But the best way [12] to select “λ" is by using 
LLF (logarithm of likelihood function). This 
marks the conclusion of cleansing of 
processed data. 
 
2.2.3 Exploratory data analysis 

 
The process of deciphering the cleaned data 
extensively by using visualization techniques, 
calculation of vital descriptive statistics (like mean, 
median, mode etc.) is known as exploratory data 
analysis. This helps the user to comprehend the 
meaning behind the obtained dataset. Hence it 
translates to exploring the cleaning data from all 
possible angles. It consists of many sub-tasks 
like, re-cleansing (if necessary), procurement of 
additional data, calculation of descriptive 
statistics and visualization. 
 

2.2.4 Data modeling 
 

The final step in process of data analysis is data 
modeling. The knowledge obtained from 
exploratory data analysis steps plays a vital role 
in the identification of certain relationship 
between variables. Various relationships such as 
regression analysis, correlation can be obtained 
by compiling specific algorithms and/or applying 
specific mathematical formulae. Finally, the user 
can construct descriptive models for analysis 
[13]. The results obtained can be termed as 
information, this can help the user to understand 
the datasets and certain changes can be made in 
order to improve the efficiency of the process for 
future studies. 
 

3. A BRIEF DISCUSSION ABOUT NOISE 
 

This section focuses on the different types of 
noise and its characteristics encountered in 
various statistical and signal processing fields. 
As shown in equation 2.1, noise "n" can be 
classified as shown below,  
 

3.1 Different Types of Noise  
 
(Fig. 6) are explained [14]: 
 
Multiplicative noise: In a given system, if the 
random term depends on the state of that 
system, this type of noise is termed as 
multiplicative noise. In terms of dataset, we can 
say that the noisy data is the resultant of noise 
multiplied to the data vector. This can be clearly 
interpreted with the help of a following system 
(model). 
 

s = i · n                                                 (2.4) 

where s= Signal; i=Information (true signal) and 
n=Noise 
 
Denoising of multiplicative noise requires a 
transformation of the model in equation 2.4 into 
additive noise. Logarithmic transformation is very 
helpful tool in denoising multiplicative noise as 
this provides an additive form. 
 

log(s) = log (i · n)                    (2.5) 

 
log(s) = log(i) + log(n)                          (2.6) 

 
where s =Signal; i=Information(true signal) and 
n=Noise. 

 
Now, equation 2.6 clearly represents an            
additive system and various denoising 
techniques can be applied. Finally, inverse 
logarithm (log

-1
) of the denoised signal      

provides the solution to the original system. 
 
Poisson Noise: Poisson noise is also              
termed as shot noise (Fig. 7). Shot noise is 
mainly observed in electronic devices.               
This type of noise is generated when a charge 
carrier such as electrons or ions travel through a 
gap results in random fluctuation in electric 
current. This random fluctuation is known as shot 
noise [15]. 

 
Transient Noise: This type of noise is very 
common in the field of communication systems 
like mobile phones and hearing aids. The 
background noise that hinders communication in 
the field of communication systems is termed as 
transient noise (Fig. 8). 
 
Burst Noise: Burst noise is also termed as 
Random Telegraph Signal (RTS) and “popcorn” 
noise. It is very similar to the shot noise and 
generated at low frequencies. When a single 
charger carrier is captured by a single trapping 
center, this leads to the generation of burst noise 
as shown in Fig. 9. 
 
Phase noise: In order to understand the 
meaning and definition of phase noise, let us 
define the term "phase". Phase in a wave form 
cycle is defined as the position of a point in time. 
Three types of phases in a wave is shown in Fig. 
10. Square, triangle, sinusoidal complex are a 
few examples of different   types of         
waveforms shown in Fig. 10. The random and 
rapid variation of phase in a signal (waveform) 
caused by time domain instability is known as 
phase noise.       



 

Note: As seen from Fig. 
(∗∗) =⇒ additive noise includes many other slightly less significant subdivision

 

                                                                      

3.2 Additive White Gaussian Noise
(AWGN) 

 

Before jumping into the deep end                    
regarding the explanation of AWGN, let us first 
break down and understand the terminology 
"Additive White Gaussian Noise". 
 

Additive = ⇒This type of noise are additive in 
nature. This means that the received signal is 
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Fig. 6. Classification of noise 
Fig. 6; (∗) =⇒ main focal point. Hence it is explicitly described in

additive noise includes many other slightly less significant subdivision 

 
                                                                       

Fig. 7. Poisson noise 
 

Additive White Gaussian Noise 

Before jumping into the deep end                    
regarding the explanation of AWGN, let us first 
break down and understand the terminology 

This type of noise are additive in 
nature. This means that the received signal is 

the resultant of information added with some 
noise as shown in equation 2.1. 

 
White =⇒ It is mixture of all types or colors 
of noise. White light is mixture o
frequencies or wavelength of visible 
spectrum (shown in Fig. 11). This definition of 
white light is literally translated into white noise 
[16]. 
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focal point. Hence it is explicitly described in 3.3. 

the resultant of information added with some 

It is mixture of all types or colors                 
of noise. White light is mixture of all the 
frequencies or wavelength of visible                  
spectrum (shown in Fig. 11). This definition of 
white light is literally translated into white noise 
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Gaussian = ⇒This type of noise follows normal 
probability distribution Function (pdf), classified as 
shown in Fig. 12. 
 

White noise with respect to a signal and its 
source is a statistical model having constant 

power spectral density (PSD), which means               
that it is a random noise having equal           
intensity for different frequencies. An                 
example of the Gaussian white noise is shown in 
Fig. 13. 

 

 
                                                       

Fig. 8. Transient noise 
 

 
 

Fig. 9. A graph showing the generation of pop (burst) noise 
 

 
 

Fig. 10. A picture showing common types of waveforms 
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Fig. 11. Graphs showing two waves in phase (a), out of phase (b)  
& completely out of phase (c) 



 
 
 
 

Avinash et al.; JERR, 6(4): 1-16, 2019; Article no.JERR.50581 
 
 

 
10 

 

 
 

Fig. 12. A picture showing the visible spectrum 
 

  
(a) 

 

 
(b) 

 
Fig. 13. Representation of Gaussian white noise and its quantile-quantile plot 
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Brownian Noise: Brownian noise [17] is also 
known as red Noise. Longer wavelength 
produces stronger noise similar to radio waves 
shown in Fig.14, hence the term "red" noise. 
Robert Brown discovered Brownian motion. 
Hence it’s also coined as "brown" noise. 
 
The characteristics of red noise are briefly 
discussed below, Red noise has more energy 

at lower frequencies =⇒P (f)∝1/f2. Power 
spectrum is denoted by P (f). Frequency is 
denoted by f Integration of white noise → Red 
noise. 
 

An example of the Brownian or red noise is 
shown below, 
 

With this brief understanding of different types of 
noise, let us now dive into the concepts 
surrounding important regularization methods. 
 

3.3 A Brief Discussion Regarding 
Regularization Methods 

 

As mentioned earlier, the 3 widely used 
regularization techniques are: 
 

1. Ridge regression or Tikhonov 
regularization method 

2. Least Absolute Shrinkage and Selection 
Operator (LASSO) 

3. Total Variation Regularization or Rudin–
Osher–Fatemimodel 

 

Before we step into each of the              
aforementioned regularization techniques, let us 
define the term regularization. Regularization is 
defined as a method that helps to overcome the 
problem surrounding over-fitting of penalized 
regularization coefficients [18]. This aim of 
regularization is achieved by the introduction of 

additional information to solve ill-poised 
problems. Due to the fact that minimization of 
residual sum square are highly unstable in 
nature, regularization methods proves to be all 
the more important in many scientific fields. 
 
Ridge regression (L2 regularization): The           
aim of ridge regression is to minimize the 
ordinary least square with an added                   
penalty term. This penalty term is the square of 
the magnitude of the coefficients. This 
explanation is summarized in equation 2.8. 
 
The ridge regression solution "x̂ridge" solves the 

following minimization problem for a given 
system Ax = b, 
 

    (2.7) 
 

The equation 2.7 can be represented in a simpler 
form as, 

 

      (2.8) 
 

Where, 

b ∈ Rn = Response vector; 

A ∈ Rn×m = Predictor matrix  
α = Regularization parameter 
 

In matrix notation equation 2.8 becomes, 

 
Cridge = (A x − b) T (A x − b) + α xT x      (2.9)  
 

Expanding and simultaneous simplification of 
equation 2.9 results in the following [7]. 

 

Cridge = xT AT A x − bT A x − xT AT b + bT b + α xT x (2.10)
 

= x
T A

T 

A x − x
T A

T 

b − x
T A

T b + b
T b + x

T αI x (2.11)

= b
T b − 2 x

T A
T b + x

T A
T A x + x

T αI x (2.12)

Cridge = b
T
 b − 2 xT

 A
T
 b + x

T
 (A

T
 A + αI)x (2.13)

 

The objective function in 2.7 can be minimized by taking the partial derivative of 2.13 with respect to 
"x”. 
 

Minimization condition =⇒ the gradient of the objective function must be equal to zero. 
 

 

(2.14) 



 

∗ indicates that the specific part of the
(symmetric) differentiation

 

Simplification of the equation 2.16 le
 

 

where,  
 
I = Identity matrix (n × m); α I = Ridge term 
 
Advantages ridge term, 
 
i) Facilitates invertibility of resultant
gets added to the principle diagonal.
ii) Consistently achieves a unique solution
 
The equation 2.8 can be interpreted 
geometrically as shown in Fig. 15: 
 
The Fig.15 clearly depicts the aim of ridge (L2
regularization) regression i.e., minimization 
occurs simultaneously between the RSS 
(ellipse) and the penalty term (circle) mentioned 

in equation 2.8. The simultaneous 

occurs at "x̂ridge" shown in equation

 
Lasso: LASSO aims to minimize 
least square with an added penalty
case of L1- regularization, the penalty term is the 
sum of the absolute value of the regression 
coefficients. Hence LASSO is also known
L1-regularization [21]. 
 

 
The equation 2.7 can be represented in a 
simpler form as, 
 

               
 

where, b ∈ Rn = Response vector; A 
Predictor matrix; α = Regularization parameter
 

The first part of the derivation is similar to 
regularization, in matrix notation equation 2.8 
becomes, 
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α 

                                                                       

                                                                     

the equation was achieved by successfully applying matrix 
(symmetric) differentiation rule 

eads to the ridge regression solution i.e., "x̂ridge" 

 
 
 

α I = Ridge term  

resultant matrix and it 
.  

solution. 

The equation 2.8 can be interpreted 

clearly depicts the aim of ridge (L2-
regularization) regression i.e., minimization 
occurs simultaneously between the RSS 
(ellipse) and the penalty term (circle) mentioned 

 minimization 

tion 2.17. 

 the ordinary 
penalty term [20]. In 

penalty term is the 
sum of the absolute value of the regression 

known as the 

(2.18) 

The equation 2.7 can be represented in a 

               (2.19) 

Rn = Response vector; A ∈ Rn×m = 
Predictor matrix; α = Regularization parameter 

The first part of the derivation is similar to L2-
regularization, in matrix notation equation 2.8 

Classo = (A x − b)T (A x − b) +α |x|
 

Expanding and simultaneous simplification of 
equation 2.20 results in the following,
 

Classo = xT AT A x − bT A x − x
α |x|1                                            
 
= xT AT A x − xT AT b − xT AT b + b
Classo = bT b − 2 xT AT b + xT A

 

The equation 2.7 can be represented in a simpler 
form as, 
 

 

where,  
 

b ∈ Rn = Response vector; A 
Predictor matrix; α = Regularization parameter
 

The first part of the derivation is similar to L2
regularization, in matrix notation equation 2.8 
becomes, 
 

Classo = (A x − b)T
 (A x − b) +α |x|

 

Expanding and simultaneous simplification
equation 2.23 results in the following, 

 

Classo = x
T
 A

T
 A x − b

T
 A x − x

α |x|1                                                                                

 

= x
T A

T 

A x − x
T A

T b − x
T A

T b +
Classo                            
   
= bT b − 2 xT AT b + xT AT A x 

 
Next, taking the derivative of equation 2.26, we 
get, 
 
∇Classo = −2AT

 b + 2A
T
 Ax + ∇(α |x|

 
 
 
 

; Article no.JERR.50581 
 
 

(2.17) 

                (2.15) 
 

                                                                            (2.16) 

α |x|1     (2.20) 

Expanding and simultaneous simplification of 
equation 2.20 results in the following, 

− xT AT b + bT b + 
                                           (2.21) 

b + bT b + α |x|1 
AT A x + α |x|1 

The equation 2.7 can be represented in a simpler 

          (2.22) 

= Response vector; A ∈ Rn×m = 
Predictor matrix; α = Regularization parameter. 

The first part of the derivation is similar to L2-
regularization, in matrix notation equation 2.8 

α |x|1    (2.23) 

simplification of 
following,  

x
T
 A

T
 b + b

T
 b + 

                                                                               (2.24) 

+ b
T b + α |x|1  

                                (2.25) 

 + α |x|1  (2.26) 

Next, taking the derivative of equation 2.26, we 

(α |x|1)     (2.27) 
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(a) 

 

 
(b) 

 

Fig. 14. Representation of Brownian/red noise and its quantile-quantile plot 
 

 

Fig. 15. Geometric representation of ridge regression [19] 



Due the face that equation 2.24 consists of the 
term "∇(α |x|1)", sub-differential helps us to 
arrive at the final solution. But before we 
step into sub-differential, let us assume that the 
A

T
A is equal to I and multiply "2" to the penalty 

term. 
 
Equation 2.27 becomes, 
 

∇Classo = −2AT
 b + 2x + 2∇(α

 
Now, the sub-differential becomes, 
 

 
Breaking down each of the 3 conditions 
mentioned in equation 2.29, 
 

Case 1: when x > 2x − 2AT
  b + 2α  = 0

 

Equation 2.30 must be satisfied. 
 
Therefore, we get, x = 2AT b –
 
Case 2: when x = 0 
 

0 ∈ [−2α, 2α] − 2AT
 b                

 

Therefore, we now have 2 sub-cases, i.e,
 

−2α − 2AT b < 0 =⇒ α > −AT b 
 

Fig. 16. Geometric representation of LASSO regression [22]
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Due the face that equation 2.24 consists of the 
differential helps us to  

arrive at the final solution. But before we                 
differential, let us assume that the 

is equal to I and multiply "2" to the penalty 

(α |x|1)  (2.28) 

 

(2.29) 

Breaking down each of the 3 conditions 

b + 2α  = 0     (2.30)  

– α         (2.31) 

                (2.32) 

cases, i.e, 

     (2.33) 

2α − 2AT b > 0 =⇒ α > AT b 
 
The sub-cases mentioned in equation 2.34 
becomes, 
   

α > AT b                              
 
when x = 0 
 
Case 3:  when x <    2x − AT

  b− 2α = 0
 
Equation 2.36 must be satisfied. Therefore, we 
get, 
 

x = A
T
 b + α                                            

 
The aforementioned cases help us to a
the solution for LASSO and it summarized in the 
equation below, 
 

 
The equation 2.22 can be interpreted 
geometrically as shown in Fig. 16: 

 
The Fig.16 clearly depicts the aim of LASSO (L1
regularization) regression i.e., minimization 
occurs simultaneously between the RSS (circle) 
and the penalty term (square) mentioned in 
equation 2.19. The simultaneous minimization 
occurs at “x

lasso
” shown in equation 

 
 

Geometric representation of LASSO regression [22] 
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     (2.34) 

cases mentioned in equation 2.34 

                              (2.35) 

α = 0     (2.36) 

Equation 2.36 must be satisfied. Therefore, we 

                                           (2.37) 

The aforementioned cases help us to arrive at 
the solution for LASSO and it summarized in the 

  (2.38) 

The equation 2.22 can be interpreted 
 

clearly depicts the aim of LASSO (L1-
regularization) regression i.e., minimization 
occurs simultaneously between the RSS (circle) 
and the penalty term (square) mentioned in 
equation 2.19. The simultaneous minimization 

” shown in equation 2.38. 



Table 1. Comparison between L1 and L2 regularization

Properties L1 regularization
Robustness Penalty term Absolute value of 

coefficients 

 Outliers are affected linearly 
This method is more robust

Computational 
effort 

Penalty term 
This method requires more computational 

effort 

Sparsity This method has the ability to shrink
coefficients to zero Sparse solution.

4. CONCLUSION 
 
The fundamentals of large-scale statistics was
focused with retrieving the information from noisy 
data in the present review article. The method of 
total variation regularization helps to study 
thoroughly and understand the concept behind 
regularization parameter on various test 
functions each at different amplitude of noise. 
The study behind the optimal parameter value 
shines light on the fact that a stronger noise level 
in a large-scale dataset requires considerably 
strong optimal parameter. As we know that, in 
the real-life problems it is very diffic
noise from the actual measurement data which 
needs the iterative process to automatically 
obtain regularization parameter. The information 
being tracked was implemented in the process of 
finding differential equations by using data
(or Sparse Regression) method. 
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