

Asian Journal of Research in Agriculture and Forestry

Volume 9, Issue 3, Page 13-26, 2023; Article no.AJRAF.95030 ISSN: 2581-7418

Assessment of Timber Harvest in Ondo State, Nigeria between 2013 and 2019

O. J. Adeyekun^{a*}, V. A. J. Adekunle^b and O. V. Oyerinde^b

^a Department of Forestry, Ondo State Ministry of Natural Resources, Nigeria. ^b Department of Forestry and Wood Technology, Federal University of Technology, P.M.B. 704, Akure, Nigeria.

Authors' contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/AJRAF/2023/v9i3202

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/95030

Original Research Article

Received: 03/02/2023 Accepted: 05/04/2023 Published: 11/04/2023

ABSTRACT

The high rate of timber harvest from the forest without any replacement is hostile to the achievement of the objectives of sustainable forest management in Nigeria. The study was carried out to investigate the rate of timber harvest in Ondo state, Nigeria. Secondary data on logging activities from both forest reserves and free areas between 2013 and 2019 in the three forestry administrative zones - Akure, Ore, and Okitipupa were collected from the Ondo state department of forestry official records, files and annual reports. Analyses were carried out using Statistical Package for Social Science (SPSS). One-Way Analysis of Variance (ANOVA) was used to test for significant difference in the number of stems and volumes extracted between 2013 and 2019 in the study area. Results revealed that 49,063 and 8409 stems were harvested from free areas and reserves respectively within this period. It was showed that 118323.0m³ and 19022.1m³ stem volume were also removed from free areas and forest reserves respectively. Generally, there was significant difference (p<0.05) in the number of stems and volumes removed from free areas and forest reserves within these years. The study concluded that unregulated timber harvest is a threat to biodiversity conservation and recommended that conservative measures should be put in place to protect forest areas from deforestation and that more protected area should be established.

^{*}Corresponding author: E-mail: akinloluakinbowale@gmail.com;

Keywords: Timber harvest; sustainable forest management; deforestation.

1. INTRODUCTION

According to Adeduntan [1], tropical rainforest has been the richest in abundance and diversity of plant and animal species but worldwide. However, the forest biodiversity is under threat as a result of anthropogenic human activities. Presently, despite the increase global unease and increase in awareness, tropical rain forests continue to disappear at an alarming rate. The forest resources base of Ondo State has reduced with above 200 hectares of the forests removed annually through manv beina anthropogenic activities such as accelerated industrialization. urbanization. fuelwood production, conversion of forest reserves to farmlands and other agricultural purpose as well as housing estate [2].

As one of the important components of the tropical forest, tree species diversity is fundamental to rainforest biodiversity [3,4]. They are famed for their exceptional biological richness, but the future of this biodiversity is increasingly threatened by land-use and climate change. The current rate of deforestation in the southwest geo-political zone of Nigeria was put at 1.36% per annum when Nigerian forest was monitored with Nigeriasat-1 and other satellites (Salami, 2006). Current concerns about forest sustainability have also focused attention on the need to conserve the forest and other resources as agriculture and other land use intensifies [5]. The forestry sector is one of the main pivots on which the nation's welfare was built. The forest is not only important for material goods but also as valuable ecological and cultural resources. The demand for wood raw materials by industries in recent times has outstripped the production capacity of the forest [2]. Thus, uncontrolled exploitation of timber from the forest leads to decline of biological diversity. In Nigeria today, forest management is at crossroads because the guiding principles of managing the forest sustainably are no more with us. Challenges like illegal activities in the forest, declining manpower and capacity in Forestry Department, inadequate forest patrol, lack of returns from timber felling accruing to local people, outdated forestry laws and regulations and population pressure leading to increased clearing of forest land for cultivation of arable and tree crops are such that pose grave threat to sustainable forest management (SFM) in the country (Adetula, 2008).

More so, data on the rate of timber production and harvest in Nigeria are insufficient as a result of poor record keeping system and the negligent attitude of Nigerian civil servants. Where these data are available, they are not well studied and analyzed. As a result, it has been so difficult to compare the rate of forest harvesting with the regeneration potential of the natural forests. This would have formed the premise on which forestry planning and development should rest like in the developed nations that have committed substantial amount of fund to monitor growth and harvesting in their natural forests and plantations. Therefore, this study investigated the rate of timber harvest in Ondo state, Nigeria between 2013-2019.

2. METHODOLOGY

2.1 Description of the Study Area

The study was carried out in Ondo state located in the Southwestern part of Nigeria. The area lies between latitude 5°451E and 7°521W and longitude 4⁰20¹N and 6⁰5¹S. The state consists of eighteen (18) Local Government Areas. Its land area is 15,500 km². Ondo State is one of the most forested states in Nigeria, with 16.4% of the total area demarcated as forest reserves (Omoluabi et al. 1990). The climate is a humid tropical climate with wet and dry seasons. The wet season runs from March to November each year, whereas the dry season is from December to February. In the rainy season, annual rainfall ranges from 1500 to 2500 mm, and in the dry season, it can be as low as 250 mm. During the rainy season, the average daily relative humidity is 84 percent. The annual average temperature is around 27°C. Their major occupation is farming.

2.2 Method of Data Collection

Secondary data on logging activities from both forest reserves and free areas between 2013 and 2019 in thethree forestry administrative zones-Akure, and Ore, Okitipupa were collected from Ondo State department of forestry official records, files and annual reports.

2.3 Method of Data Analysis

The analyses were carried out using Statistical Package for Social Science (SPSS). One-Way Analysis of Variance (ANOVA) was used to test for significant difference in the number of stem and volume harvested between 2013 and 2019 in the study area.

3. RESULTS

Table 1 shows the number of stem harvested per annum from free areas between 2013 and 2019 in Ondo state. The results showed that a total of 49.063 and 8409 stems were harvested from free areas and forest reserves respectively. The number of individual tree species exploited from the free areas were higher than that of the forest reserve. Tree species with the highest number of stems harvested from free areas was identified as other spp. (tree species that cannot be identified as at the time the records were taken) with 7605 stems. This was followed by Ricinodendron heudelotii (Baill.) Pierre ex and angolensis (Welw.) **Pycnanthus** Warb represented by 2684 and 2457 stems respectively. Some of the tree species with low number of harvested stems from the free areas were Cola nitida (2), Sterculia oblonga (2), Nuclea papau (3) and Acacia senegalensis with 5 stems. In free area, the highest number of stems (11649) were harvested in 2018, followed by 11495 stems that were removed in 2013. Also, 3216 and 4262 stems were removed in 2015 and 2016 respectively while the lowest number of 3059 stems were removed in 2017. The result further showed that a total of 8409 stems were removed from forest reserves. Tree species with high number of harvested stems were Pterygota macrocarpa (1653), Ceiba pentendra (914), Sterculia rhinopetala K. Schum (616) while tree species with the low number of harvested stems were Amphimas pterocarpoides Harms (4), Weltist sterculia (1), Adenocarpus manni (5). More stems (2556) were harvested in 2014 when compared to other years. The number of stems harvested in the year 2013, 2015, 2016, 2017, 2018 and 2019 were 358, 1150, 671, 365, 1315 and 1994 respectively.

Table 2 shows the volumes of stems harvested per annum between 2013 and 2019 from free areas and forest reserves. The results showed that a total of 137345m³ stem volume was removed from both free areas and forest reserves. It was also revealed that 118323.0m³ and 19022.1m³ stem volume were removed from both free areas and forest reserve respectively within this period. Obviously, free areas had the highest volume of stem harvested than forest reserve. *Ricinodedrum heudelotti* had the highest

number of harvested volume from free areas with 16009.17m³. This was followed by other species (tree species that cannot be identified as at the time the records were taken) with 11001.26 m³ and Nauclea papau with volume of 4891.3m³. Some of the tree species with low volume of harvested stems in free areas were: Adenocarpus manni, Cola nitida and Diospyrous spp with 4.0 m³, 3.9m³ and 2.0m³ respectively. The results further revealed that the lowest and highest harvested volume of 29676.7m³ and 7738.9m³ were recorded in 2013 and 2015 respectively. It was also observed that total volume of 19022.1m³ were harvested from forest within this period. reserves Pterygota macrocarpal had the highest stem volume of 3854.3m³. This was followed by *Ceiba pentandra* L. and Brachystegia eurycoma with volume of 2762.8m3 and 1414.3m3 respectively. Some of the tree species with low harvested stem volume were W/sterculia, Berlinia confusa Hoyle and Dialium dinklagei with 1.4 m³, 4.2 m³ and 4.5m³ respectively. Generally, the lowest and highest stem volume of 5264.6 $\rm m^3$ and 483.7 $\rm m^3were$ removed from the reserve in 2013 and 2015 respectively.

Table 3 shows the number of stem and volume of trees exploited in both free areas and forest reserves on monthly basis. A total of 49,062 and 8409.07 stems were harvested from free areas and forest reserves respectively. It was also recorded that a total stem volume of 118026.4 and 19022.2m³ were removed from both free areas and forest reserves. Highest number of stem was removed in January and April with 7306 and 4879 stems extracted from both free areas and forest reserve respectively. It was also observed that highest stem volume of 20278.5 and 2490.0m³ were removed in April and February from both free area and reserves. The lowest number of stem was harvested during the months of June and December with 2908 and 560.82 from free areas and reserves. Lowest stem volume was removed from free areas and forest reserves in the month of July and October with 7159.3m³ and 850m³ respectively. In the month of September, between 2013 and 2019, number of stems removed were 2813 and 708, volume harvested were 7233.1 and 2168.2m³ from free areas and forest reserves respectively.

Family	Tree Species	20	13	2	2014	2	015	2	016	2	2017	2	2018	2	019	Тс	otal
	·	FA	FR	FA	FR	FA	FR	FA	FR	FA	FR	FA	FR	FA	FR	FA	FR
Fabaceae	Acacia Senegaensis	0	0	0	0	0	0	0	0	0	0	1	0	4	0	5	0
Fabaceae	Adenocarpus manni	0	0	0	0	0	0	0	0	0	0	4	0	10	0	14	0
Papilionoidae	Afromosia elata Harms	10	0	6	8	5	2	2	1	3	9	17	4	24	0	67	24
Caesalpinoidae	Afzelia africana Sm.	24	3	1	1	147	1	31	5	11		171	6	18	11	403	30
Mimosoidae	Albizia spp. Durazz	482	3	271	13	22	1	154		89	10	90	14	740	15	1848	59
Clusiceae	Allanblackia floribunda. Oliv	210	0	126	4	6		1	5		0	309	10			652	19
Apocynaceae	Alstonia congensis de Wild.	450	12	154	4	46	0	130		141	2	88	1	56		1065	31
Apocynaceae	Alstonia boonie.	159		95	20	179	3	29	5		6	578	8	311	31	1351	73
Caesalpinoidae	Amphimas pterocarpoides Harms.	337	0	205	0	64	2	57		29	0	193	2	191		1076	4
Moraceae	Antiaris africana Engl	105	2	28	21	27	25	99	9	38	3	227	5	290	10	814	77
Papilionoidae	Baphia nitida			28	6	7			1			56		21	5	112	12
Caesalpinoidae	Berlinia confusa Hoyle	158	2	7	2	49	2	28	0	17	2	123	2	14		396	12
Sapindaceae	Blighia sapida K. Konig	17	0	59	47	16	2	36	1	6	26	77	3	136	3	347	82
Bombacaceae	Bombax buonopozense P. Beauv.	74	3	28	0	3	6	5	10	13	1	21	83	2	2	146	108
Caesalpinoidae	Brachystegia eurycoma Harms	196	12	81	96	90	69	175	40	102	19	138	76	121	86	903	410
Burseraceae	Canarium schweinfurthii	97	0	52	30	22	13	22		13	19	20	1	48	13	274	76
Meliaceae	Carapa procera DC.	315	0	21	22	10	0	2		4	4	73	11	45		470	37
Bombacaceae	Ceiba pentandra L. Gaertn.	657	14	360	402	117	218	167	46	156	15	237	74	408	145	2102	928
Ulmaceae	Celtis zenkeri Engl.	75	6	169	33	35	11	70	4	20	1	230	18	272	34	871	113
Moraceae	Chlorophora Exclosa			6	37	22	1				11			6	1	34	50
Sapotaceae	Chrysophyllum spp. L.	50	0	52	14	98	23	6	9	3	4	186	9	100	129	495	188
Annonaceae	Cleistopholis patens (Benth.) Engl. & Diels	419	39	204	107	193	46	127	15	115	6	559	40	159		1776	292
Sterculiaceae	Cola nitida													2		2	0
	Combretodendrum A Chev	41	0	12	8	28	9	12	2	12	15	71	2	19		195	36
Combretodentrum																	
Boraginaceae	Cordia millenii Baker	86	0	46	13	7	9	41	4	14	1	104	22	36	28	334	77
Caesalpinoidae	Daniellia ogea (Harms) Rolfe ex Holland	389	9	122	1	76		184	17	199		193	1	128	2	1291	39
Caesalpinioideae	Dialium dinklagei	115	0	70	12	6	1	18			6	91		83		383	19
Ebenaceae	Diospyros spp.				5		4		3			25	5			25	17
Caesalpinoidae	Distemonanthus spp. Benth.	22	0	1	2			7	3		1		44			30	50
•	Elainadoxia spp	248	5	75	54	47	2	206	1	86	33	271	0	33	1	966	101
Meliaceae	Entandrophragma cylindricum (Spraque)	232	1	41	78	18		67	6	28	1	112	60	57	1	555	148
Caesalpinoidae	Erythropholeum spp. A. Chev.	130	9	168	3	59		131	24	77	15	187	74	249	84	1001	218
Rutaceae	Fagara spp.	316	1	54	2	144		27	0	24	1	355	3	67	7	987	15

Table 1. Number of stems harvested per annum from free areas (FA) and forest reserves (FR) between 2013 and 2019

Family	Tree Species 2013		13	2	2014	2	2015	2	016	2	2017	2	018	20)19	Тс	otal
		FA	FR	FA	FR	FA	FR	FA	FR	FA	FR	FA	FR	FA	FR	FA	FR
Moraceae	Ficus spp. Linn.	118	6	237	28	105	14	104	15	41	6	317	24	441	34	1363	133
Apocynaceae	Funtumia elastica (P. Preuss) Stapf	22		24	11	14		41		41	4	188		146		476	15
	Garcina spp					1		1			0			48		50	0
	Gmelina arborea	27	81	4		6		13			0	13		15		78	162
	Guuboutia sapida					1	7				0		8	106		107	15
Simaroubaceae	Hannoa klaineana Pierre ex Engl.	298	2	138	4	45	4	53		21	3	112	3	90	2	757	20
Ulmaceae	Holoptelia grandis (Hutch.) Mildbr.	32	0	28	12	4	9	8	3	2	2	105	8	11	10	190	44
Irvingiaceae	Irvingia spp. Hook.f.	49	0	16		7	1	5	1	29	2	77	3	31	1	214	8
Meliaceae	Khava spp.	142	3	70	6	30		56		21		119	2	50		488	14
Sterculiaceae	Cola gigantea A. Chev.	4	0	-	24			37		0		15	6	10	23	66	53
Anacardiaceae	Lannea welwitschii (Hiein) Engl.	164	3	82	15	115	11	41	3	32	0	88	8	83		605	43
Ochnaceae	Lophira alata Banks ex C. F. Gaertn	33	13	26	4	35	2	153	1	71	0	122		21	1	461	34
	Lovoa trichilioides	34	1	14		8	1	9		3			12		17	68	32
	Magnifera indica	8		1		-		1		0		52	4	60		122	4
	Mahogany	•						4		•			11	19	6	23	17
Sterculiaceae	Mansonia altissima A. Chev.	14		13	2	97	4	10		3	1	187	0	104	15	428	22
Moraceae	Melicia excelsa (Benth and	300	4	142	20	98	8	104	12	42	4	270	0	221	-	1177	52
	Hook)																
Rubiaceae	Mitragyna stipulosa (DC.) Kuntze	24		21	4	11	12	8	4	3	1	7	52	19		93	73
Urticaceae	Nuclea papau				3	1	51	1	7	1						3	61
Sterculiaceae	Nesogordonia papaverifera (A. Chev.)	50		28	1	18		17		17		61		21	1	212	2
Rubiaceae	Nauclea diderrichii De Wild. & T. Durand	140	25	54	96	19	3	68		44	38	26		25	1	376	188
	Other spp	1366	36	747	83	251	5	922	0	923	0	1472	103	1924	180	7605	443
	Parkia biglobosa			4			0							22		26	0
	Piptadeniastrum africana	148	1	72	7	123	0	102	1	70	1	390	3	68		973	14
Panilionoidae	Pterocarnus spn Jaca	107		24	41	140	0	15	5	4	11	905	1	162		1357	58
Sterculiaceae	Ptervaota macrocarna K	517	7	248	423	68	228	77	274	- 48	28	316	210	415	474	1689	1660
	Schum.	517	'	240	425	00	220		214	40	20	510	213	415		1003	1000
Myristicaceae	Pycnanthus angolensis (Welw.) Warb.	807	16	329	19	169	4	162	21	190	6	425	12	375	7	2457	101
Euphorbiaceae	Ricinodendron heudelotii (Baill) Pierre ex	777	17	326	248	146	49	164	39	149	9	821	76	301	153	2684	608

Family	Tree Species	201	3	2	014	2	015	2	016	2	017	20	18	20	019	Тс	otal
•		FA	FR	FA	FR	FA	FR	FA	FR	FA	FR	FA	FR	FA	FR	FA	FR
	Cedrus atlantica				7	0	0	0	0	0		0	0	0	35	0	42
Sterculiaceae	Sterculia oblonga Mast	2	0			0	0	0	0	0	14	0	0	0		2	14
Sterculiaceae	Sterculia rhinopetala K. Schum	118	12	85	189	25	100	42	18	7	11	70	68	111	215	458	625
	Swietenia macrophylla				2		1				1		2		3	0	9
Combretaceae	Terminalia ivorensis A. Chev.	138	3	86	12	85	126	54		30		222	75	211	137	826	356
Sterculiaceae	Triplochiton scleroxylon K. Schum	210	1	115	144	17		23	35	1	8	133	37	265	71	764	297
	Terminalia superba Engl. & Diels.	424	5	188	106	33	60	127	21	66	4	293		681		1812	201
	Tectona grandis							2				19		6		27	0
Verbenaceae	Vitex rivularis Gürke	8		14		1		2		0		17				42	0
	W/sterculia	1	1	2	0			2		0	0	0	0	0	0	5	2
	Total	11495	358	5680	2556	3216	1150	4262	671	3059	365	11649	1315	9702	1994	49063	8409

Table 2. Volume of stems (m³) harvested per annum from free areas (FA) and forest reserves (FR) between 2013 and 2019

Tree Species	20	13	20	14	20	015	2	016	20	17	20	18	2	019	То	tal
	FA	FR	FA	FR	FA	FR	FA	FR	FA	FR	FA	FR	FA	FR	FA	FR
Acacia spp	15.9		7.0						16.4		6.4		3.9		49.6	0.0
Adenocarpus manni								7.6			1.7		2.1		3.8	7.6
Afromosia elata	373.6		1.7		11.5		8.8	5.3	4.5	10.4	19.5	1.7	9.7	12.6	429.3	29.9
Harms					.										~~	
Atzelia atricana Sm.	918.5	1.8	1138.9	4.2	344.7	2.8	45.1		29.0	4.4	14.6	30.7	524.6	24.1	3015.5	68.0
Albizia spp.	748.0	6.3	750.5	6.2	49.1	5.1	196.0	14.6	747.8	13.0	1099.7	36.4	334.3		3925.6	81.7
Durazz			400.0				<u> </u>						407.0		000 F	
Allanblackia	306.5		183.9		14.0		3.4				216.8	11.3	197.9		922.5	11.3
floribunda. Oliv.						4.5		0.7		07		F0 7		7.0		400 7
Alstonia boonie	050 7	00.0	0407	41.4	407.0	4.5	100.4	9.7	005 7	8.7	405.0	58.7	000 7	7.8	0.0	130.7
Alstonia congensis de	959.7	22.2	346.7		107.9		126.4	16.8	295.7	14.3	185.2	6.2	309.7	11.2	2331.2	70.7
Wild.																
Alstonia spp.	445.4		322.8		340.2	69.4	51.0		238.4		278.1		178.3		1854.1	69.4
Amphimas	540.3	0.0	528.7		151.6	2.1	107.2	8.0	248.4		411.0	3.5	287.1		2274.4	13.5
pterocarpoides																
Harms.																
Antiaris africana	190.4	3.9	74.8	38.1	59.9	24.1	121.8	24.5	358.4	10.4	188.4	23.6	171.3	8.7	1165.0	133.2
Engl																
Baphia nitida	297.8			9.0	20.2			2.0	9.1		2.1	10.5	24.1		353.2	21.4

Tree Species	20	13	20	014	2	015	2	016	20	17	20	18	2	019	То	otal
	FA	FR	FA	FR	FA	FR	FA	FR	FA	FR	FA	FR	FA	FR	FA	FR
Berlinia confusa Hoyle	115.3	4.2	223.2		130.2		87.1		51.2	0.0	170.7	0.0	136.8		914.5	4.2
Blighia sapida K. Konig	388.3	0.0	407.3		40.4	4.3	23.0	2.2	138.5	6.4	72.1	9.2	49.1	0.0	1118.6	22.2
Bombax buonopozense P. Beauv	176.3	7.0	77.6		6.7	2.2	50.2	3.6	22.8	4.5	67.9	11.0	45.5	0.0	447.1	28.3
Brachystegia eurycoma Harms	714.8	41.1	810.7	261.5	237.0	267.1	350.1	171.9	290.3	79.2	294.8	488.5	280.3	105.0	2977.9	1414.3
Canarium schweinfurthii	1394.8		65.2	3.8	52.4	6.9	16.5	0.0	67.3	2.0	60.9	33.7	42.5	7.3	1699.5	53.6
Carapa procera DC.	327.9	0.0	609.6		21.9		3.5		31.6		287.0		240.5	1.7	1522.0	1.7
Ceiba pentandra L. Gaertn.	1574.9	28.8	761.2	1230.7	281.1	816.2	326.9	199.4	549.7	81.1	568.3	347.6	506.5	59.1	4568.7	2762.8
Celtis zenkeri Engl.	214.7	8.9	27.5	48.8	97.6	48.0	74.8	50.3	289.3	9.9	152.3	80.4	130.7	14.4	986.9	260.6
Chlorophora Exclosa	39.1		13.6		58.8	28.6	5.9	0.0			13.2	1.8	48.1		178.6	30.4
Chrysophyllum spp. L.	324.6	0.0	346.4	26.7	196.4	32.1	18.0	15.0	22.1	7.0	182.6	226.5	140.0		1230.1	307.3
Cleistopholis patens (Benth.) Engl. & Diels	636.6	43.2	186.0	243.5	501.0	196.7	205.5	109.0	366.6	28.3	194.2	13.8	174.9	50.7	2264.7	685.0
Cola nitida	2.0	0.0	224.2	1.0	50.0	744	10.0	4.0	20.9	6.0	107.0	0.0	2.0	0.0	3.9	0.0
A Chev	223.4	0.0	521.5	1.9	59.9	74.1	19.2	4.0	39.0	0.9	107.9	0.0	90.7	0.0	000.4	07.0
Cordia millenii Baker	451.1	0.0	141.5	23.4	16.9	8.2	43.3	6.6	77.7	6.1	124.2	69.7	91.4	10.6	946.0	124.6
Daniellia ogea (Harms) Rolfe ex Holland	959.1	15.0	829.0	1.7	179.7	6.8	234.4	51.0	478.5	22.7	512.3	20.2	486.3	3.9	3679.2	121.2
Dialium dinklagei Diospyros spp.	87.3	0.0	76.4	4.5 10.5	14.4	8.5	32.1	4.8	198.4		117.6 2.0	7.0	2.2		528.4 2.0	4.5 30.8
Distemonanthus spp. Benth.	81.2		27.9			17.4	23.5		0.0		6.4		4.3		143.2	17.4
Elainadoxia Spp Entandrophragma cylindricum	847.7 307.4	10.6 1.4	139.9 384.1	2.2 166.7	115.1 49.2		276.4 62.6	21.4 13.1	278.6 224.8	15.9 4.4	332.1 284.1	106.0 5.4	630.8 289.7	22.2 3.0	2620.5 1601.9	178.4 194.0
(Sprague) Erythropholeum spp. A. Chev.	839.8	16.2	119.6		138.7	2.2	269.7	177.6	235.3	93.9	262.4	228.8	227.5	71.8	2093.1	590.4

Tree Species	20	13	20	014	2	015	2	016	20	17	20	18	2	019	То	tal
	FA	FR	FA	FR	FA	FR	FA	FR	FA	FR	FA	FR	FA	FR	FA	FR
Zanthoxylum zanthoxyloides	186.9	1.8	531.9	3.3	368.7		60.7	1.5	343.0	1.7	416.9	14.6	334.2	2.2	2242.2	25.1
Ficus spp. Linn.	222.9	11.1	97.4	59.2	280.6	49.6	124.1	28.4	152.5	12.9	229.3	63.3	225.1	22.1	1332.0	246.5
Funtumia elastica	47.6		38.5		24.7		72.9		89.6		23.2		116.2		412.7	0.0
(P. Preuss) Stapf																
Garcina spp	4.0		705.2		1.3		3.1				9.2		2.1		725.0	0.0
Gmelina arborea	31.9	36.5	120.9		12.4		9.7		1.8		0.6		18.3		195.5	36.5
Guuboutia sapida	237.3		364.9		1.7	12.4					81.5		61.8		747.2	12.4
Hannoa klaineana	536.4	3.7	401.9	8.0	102.9	72.1	76.5	21.3	135.3	7.5	117.5	22.4	111.9		1482.3	135.1
Pierre ex Engl.																
Holoptelia grandis	83.3	0.0	29.5	15.1	9.8	16.9	38.6	4.8	23.2	0.0	116.4	25.1	59.9	6.2	360.7	68.0
(Hutch.) Mildbr.																
Ìrvingia spp.	311.7	0.0	545.2		14.6		9.5	2.0	59.0	5.0	119.9	11.5	56.2		1116.1	18.5
Hook.f.																
Khaya spp.	417.3	4.3	298.0	2.2	71.1	2.0	97.8	4.8	101.6	0.0	93.2	6.0	103.2		1182.2	19.4
Cola gigantea A.	134.2	0.0	93.6				21.1		0.0	0.0	70.7	31.9	100.4		420.0	31.9
Chev.																
Lannea	275.1	5.1	194.2	34.6	234.5	59.7	109.4	16.4	113.3	4.0	62.7	12.2	74.3	3.6	1063.4	135.5
welwitschii (Hiein)																
Engl.																
Lophira alata	93.8	27.7	29.1	8.4	75.0	5.5	93.2	61.5	223.7	4.1	281.7	9.8	344.2		1140.7	117.0
Banks ex C.																
F. Gaertn.																
Lovoa trichilioides	69.2	1.4	33.9		16.8	18.2	7.5		7.1	0.0	4.8	21.4	58.3	11.8	197.6	52.8
Magnifera indica	6.0		4.5				1.8		7.3		5.8		48.9	1.7	74.3	1.7
Swietenia	216.8		14.6								32.2	3.9	162.1	13.2	425.7	17.0
mahagoni																
Mansonia	423.8	0.0	558.7	2.4	239.6	6.3	10.9		9.2	4.9	308.7	23.0	17.9		1568.9	36.6
altissima A.Chev.																
Melicia excelsa	272.9	7.0	87.4	45.9	190.8	16.6	155.5	26.5	326.4	5.0	292.6	31.4	201.9		1527.6	132.3
(Benth and Hook)																
Mitragyna	76.6	0.0	91.1		35.7	1.8	21.9	5.1	40.9	0.0	32.9		2.5		301.6	6.9
stipulosa (DC.)																
Kuntze																
Musanga			20.9												20.9	0.0
cecropioides R.Br.																
Nuclea papau	1025.6		671.9		3.4	356.7	3.4		3.4		1660.1		1523.7		4891.3	356.7
Nesogordonia	69.4	0.0	48.6	2.0	40.8	2.2	15.0		59.8	4.0	33.0	8.9	36.9	1.5	303.5	18.6
papaverifera (A.																
Chev.)																
Nauclea diderrichii	212.0	24.7	90.4		40.0	8.2	66.1	4.0	96.0	2.1	64.4	4.8	123.3		692.1	43.7
De Wild. & T.																

Tree Species	201	3	20 ⁻	14	20	15	20 ⁻	16	201	17	201	18	20	19	Tota	al
	FA	FR	FA	FR	FA	FR	FA	FR	FA	FR	FA	FR	FA	FR	FA	FR
Durand																
Other spp	1957.3	43.5	521.1	159.1	651.7		1343.0	143.0	2774.5	80.8	1951.8	480.1	1802.0	149.5	11001.3	1055.9
Parkia biglobosa	70.0		77.2							0.0	22.0		49.1		218.3	0.0
Piptadeniastrum	518.7	1.6	365.4	2.8	339.6		236.7	9.1	199.0	0.0	225.4	8.0	417.2	0.0	2302.0	21.5
africana (Hook. f.)																
Pterocarpus spp.	993.2	0.0	757.2	19.0	390.5		12.2	166.8	45.4	46.2	412.3	5.3	97.4	0.0	2708.3	237.3
Jacq.																
Pterygota	447.6	13.7	442.9	821.4	169.7	1284.8	115.3	75.7	279.5	28.1	263.1	1353.7	576.9	167.7	2294.9	3745.1
macrocarpa K.																
Schum.																
Pycnanthus	2878.5	21.2	1230.8		417.1	17.1	247.9		530.7	28.5	702.6	31.1	383.2	0.0	6390.8	97.9
angolensis																
(Welw.) Warb.																
Ricinodendron	1078.7	34.9	473.0	328.7	341.5	233.5	12915.2	137.1	577.5	28.5	354.8	289.6	268.6	90.6	16009.2	1143.0
heudelotii (Baill.)																
Pierre ex																
Cedrus atlantica				13.4								72.0			0.0	85.4
Sterculia oblonga	89.1		76.9								43.1		61.7		270.8	0.0
Mast																
Sterculia	133.8	17.6	57.9	353.6	54.0	412.0	62.4	100.5	39.6	23.9	51.6	364.1	78.5	41.7	477.9	1313.2
rhinopetala K.																
Schum	050.0					000 -	17.0	4.0	100 5		000 7		050.0			045 7
l erminalia	659.9	5.5	626.6		208.2	900.7	47.3	1.8	133.5	1.4	389.7	6.3	256.2		2321.4	915.7
ivorensis A. Chev.	500.4		050.0	054.0	40.4	0.0	10.4	00 7	404 7	40.0	500.0	000 4	70.0	40.0	4000.0	000 0
I riplochiton	503.1	1.4	350.6	254.9	40.4	0.0	46.1	68.7	161.7	18.0	508.6	268.4	76.3	48.9	1686.6	660.2
scieroxylon K.																
Scnum	0445		000.4	047.0	05.0	101.1	400 5	00.4	100 5	00.4	005.0	4577	050.4		0000 0	070 0
Terminalia	814.5	8.9	809.1	217.2	65.6	161.1	160.5	69.4	460.5	29.1	235.6	157.7	258.1	32.8	2803.9	676.2
superba Engl. &																
Diels. Te ete ne eme nelle	70.0		07.0				2.0		50.0		540		400.0		057.0	0.0
Tectona grandis	13.2		67.2				3.8		58.2		54.3		400.9		057.0	0.0
Vitex rivularis											20.4		4.3		24.7	0.0
Guike M//storoulio	2.1	1 1	10				67								12.1	1 /
	2.1	1.4	4.3	4476.0	7720.0	E064.6	49060.4	4967.0	40064.0	764.0	45500.0	E4E0 E	12001.0	4007 E	13.1	1.4
IUIdi	290/0./	403.7	19000.4	44/0.0	1130.9	JZ04.0	10909.1	0.1001	12304.2	/04.0	10020.8	3130.5	1220110	1007.5	110020.4	19022.2

Adeyekun et al.; Asian J. Res. Agric. Forestry, vol. 9, no. 3, pp. 13-26, 2023; Article no.AJRAF.95030

	No of	stems	Vo	blume(m ³)
Months	Free Area	Forest Reserve	Free Area	Forest Reserve
January	7306	741	10174.4	2025.2
February	5875	622	10546.9	2490
March	4514	813	11407.4	1975.3
April	4879	989	20278.5	2037.5
Мау	3277	910	9827.8	2008.2
June	2908	618	8462.1	1367.8
July	3193	569	7159.3	1433.5
August	3571	692	8125.7	1678.1
September	2813	708	7233.1	2168.2
October	3312	561	7778.1	850
November	3767	748	8995	7713.7
December	3648	438	8038	1143.3
Total	49063	8409	118026	19022

Table 3. Number of stem and volume of trees exploited on monthly basis from free areas and forest reserves

Table 4. Summary of number of stem, species, family and volume of trees exploited between 2013 and 2019

Location		2013	2014	2015	2016	2017	2018	2019	Total
	No ofstems	11495	5680	3216	4262	3059	11649	9702	49063
Freearea	Volume (m ³)	29676.7	19855.4	7738.9	18969.1	12364.2	15520.8	13901.0	118026.4
	No of spp.	66	65	56	59	55	67	67	70
	No of family	25	23	21	22	21	27	24	29
	No of stems	358	2556	1150	671	365	1315	1994	8409
Forest reserve	Volume (m ³)	483.7	4476.0	5264.6	1867.0	764.4	5158.5	1007.5	19022.2
	No of spp.	34	37	41	42	39	51	30	63
	No of family	19	23	24	23	20	25	22	26

	Year	2013	2014	2015	2016	2017	2018	2019
Location		Mean± SE	Mean± SE	Mean± SE	Mean± SE	Mean± SE	Mean± SE	Mean± SE
	No of stems	174.17±29.8 ^ª	87.38±4.05 [°]	57.43±2.58 [°]	72.24±3.01 ^d	55.62±2.56 ^e	173.87±26.1 ^ª	144.81±15.5 ^⁵
	Volume (m ³)	449.65±67.3 ^a	305.47±43.9 ^b	138.19±13.3 ^e	321.51±35.1 ^b	224.80±20.8 ^c	231.65±21.6 [°]	207.48±17.1 ^d
Free Area	No of spp.	66.00±3.61 ^ª	65.00±3.01 ^ª	56.00±2.56 ^b	59.00±2.33 ^{ab}	55.00±2.55 ^b	67.00±3.81 ^ª	67.00±3.81 ^ª
	No of Family	25.00±1.49 ^a	23.00±1.31 ^a	21.00±1.21 ^a	22.00±1.25 ^ª	21.00±1.22 ^a	27.00±1.64 ^ª	24.00±1.35 ^a
	No of Stems	5.42±0.38 ^e	39.32±1.88 ^a	20.54±1.20 ^c	11.37±0.75 ^d	6.64±1.56 ^e	19.63±1.23 [°]	29.76±1.78 ^b
	Volume (m ³)	7.33±0.67 ^f	68.86±2.87 [°]	94.01±4.03 ^a	31.64±1.34 ^d	13.90±1.11 ^e	76.99±3.21 ^b	15.04±1.09 ^e
Forest Reserve	No of spp.	34.00±1.33 ^b	37.00±1.38 ^b	41.00±2.01 ^a	42.00±1.99 ^a	39.00±2.54 ^{ab}	51.00±2.5 ^ª	30.00±1.79 ^{bc}
	No of family	19.00±1.11 ^{ab}	23.00±1.25 ^ª	24.00±1.251.48 ^a	23.00±1.48 ^ª	20.00±1.99 ^a	25.00±1.33 ^ª	22.00±1.24 ^a

Table 5. Comparison of number of stem, species, family, and volume of tree exploited (±S.E) between 2013 and 2019

Table 4 is on the summary of number of stem, species, family and volume of trees exploited between 2013 and 2019. A total of 11495, 5680, 3216, 4262, 3059, 11649, 9702 and 49063 stems were harvested from free areas in 2013, 2014, 2015, 2016, 2017, 2018 and 2019 respectively. Also, total volume removed were 29676.7, 19855.4, 7738.9, 18969.1, 12364.2, 15520.8, 13901.0 and 118026.4 in 2013, 2014, 2015, 2016, 2017, 2018 and 2019 respectively. Total number of stem removed annually from forest reserves were as follow 358; 2013, 2556; 2014, 1150; 2015, 671; 2016, 365; 2017, 1315 ;2018, 1994 ;2019. Volume removed were 483.7, 4476.0, 5264.6, 1867.0, 764.4, 5158.5, and 1007.5m³ in 2013, 2014, 2015, 2016, 2017, 2018 and 2019 respectively. When pooled, a total of 70 and 63 tree species distributed among 29 and 26 families were recorded in both free areas and reserves.

Table 5 is on comparison of the number of stem, species, family and volume of timber exploited in the free areas and forest reserves between 2013 and 2019. Generally, there was significant difference (p<0.05) in the number of stems and volumes removed between 2013 and 2019 from both free areas and forest reserves. However, no significant difference (p>0.05) was observed in the number of stem removed in 2015 and 2017 from free areas. There was no significant difference in the number of tree family removed between 2013-2019 from both free areas and forest reserves.

4. DISCUSSION

The number of tree species in the tropical rainforest has been reported to be far greater in terms of species, genetic material and ecological processes of all ecosystems than what is in any other single forest community [6]. Most tropical forest ecosystems are rich in floristic composition, this results in a variety of life forms and preservation of global biodiversity [7]. Forest habitats play a central role in the functioning of the biosphere, as they are the origin of many cultivated plants and animals [8]. Most of the tree species encountered in this study are tropical timber hardwood species that dominate the tropical rainforest ecosystem. They are economic trees that are capable of changing the economic fortune of any nation.

Timber harvest data are very essential for sustainable management of forest and its resources [9]. Forest exploitation in Nigeria is

poorly executed without following sustainable resources management plan. So, it is very deleterious to the environment and biological diversity conservation [2]. The increasing rate of timber harvest from the free areas and reserves as revealed in this study is hostile to the achievement of the objectives of sustainable forest management in Nigeria. Generally, the main problems of sustainable forest management in Nigeria include high rate of indiscriminate logging, over allocation of reserves to contractors, reckless felling of logs in the free areas and the allocated plots, weak control of felling in the free forest areas, weak forest policies, political interference and government's high level of interest in converting forest resources to revenue.

High demand for timber products has resulted in destruction of quantity and quality of faultless forest [10]. Timber harvest appears to be the overriding force driving plant invasion, and plant invasion is a major predictor of reduced native species diversity [11]. The result obtained from this study revealed that a significantly high number of stems and tree volumes were harvested in free areas than the forest reserves between 2013 and 2019. This was as a result of limited control of the government on logging activities in the free areas. The findings of this study corroborate the results of Akindele and Fuwape [12], who reported that the lower proportion of timber harvested from the forest reserves could be attributed to the control on logging timber resources within the forest reserves and also as a result of conservation noting that the forests have not been exploited within a living memory. More so, the logging policy laid down by the state that prohibited the felling down of tree with small diameter size has also contributed to this few number and volume.

The volumes of stem removed from free areas is greater than those removed from forest reserves between 2013 and 2019. This was attributed to the fact that there were no stringent conditions attached to logging in the free areas as in the reserves where all activities within are controlled by the State Department of Forestry. Similar result was observed by Adekunle et. al. [9] who reported that more tree volume was exploited in the free areas than reserves. The results revealed that valuable economic tree species with specific qualities were harvested in both free forest area and forest reserves. Significant difference in the number of stems exploited for each of the species is an indication that timber contractors prefer tree species that are durable than the less durable [12]. This result further revealed that most of the hardwood species with quality aesthetic values have been over exploited in the forest to the extent that they are no longer available. Hence timber contractors now resulted in harvesting low quality species that have been abandoned over the years. Tree species such as Ricinodendron heudelotii (Baill.) Pierre ex (2599 stems), Pycnanthus angolensis (Welw.) Warb. (2397stems). Alstonia congensis de Wild. (2282 stems), Albizia spp. Durazz (2045 stems). Ceiba pentandra L. Gaertn. (1878 stems), Cleistopholis patens (Benth.) Engl. & Diels (1605 stems), Daniellia ogea (Harms) Rolfe ex Holland (1570 stems) etc. were mostly exploited in this study. Today, important tree species Melicia excelsa. Mansonia altissima, Terminalia superba, Nuclea diderrichi, Khaya spp. etc. are not only rare, but they are seriously threatened with extinction. Ovagade [13], also reported that due to the worsening shortages of the primary species like Iroko, Mahogany, etc. lesser utilized species Celtis spp., Ceiba pentandra, such as Brachystegia spp., etc. are now becoming available in the market. This was responsible for why the felling of some the listed tree species was banned from harvesting insome states of Nigeria [14].

Pressure on the available forest resources is not only limited to the high level of demand for wood but also caused by other deforestation activities such as agriculture, urbanization, encroachment, industrialization, mining activities etc. and this is more than the regenerative capacity of the forest, which has resulted to loss of biodiversity. Olajide et al. [15] reported that what is removed in the forest is far beyond the natural capacity of the forest to recuperate in order to continue its normal functions.

Our results also showed that the number of stems, species and volume of trees harvested during the dry season (November- March) is higher than during the rainy season (April-October). This agrees with what was reported by Adekunle et al. [9] that timber loggers take advantage of exploiting more trees due to favorable weather when roads are passable. Also, difficulty in having access to the forest during rainy season, due to erosion, flood, and seasonal streams that destroy roads, reduces the rate of exploitation during raining season.

Oyebo [16] predicted that there is the possibility of an annual deficit of about 80 million to 100

million m³ in the supply and demand for wood from the year of 2005 to 2020. The negative economic, ecological and environmental impacts of logging are very grave. Continuous harvesting without adequate regeneration strategies will invariably results in loss of biodiversity, which is extremely difficult and expensive to rehabilitate. This calls for revisiting and implementing the basic principles of sustainable forest management (SFM) which is the only way forward to save Nigerian forest from degradation

5. CONCLUSION AND RECOMMENDA-TIONS

Timber harvest is on the increase and uncontrolled because Ondo state government tagged revenue generation to the exploitation of timber in all our forest reserves without putting in place the necessarv sustainable forest management practices. As a result of this, forest diversity and other resources are greatly eroded. This study recommends that conservative measures should be put in place to protect forest areas from deforestation and that more protected area should be established. Forest reserves in various parts of the state must be managed sustainably for it to provide its goods and services in perpetuity. The number of trees removed must be replaced with more trees following the acronym "Cut a tree, replace with two". However, a degraded has forest that have potential for self-regeneration should be left alone to recover from its present status. Government should provide the appropriate resources needed by the forest policy implementors to review and update obsolete laws. There should also be strict adherence to forestry laws at the same time ensuring proper monitoring and management of the existing forest from further degradation or deforestation activities.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

- Adeduntan SA. Diversity and Abundance of insect herbivores in Akure Forest Reserve, Ondo State, Nigeria [Ph.D thesis]. Nigeria: Federal University of Technology Akure. 2007;138.
- Fuwape JA. The impacts of forest industries and wood utilization on the environment. ODSG – FAN CONSULT workshop on forest. Industries environment

and sustainable development. JTEP. 2001; 17(2):78-90.

- 3. Olawoyin OT, Akinbowale AS, Olugbadieye OG, Adesuyi FE. Diversity and volume assessment of tree species in the tropical forest at Obanla, Akure, Nigeria. AJRAF. Asian J. Res Agric for. 2020;5(4):11-9.
- Daramola JO, Adesuyi FE, Olugbadieye OG, Akinbowale AS, Adekunle VAJ. Rate of timber harvest and the effects of illegal activities on forest conservation in Southwestern Nigeria. Asian J For. 2020;5(1):8-16.
- Adeyekun OJ, Akinbowale AS, Arinzechi C, Akinbi OJ. Effects of legumes tree leaf mulch placement and N-mineralization on maize productivity in a tropical rainforest area AJRAF. 2022;8(2):34-40: Article no. AJRAF.86670
- Adekunle VAJ, Ige PO. Logging and Logging residues of some selected economic tropical hardwood timber species in free areas of Ondo State, Nigeria. Appl Trop Agric. 2006;11(2):81-92.
- Shi H, Singh A. An assessment of biodiversity hotspots using remote sensing and GIS. J Indian Soc Remote Sens. 2002; 30(1-2):105-12.
- EU (European Union). Forest biodiversity as a challenge and opportunity for climate change, adaptation and mitigation. In:. Presidency background paper presented at the Informal Meeting of EU Environment Ministers. 2008;12.
- Adekunle VAJ, Olagoke AO, Ogundare LF. Rate of timber production in a tropical rainforest ecosystem of Southwestern Nigeria and its implication on sustainable forest management. J For Res. 2010; 21(2):225-30.
- 10. Onyekwelu JC, Reinhard M, Bernd S. Tree species diversity and soil status of two natural forest ecosystems in lowland humid tropical rainforest region of Nigeria.

Tropentag. Conference on International Agriculture Research for Development; 2007.

- 11. Brown KA, Gurevitch J. Long-term impacts of logging on forest diversity in Madagascar. Proc Natl Acad Sci U S A. 2004;101(16):6045-9.
- 12. Akindele SO, Fuwape JA. Wood based industrial sector review submitted to Forestry Monitoring and Evaluation Coordinating Unit (FORMECU). Abuja, Nigeria: Federal Department of Forestry; 1998;77.
- 13. Oyagade AO. Nigerian rain forest conservation: the challenge to the woodbased sector. In: Proceedings of the 25th annual conference of the Forestry Association of Nigeria, Nigeria; 1997.
- 14. FORMECU (Forestry Monitoring Evaluating Coordinating Unit). Forest resources study, Nigeria. Overview revised national report. Volume. 1999; 108.
- Olaiide O. Etigale EB. Udofia SI. Wood-15. industries and sustainable based production of industrial wood raw material in Nigeria. In: Onyekwelu JC, Adekunle VAJ, Oke DO, editors. Research for development in forestry, forest products and natural resources management. The 1st National Conference of the Forest and Forest Products Society held at the Federal University of Technology Akure, Nigeria, 16th-18th April. 2008; 212-5.
- 16. Oyebo MA. History of forest management in Nigeria from 19th century to date. In: Ayobami TS, editor. Imperatives of space technology for sustainable forest management. Proceedings of the an international stakeholders' workshop sponsored by National Space Research and Development Agency held In Abuja, Nigeria between. 2006;1-14.

© 2023 Adeyekun et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history: The peer review history for this paper can be accessed here: https://www.sdiarticle5.com/review-history/95030